1
|
Gia AP, de Juan A, Aranda D, Guijarro FG, Aragó J, Ortí E, García-Iglesias M, González-Rodríguez D. Highly Rigid, Yet Conformationally Adaptable, Bisporphyrin sp2-Cage Receptors Afford Outstanding Binding Affinities, Chelate Cooperativities, and Substrate Selectivities. J Am Chem Soc 2025; 147:918-931. [PMID: 39700308 PMCID: PMC11726566 DOI: 10.1021/jacs.4c13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
If we aim to develop efficient synthetic models of protein receptors and enzymes, we must understand the relationships of intra- and intermolecular interactions between hosts and guests and how they mutually influence their conformational energy landscape so as to adapt to each other to maximize binding energies and enhance substrate selectivities. Here, we introduce a novel design of cofacial (ZnII)bisporphyrin cages based on dynamic imine bonding, which is synthetically simple, but at the same time highly robust and versatile, affording receptors composed of only sp2-hybridized C and N atoms. The high structural rigidity of these cages renders them ideal hosts for ditopic molecules that can fit into the cavity and bind to both metal centers, leading to association constants as high as 109 M-1 in chloroform. These strong binding affinities are a consequence of the remarkable chelate cooperativities attained, with effective molarity (EM) values reaching record values over 103 M. However, we discovered that the cages can still adapt their structure to a more compact version, able to host slightly smaller guests. Such a conformational transition has an energy cost, which can be very different depending on the direction of the imine linkages in the cage skeleton and which results in EM values 2-3 orders of magnitude lower. This interplay between cooperativity and conformational adaptability leads to strong and unusual selectivities. Not only these metalloporphyrin receptors can choose to bind preferably to a particular guest, as a function of its size, but also the guest can select which host to bind, as a function now of the host's conformational rigidity. Such highly cooperative and selective associations are lost, however, in related flexible receptors where the imine bonds are reduced.
Collapse
Affiliation(s)
- A. Priscila Gia
- Nanostructured
Molecular Systems and Materials group, Organic Chemistry Department, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Alberto de Juan
- Nanostructured
Molecular Systems and Materials group, Organic Chemistry Department, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Daniel Aranda
- Institute
of Molecular Science, Universidad de Valencia, Catedrático José Beltrán
2, Paterna 46980, Spain
| | - Fernando G. Guijarro
- Nanostructured
Molecular Systems and Materials group, Organic Chemistry Department, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Juan Aragó
- Institute
of Molecular Science, Universidad de Valencia, Catedrático José Beltrán
2, Paterna 46980, Spain
| | - Enrique Ortí
- Institute
of Molecular Science, Universidad de Valencia, Catedrático José Beltrán
2, Paterna 46980, Spain
| | - Miguel García-Iglesias
- QUIPRE
Department, Nanomedicine-IDIVAL, Universidad
de Cantabria, Avd. de
Los Castros, 46, Santander 39005, Spain
| | - David González-Rodríguez
- Nanostructured
Molecular Systems and Materials group, Organic Chemistry Department, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
2
|
Chang X, Xu Y, von Delius M. Recent advances in supramolecular fullerene chemistry. Chem Soc Rev 2024; 53:47-83. [PMID: 37853792 PMCID: PMC10759306 DOI: 10.1039/d2cs00937d] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 10/20/2023]
Abstract
Fullerene chemistry has come a long way since 1990, when the first bulk production of C60 was reported. In the past decade, progress in supramolecular chemistry has opened some remarkable and previously unexpected opportunities regarding the selective (multiple) functionalization of fullerenes and their (self)assembly into larger structures and frameworks. The purpose of this review article is to provide a comprehensive overview of these recent developments. We describe how macrocycles and cages that bind strongly to C60 can be used to block undesired addition patterns and thus allow the selective preparation of single-isomer addition products. We also discuss how the emergence of highly shape-persistent macrocycles has opened opportunities for the study of photoactive fullerene dyads and triads as well as the preparation of mechanically interlocked compounds. The preparation of two- or three-dimensional fullerene materials is another research area that has seen remarkable progress over the past few years. Due to the rapidly decreasing price of C60 and C70, we believe that these achievements will translate into all fields where fullerenes have traditionally (third-generation solar cells) and more recently been applied (catalysis, spintronics).
Collapse
Affiliation(s)
- Xingmao Chang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| |
Collapse
|
3
|
Chen Q, Thompson AL, Christensen KE, Horton PN, Coles SJ, Anderson HL. β,β-Directly Linked Porphyrin Rings: Synthesis, Photophysical Properties, and Fullerene Binding. J Am Chem Soc 2023; 145:11859-11865. [PMID: 37201942 DOI: 10.1021/jacs.3c03549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cyclic porphyrin oligomers have been studied as models for photosynthetic light-harvesting antenna complexes and as potential receptors for supramolecular chemistry. Here, we report the synthesis of unprecedented β,β-directly linked cyclic zinc porphyrin oligomers, the trimer (CP3) and tetramer (CP4), by Yamamoto coupling of a 2,3-dibromoporphyrin precursor. Their three-dimensional structures were confirmed by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and single-crystal X-ray diffraction analyses. The minimum-energy geometries of CP3 and CP4 have propeller and saddle shapes, respectively, as calculated using density functional theory. Their different geometries result in distinct photophysical and electrochemical properties. The smaller dihedral angles between the porphyrin units in CP3, compared with CP4, result in stronger π-conjugation, splitting the ultraviolet-vis absorption bands and shifting them to longer wavelengths. Analysis of the crystallographic bond lengths indicates that the central benzene ring of the CP3 is partially aromatic [harmonic oscillator model of aromaticity (HOMA) 0.52], whereas the central cyclooctatetraene ring of the CP4 is non-aromatic (HOMA -0.02). The saddle-shaped structure of CP4 makes it a ditopic receptor for fullerenes, with affinity constants of (1.1 ± 0.4) × 105 M-1 for C70 and (2.2 ± 0.1) × 104 M-1 for C60, respectively, in toluene solution at 298 K. The formation of a 1:2 complex with C60 is confirmed by NMR titration and single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Amber L Thompson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Kirsten E Christensen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Peter N Horton
- National Crystallography Service, School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Simon J Coles
- National Crystallography Service, School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Harry L Anderson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|
4
|
Li Y, Su X, Zheng W, Zheng JJ, Guo L, Bonn M, Gao X, Wang HI, Chen L. Targeted Synthesis of Isomeric Naphthalene-Based 2D Kagome Covalent Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202216795. [PMID: 36627239 DOI: 10.1002/anie.202216795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
Targeted synthesis of kagome (kgm) topologic 2D covalent organic frameworks remains challenging, presumably due to the severe dependence on building units and synthetic conditions. Herein, two isomeric "two-in-one" monomers with different lengths of substituted arms based on naphthalene core (p-Naph and m-Naph) are elaborately designed and utilized for the defined synthesis of isomeric kgm Naph-COFs. The two isomeric frameworks exhibit splendid crystallinity and showcase the same chemical composition and topologic structure with, however, different pore channels. Interestingly, C60 is able to uniformly be encapsulated into the triangle channels of m-Naph-COF via in situ incorporation method, while not the isomeric p-Naph-COF, likely due to the different pore structures of the two isomeric COFs. The resulting stable C60 @m-Naph-COF composite exhibits much higher photoconductivity than the m-Naph-COF owing to charge transfer between the conjugated skeletons and C60 guests.
Collapse
Affiliation(s)
- Yusen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.,Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China
| | - Xi Su
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Jia-Jia Zheng
- laboratory of theoretical and computational nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Linshuo Guo
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Xingfa Gao
- laboratory of theoretical and computational nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hai I Wang
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
5
|
Sánchez-Resa D, Daidone I, Djemili R, Adrouche S, Durot S, Heitz V, Zanetti-Polzi L, Ventura B. Photophysical and Computational Insights into Ag(I) Complexation of Porphyrinic Covalent Cages Equipped with Triazoles-Incorporating Linkers. J Phys Chem B 2022; 126:3450-3459. [PMID: 35483006 PMCID: PMC9109141 DOI: 10.1021/acs.jpcb.2c01111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
![]()
The photophysical
characterization of four supramolecular complexes
based on covalent cages 2H-S-2H, 2H-L-2H, Zn-S-2H, and Zn-L-2H, consisting in either
two free-base porphyrins or one Zn(II) porphyrin and one free-base
porphyrin connected by four flexible linkers of different lengths
incorporating triazole binding sites, and their Ag(I) complexation
are reported. The complexation processes have been followed by means
of absorption and emission spectroscopies, and a comprehensive computational
study explains the behavior of the free-base porphyrin-containing
cages. Absorption and emission features have been interpreted on the
bases of conformational changes, metalation processes, and modification
of energy transfer efficiencies occurring in the different cases.
In all cages, except 2H-L-2H, the coordination of four
Ag(I) ions to the lateral triazole groups of the linkers leads to
the enlargement of their cavity. Only for 2H-L-2H is
a different behavior observed, where the process of silver metalation
of the porphyrins’ core prevails.
Collapse
Affiliation(s)
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio (Coppito 1), 67010 L'Aquila, Italy
| | - Ryan Djemili
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 67000 Strasbourg, France
| | - Sonia Adrouche
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 67000 Strasbourg, France
| | - Stéphanie Durot
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 67000 Strasbourg, France
| | - Valérie Heitz
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 67000 Strasbourg, France
| | | | | |
Collapse
|
6
|
Dong J, Pan Y, Yang K, Yuan YD, Wee V, Xu S, Wang Y, Jiang J, Liu B, Zhao D. Enhanced Biological Imaging via Aggregation-Induced Emission Active Porous Organic Cages. ACS NANO 2022; 16:2355-2368. [PMID: 35084185 DOI: 10.1021/acsnano.1c08605] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Porous organic cages (POCs) have many advantages, including superior microenvironments, good monodispersity, and shape homogeneity, excellent molecular solubility, high chemical stability, and intriguing host-guest chemistry. These properties enable POCs to overcome the limitations of extended porous networks such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). However, the applications of POCs in bioimaging remain limited due to the problems associated with their rigid and hydrophobic structures, thus leading to strong aggregation-caused quenching (ACQ) in aqueous biological media. To address this challenge, we report the preparation of aggregation-induced emission (AIE)-active POCs capable of stimuli responsiveness for enhanced bioimaging. We rationally design a hydrophilic, structurally flexible tetraphenylethylene (TPE)-based POC that is almost entirely soluble in aqueous solutions. This POC's conformationally flexible superstructure allows the dynamic rotation of the TPE-based phenyl rings, thus endowing impressive AIE characteristics for responses to environmental changes such as temperature and viscosity. We employ these notable features in the bioimaging of living cells and obtain good performance, demonstrating that the present AIE-active POCs are suitable candidates for further biological applications.
Collapse
Affiliation(s)
- Jinqiao Dong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yutong Pan
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Kuiwei Yang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Yi Di Yuan
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Vanessa Wee
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Shidang Xu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Yuxiang Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Jianwen Jiang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Dan Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| |
Collapse
|
7
|
Huang S, Lei Z, Jin Y, Zhang W. By-design molecular architectures via alkyne metathesis. Chem Sci 2021; 12:9591-9606. [PMID: 34349932 PMCID: PMC8293811 DOI: 10.1039/d1sc01881g] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/14/2021] [Indexed: 12/26/2022] Open
Abstract
Shape-persistent purely organic molecular architectures have attracted tremendous research interest in the past few decades. Dynamic Covalent Chemistry (DCvC), which deals with reversible covalent bond formation reactions, has emerged as an efficient synthetic approach for constructing these well-defined molecular architectures. Among various dynamic linkages, the formation of ethynylene linkages through dynamic alkyne metathesis is of particular interest due to their high chemical stability, linearity, and rigidity. In this review, we focus on the synthetic strategies of discrete molecular architectures (e.g., macrocycles, molecular cages) containing ethynylene linkages using alkyne metathesis as the key step, and their applications. We will introduce the history and challenges in the synthesis of those architectures via alkyne metathesis, the development of alkyne metathesis catalysts, the reported novel macrocycle structures, molecular cage structures, and their applications. In the end, we offer an outlook of this field and remaining challenges. The recent synthesis of novel shape-persistent 2D and 3D molecular architectures via alkyne metathesis is reviewed and the critical role of catalysts is also highlighted.![]()
Collapse
Affiliation(s)
- Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder 80309 USA
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder 80309 USA
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder 80309 USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder 80309 USA
| |
Collapse
|
8
|
Kajiyama K, Tsurumaki E, Wakamatsu K, Fukuhara G, Toyota S. Complexation of an Anthracene-Triptycene Nanocage Host with Fullerene Guests through CH⋅⋅⋅π Contacts. Chempluschem 2021; 86:716-722. [PMID: 33620779 DOI: 10.1002/cplu.202000816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/11/2021] [Indexed: 12/22/2022]
Abstract
A bicyclic anthracene macrocycle containing two triptycene units at the bridgehead positions was synthesized by Ni-mediated coupling of the corresponding precursor as a cage-shaped aromatic hydrocarbon host. This cage host formed an inclusion complex with C60 or C70 guest in 1 : 1 ratio in solution. The association constants (Ka ) determined by the fluorescence titration method were 1.3×104 and 3.3×105 L mol -1 for the C60 and C70 complexes, respectively, at 298 K in toluene. DFT calculations revealed that the guest molecules were included in the middle of the cavity with several CH⋅⋅⋅π contacts. The strong affinity of the cage host for the fullerene guests and the high selectivity toward C70 are discussed on the basis of spectroscopic and structural data.
Collapse
Affiliation(s)
- Kazuki Kajiyama
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama, 700-0005, Japan
| | - Gaku Fukuhara
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
9
|
Jain K, Duvva N, Roy TK, Giribabu L, Chitta R. Porphyrin bearing phenothiazine pincers as hosts for fullerene binding via concave–convex complementarity: synthesis and complexation study. NEW J CHEM 2021. [DOI: 10.1039/d1nj03727g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Free base porphyrin hosts, m-(PTZ)4-H2P and p-(PTZ)4-H2P, tethered with four phenothiazine moieties at the meso-position via a flexible ethoxy phenyl linker were synthesized and used for the selective complexation of fullerenes, C60 and C70.
Collapse
Affiliation(s)
- Kanika Jain
- Department of Chemistry, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Bandarsindri, Tehsil: Kishanhgarh, Dist, Ajmer, Rajasthan 305817, India
| | - Naresh Duvva
- Polymers and Functional Materials Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Tapta Kanchan Roy
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Dist, Samba, Jammu and Kashmir 181143, India
| | - Lingamallu Giribabu
- Polymers and Functional Materials Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research, Ghazianbad 201002, India
| | - Raghu Chitta
- Department of Chemistry, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Bandarsindri, Tehsil: Kishanhgarh, Dist, Ajmer, Rajasthan 305817, India
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Dist, Hanamkonda, Telangana 506004, India
| |
Collapse
|
10
|
Yang X, Huang S, Ortiz M, Wang X, Cao Y, Kareem O, Jin Y, Huang F, Wang X, Zhang W. Truxene-based covalent organic polyhedrons constructed through alkyne metathesis. Org Chem Front 2021. [DOI: 10.1039/d1qo00685a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic alkyne metathesis has successfully been employed toward the synthesis of a truxene-based shape-persistent covalent organic polyhedron (COP) with high binding affinity for fullerenes.
Collapse
Affiliation(s)
- Xiye Yang
- State Key Laboratory of Pulp and Paper Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Michael Ortiz
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Xubo Wang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Yunhao Cao
- State Key Laboratory of Pulp and Paper Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Oula Kareem
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Fei Huang
- State Key Laboratory of Pulp and Paper Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
11
|
|
12
|
Maeda C, Toyama S, Okada N, Takaishi K, Kang S, Kim D, Ema T. Tetrameric and Hexameric Porphyrin Nanorings: Template Synthesis and Photophysical Properties. J Am Chem Soc 2020; 142:15661-15666. [PMID: 32847356 DOI: 10.1021/jacs.0c07707] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hexameric and tetrameric porphyrin nanorings, Z6·T6 and Z4·T4, were synthesized in 53% and 14% yields, respectively, by the Sonogashira-type self-oligomerization of porphyrin monomer 1 using hexadentate template T6 and tetrapyridylporphyrin template T4. Template-free nanorings Z6 and Z4 were also prepared. The femtosecond transient absorption measurements revealed fast excitation energy hopping (EEH) along these nanorings with hopping rates of 2-5 ps. Treatment of Z6 with chiral template CT6 gave Z6·CT6 showing circular dichroism (CD) and circularly polarized luminescence (CPL) in the absorption and fluorescence regions of Z6, respectively, which indicates chirality transfer from CT6 to Z6.
Collapse
Affiliation(s)
- Chihiro Maeda
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Shoki Toyama
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Naoki Okada
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Seongsoo Kang
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| |
Collapse
|
13
|
Yamada M, Narita H, Maeda Y. A Fullerene‐Based Molecular Torsion Balance for Investigating Noncovalent Interactions at the C
60
Surface. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Michio Yamada
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1 Koganei Tokyo 184-8501 Japan
| | - Haruna Narita
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1 Koganei Tokyo 184-8501 Japan
| | - Yutaka Maeda
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1 Koganei Tokyo 184-8501 Japan
| |
Collapse
|
14
|
Yamada M, Narita H, Maeda Y. A Fullerene-Based Molecular Torsion Balance for Investigating Noncovalent Interactions at the C 60 Surface. Angew Chem Int Ed Engl 2020; 59:16133-16140. [PMID: 32458522 DOI: 10.1002/anie.202005888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/12/2022]
Abstract
To investigate the nature and strength of noncovalent interactions at the fullerene surface, molecular torsion balances consisting of C60 and organic moieties connected through a biphenyl linkage were synthesized. NMR and computational studies show that the unimolecular system remains in equilibrium between well-defined folded and unfolded conformers owing to restricted rotation around the biphenyl C-C bond. The energy differences between the two conformers depend on the substituents and is ascribed to differences in the intramolecular noncovalent interactions between the organic moieties and the fullerene surface. Fullerenes favor interacting with the π-faces of benzenes bearing electron-donating substituents. The correlation between the folding free energies and corresponding Hammett constants of the substituents in the arene-containing torsion balances reflects the contributions of the electrostatic interactions and dispersion force to face-to-face arene-fullerene interactions.
Collapse
Affiliation(s)
- Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo, 184-8501, Japan
| | - Haruna Narita
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo, 184-8501, Japan
| | - Yutaka Maeda
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo, 184-8501, Japan
| |
Collapse
|
15
|
Satake A, Katagami Y, Odaka Y, Kuramochi Y, Harada S, Kouchi T, Kamebuchi H, Tadokoro M. Synthesis of Double-Bridged Cofacial Nickel Porphyrin Dimers with 2,2'-Bipyridyl Pillars and Their Restricted Coordination Space. Inorg Chem 2020; 59:8013-8024. [PMID: 32441925 DOI: 10.1021/acs.inorgchem.0c00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Double-bridged cofacial Ni porphyrin dimers 2 with 2,2'-bipyridyl pillars were effectively prepared by a one-step reductive homocoupling reaction of bis(chloropyridyl)-substituted Ni porphyrin derivatives followed by a specific separation of a cyanopropyl-modified silica gel column using pyridine eluent systems. The structural analyses of 2 and its Pd complex were carried out in their solid and solution states by means of X-ray single crystal analysis and NMR, respectively. The complexation of η3-allylpalladium chloride (Pd) with 2 on the spatially restricted 2,2-bipyridine moieties on 2 gave a 2:1 (Pd:2) complex, in which the 2,2'-bipyridine ligands only provided one of the N atoms on a 2,2'-bipyridine ligand to a Pd. Therefore, the 2,2-bipyridine moieties acted as a monodentate ligand.
Collapse
Affiliation(s)
- Akiharu Satake
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.,Department of Chemistry, Faculty of Science Division II, Tokyo University of Science, Tokyo, Japan
| | - Yuta Katagami
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuki Odaka
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yusuke Kuramochi
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.,Department of Chemistry, Faculty of Science Division II, Tokyo University of Science, Tokyo, Japan
| | - Shohei Harada
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takaya Kouchi
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hajime Kamebuchi
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.,Department of Chemistry, Faculty of Science Division I, Tokyo University of Science, Tokyo, Japan
| | - Makoto Tadokoro
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.,Department of Chemistry, Faculty of Science Division I, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
16
|
Kuzuhara D, Furukawa W, Aratani N, Yamada H. Cyclic butadiyne-linked porphyrin(2.1.2.1) oligomers. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cyclic butadiyne-linked porphyrin(2.1.2.1) oligomers are synthesized from 5,16-diethynylporphyrin(2.1.2.1) by Glaser–Hay coupling. Porphyrin(2.1.2.1) forms a bent structure which gives advantages for making cyclic structure without templating molecules. We isolated cyclic trimer and tetramer and characterized them by MALDI-TOF-MS and [Formula: see text]H NMR spectroscopy, theoretical calculations, UV-vis absorption and fluorescence spectra and cyclic voltammetry. The cyclic structure mainly affects the reduction potentials because of expansion of [Formula: see text]-conjugations through butadiyne-linkages to stabilize their LUMOs.
Collapse
Affiliation(s)
- Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Wataru Furukawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Naoki Aratani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroko Yamada
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
17
|
Bittner C, Bockfeld D, Tamm M. Formation of alkyne-bridged ferrocenophanes using ring-closing alkyne metathesis on 1,1'-diacetylenic ferrocenes. Beilstein J Org Chem 2019; 15:2534-2543. [PMID: 31728167 PMCID: PMC6839559 DOI: 10.3762/bjoc.15.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/09/2019] [Indexed: 01/13/2023] Open
Abstract
Novel alkyne-bridged ferrocenophanes [fc{CO2(CH2) n C≡}2] (2a: n = 2; 2b: n = 3) were synthesized from the corresponding terminal diacetylenic ferrocenes [fc{CO2(CH2) n C≡CH}2] (1a: n = 2; 1b: n = 3) through ring-closing alkyne metathesis (RCAM) utilizing the highly effective molybdenum catalyst [MesC≡Mo{OC(CF3)2CH3}3] (MoF6; Mes = 2,4,6-trimethylphenyl). The metathesis reaction occurs in short time with high yields whilst giving full conversion of the terminal alkynes. Furthermore, the solvent-dependant reactivity of 2a towards Ag(SbF6) is investigated, leading to oxidation and formation of the ferrocenium hexafluoroantimonate 4 in dichloromethane, whereas the silver(I) coordination polymer 5 was isolated from THF solution.
Collapse
Affiliation(s)
- Celine Bittner
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38102 Braunschweig, Germany
| | - Dirk Bockfeld
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38102 Braunschweig, Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38102 Braunschweig, Germany
| |
Collapse
|
18
|
Sánchez-Resa D, Schoepff L, Djemili R, Durot S, Heitz V, Ventura B. Photophysical properties of porphyrinic covalent cages endowed with different flexible linkers. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In-depth photophysical studies of four flexible covalent cages bearing either two free-base porphyrins or one free-base porphyrin and one Zn(II) porphyrin, connected by linkers of different lengths, are reported. In the case of the cages with two free-base porphyrins, exciton coupling between the porphyrins is evidenced by large and split Soret bands in the absorption spectra, but the different length of the linkers has only a slight effect on their emission properties. Strong electronic interactions between the porphyrins are also evidenced for the cages that incorporate a free-base porphyrin and a Zn(II) porphyrin, with a more pronounced splitting of the Soret band for the system with longer linkers. In these cages, following excitation of the Zn-porphyrin component, an almost quantitative energy transfer to the free-base unit occurs, with a rate 1.4 times faster in the cage with longer linkers (1.4 × 10[Formula: see text] s[Formula: see text] vs. 1.0 × 10[Formula: see text] s[Formula: see text]. This difference might reflect the more flattened conformation adopted by the cage equipped with longer and more flexible linkers, the latter allowing for a shorter interplanar distance between the porphyrins. The results are discussed in terms of classical and short-range energy transfer mechanisms.
Collapse
Affiliation(s)
| | - Laetitia Schoepff
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, Rue Blaise Pascal, 67000 Strasbourg, France
| | - Ryan Djemili
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, Rue Blaise Pascal, 67000 Strasbourg, France
| | - Stéphanie Durot
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, Rue Blaise Pascal, 67000 Strasbourg, France
| | - Valérie Heitz
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, Rue Blaise Pascal, 67000 Strasbourg, France
| | | |
Collapse
|
19
|
Wei Y, Luo M, Zhang G, Lei J, Xie LH, Huang W. A convenient one-pot nanosynthesis of a C(sp 2)-C(sp 3)-linked 3D grid via an 'A 2 + B 3' approach. Org Biomol Chem 2019; 17:6574-6579. [PMID: 31237308 DOI: 10.1039/c9ob00754g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fluorene-based 3D-grid-FTPA was synthesised with a total yield of 55% via the one-pot formation of six C(sp2)-C(sp3) bonds through a BF3·Et2O-mediated Friedel-Crafts reaction of A2-type bifluorene tertiary alcohol (BIOH) and two B3-type triphenylamines. At the same time, Un-grid-FTPA (2.7%) and 2D-grid-FTPA (5.6%) were obtained as by-products from this synthesis method. In addition, the effect of stereoisomers of BIOH was evaluated to demonstrate that Rac-BIOH is a better A2-type building block to prepare 3D-grid-FTPA in a relatively high yield. Furthermore, 3D-grid-FTPA showed excellent chemical, thermal, and photo-stabilities.
Collapse
Affiliation(s)
- Ying Wei
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China.
| | - Mengcheng Luo
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China.
| | - Guangwei Zhang
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China.
| | - Jiaqi Lei
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China.
| | - Ling-Hai Xie
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China.
| | - Wei Huang
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China. and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, Shaanxi, China
| |
Collapse
|
20
|
Pattillo CC, Moore JS. A tetrahedral molecular cage with a responsive vertex. Chem Sci 2019; 10:7043-7048. [PMID: 31588271 PMCID: PMC6676470 DOI: 10.1039/c9sc02047k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/09/2019] [Indexed: 12/27/2022] Open
Abstract
Dynamic covalent chemistry (DCC) is a widely used method for the self-assembly of three-dimensional molecular architectures. The orthogonality of dynamic reactions is emerging as a versatile strategy for controlling product distributions in DCC, yet the application of this approach to the synthesis of 3D organic molecular cages is limited. We report the first system which employs the orthogonality of alkyne metathesis and dynamic imine exchange to prepare a molecular cage with a reversibly removable vertex. This study demonstrates the rational and controlled application of chemical orthogonality in DCC to prepare organic cages of expanded functionality which respond to chemical stimuli.
Collapse
Affiliation(s)
- Christopher C Pattillo
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , USA .
| | - Jeffrey S Moore
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , USA .
| |
Collapse
|
21
|
Nakamura T, Tsukuda S, Nabeshima T. Double-Circularly Connected Saloph-Belt Macrocycles Generated from a Bis-Armed Bifunctional Monomer. J Am Chem Soc 2019; 141:6462-6467. [DOI: 10.1021/jacs.9b00171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Takashi Nakamura
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Shinnosuke Tsukuda
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tatsuya Nabeshima
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
22
|
Ehrhorn H, Bockfeld D, Freytag M, Bannenberg T, Kefalidis CE, Maron L, Tamm M. Studies on Molybdena- and Tungstenacyclobutadiene Complexes Supported by Fluoroalkoxy Ligands as Intermediates of Alkyne Metathesis. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00068] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Henrike Ehrhorn
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Dirk Bockfeld
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Freytag
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Thomas Bannenberg
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Christos E. Kefalidis
- Institut National des Sciences Appliquées, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Maron
- Institut National des Sciences Appliquées, Université de Toulouse, CNRS, INSA, UPS, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
23
|
Hu X, Liu N, Yang H, Wu F, Chen X, Li C, Chen X. A reversible ion transportation switch of ON–OFF–ON type by a ligand-gated calix[6]arene channel. Chem Commun (Camb) 2019; 55:3008-3011. [DOI: 10.1039/c9cc00732f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calix[6]arene (CX6) was found to be an efficient ion transmembrane channel, which could be blocked by methylene blue (MB) through host–guest interactions.
Collapse
Affiliation(s)
- Xinyu Hu
- College of Mathematic and Electronic Information Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Nannan Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Haishen Yang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- Shanghai University of Electric Power
- Shanghai
- China
| | - Fen Wu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Xi Chen
- College of Mathematic and Electronic Information Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Canpeng Li
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- P. R. China
| | - Xiaojing Chen
- College of Mathematic and Electronic Information Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| |
Collapse
|
24
|
Lin L, Lin YJ, Jin GX. Coordination-driven self-assembly of Cp*
Rh-based rectangles in novel families of hetero-bimetallic metal-organic frameworks. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lin Lin
- Department of Translational Medicine Research Centre, Key Laboratory of Research on Pathogenesis of Allergen Provoked Allergic Disease, Liaoning Province; Shenyang Medical College; Shenyang 110034 People's Republic of China
| | - Yue-jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Centre of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 People's Republic of China
| | - Guo-xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Centre of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 People's Republic of China
| |
Collapse
|
25
|
Ehrhorn H, Schlösser J, Bockfeld D, Tamm M. Efficient catalytic alkyne metathesis with a fluoroalkoxy-supported ditungsten(III) complex. Beilstein J Org Chem 2018; 14:2425-2434. [PMID: 30344767 PMCID: PMC6178283 DOI: 10.3762/bjoc.14.220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023] Open
Abstract
The molybdenum and tungsten complexes M2(OR)6 (Mo2F6, M = Mo, R = C(CF3)2Me; W2F3, M = W, R = OC(CF3)Me2) were synthesized as bimetallic congeners of the highly active alkyne metathesis catalysts [MesC≡M{OC(CF3)nMe3−n}] (MoF6, M = Mo, n = 2; WF3, M = W, n = 1; Mes = 2,4,6-trimethylphenyl). The corresponding benzylidyne complex [PhC≡W{OC(CF3)Me2}] (WPhF3) was prepared by cleaving the W≡W bond in W2F3 with 1-phenyl-1-propyne. The catalytic alkyne metathesis activity of these metal complexes was determined in the self-metathesis, ring-closing alkyne metathesis and cross-metathesis of internal and terminal alkynes, revealing an almost equally high metathesis activity for the bimetallic tungsten complex W2F3 and the alkylidyne complex WPhF3. In contrast, Mo2F6 displayed no significant activity in alkyne metathesis.
Collapse
Affiliation(s)
- Henrike Ehrhorn
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Janin Schlösser
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Dirk Bockfeld
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
26
|
Kimura M, Miyashita J, Miyagawa S, Kawasaki T, Takaya H, Tokunaga Y. Recognition Behavior of a Porphyrin Heterodimer Self-Assembled through an Amidinium-Carboxylate Salt Bridge. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Masaki Kimura
- Department of Materials Science and Engineering, Faculty of Engineering; University of Fukui; Bunkyo, Fukui 910-8507 Japan
| | - Jyunichi Miyashita
- Department of Materials Science and Engineering, Faculty of Engineering; University of Fukui; Bunkyo, Fukui 910-8507 Japan
| | - Shinobu Miyagawa
- Department of Materials Science and Engineering, Faculty of Engineering; University of Fukui; Bunkyo, Fukui 910-8507 Japan
| | - Tsuneomi Kawasaki
- Department of Applied Chemistry; Tokyo University of Science; Kagurazaka, Shinjuku-ku, Tokyo 162-8601 Japan
| | - Hikaru Takaya
- International Research Center for Elements Science, Institute for Chemical Research; Kyoto University; Uji 611-0011 Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering, Faculty of Engineering; University of Fukui; Bunkyo, Fukui 910-8507 Japan
| |
Collapse
|
27
|
Gil-Ramírez G, Shah A, El Mkami H, Porfyrakis K, Briggs GAD, Morton JJL, Anderson HL, Lovett JE. Distance Measurement of a Noncovalently Bound Y@C82 Pair with Double Electron Electron Resonance Spectroscopy. J Am Chem Soc 2018; 140:7420-7424. [DOI: 10.1021/jacs.8b03889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Guzmán Gil-Ramírez
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Lincoln LN6 7DL, United Kingdom
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Anokhi Shah
- SUPA School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Hassane El Mkami
- SUPA School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Kyriakos Porfyrakis
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - G. Andrew D. Briggs
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - John J. L. Morton
- London Centre for Nanotechnology, UCL, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
| | - Harry L. Anderson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Janet E. Lovett
- SUPA School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| |
Collapse
|
28
|
Bai W, Wei W, Sung HHY, Williams ID, Lin Z, Jia G. Syntheses of Re(V) Alkylidyne Complexes and Ligand Effect on the Reactivity of Re(V) Alkylidyne Complexes toward Alkynes. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Wei Bai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wei Wei
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Herman H. Y. Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ian D. Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
29
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2016. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Enhancing solution-phase supramolecular interactions between monomeric porphyrins and [60]fullerene by simple chemical modification. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.10.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Bittner C, Ehrhorn H, Bockfeld D, Brandhorst K, Tamm M. Tuning the Catalytic Alkyne Metathesis Activity of Molybdenum and Tungsten 2,4,6-Trimethylbenzylidyne Complexes with Fluoroalkoxide Ligands OC(CF3)nMe3–n (n = 0–3). Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00519] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Celine Bittner
- Institut für Anorganische
und Analytische Chemie, Technische Universität Braunschweig, Hagenring
30, 38106 Braunschweig, Germany
| | - Henrike Ehrhorn
- Institut für Anorganische
und Analytische Chemie, Technische Universität Braunschweig, Hagenring
30, 38106 Braunschweig, Germany
| | - Dirk Bockfeld
- Institut für Anorganische
und Analytische Chemie, Technische Universität Braunschweig, Hagenring
30, 38106 Braunschweig, Germany
| | - Kai Brandhorst
- Institut für Anorganische
und Analytische Chemie, Technische Universität Braunschweig, Hagenring
30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Institut für Anorganische
und Analytische Chemie, Technische Universität Braunschweig, Hagenring
30, 38106 Braunschweig, Germany
| |
Collapse
|
32
|
Chiba Y, Liu M, Tachibana Y, Fujihara T, Tsuji Y, Terao J. Hetero Face-to-Face Porphyrin Array with Cooperative Effects of Coordination and Host-Guest Complexation. Chem Asian J 2017; 12:1900-1904. [DOI: 10.1002/asia.201700738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Yusuke Chiba
- Department of Energy and Hydrocarbon Chemistry; Graduate School of Engineering, Kyoto University; Kyoto 615-8510 Japan
| | - Maning Liu
- School of Engineering; RMIT University; Bundoora VIC 3083 Australia
| | | | - Tetsuaki Fujihara
- Department of Energy and Hydrocarbon Chemistry; Graduate School of Engineering, Kyoto University; Kyoto 615-8510 Japan
| | - Yasushi Tsuji
- Department of Energy and Hydrocarbon Chemistry; Graduate School of Engineering, Kyoto University; Kyoto 615-8510 Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences; The University of Tokyo; Tokyo 153-8902 Japan
| |
Collapse
|
33
|
Ortiz M, Yu C, Jin Y, Zhang W. Poly(aryleneethynylene)s: Properties, Applications and Synthesis Through Alkyne Metathesis. Top Curr Chem (Cham) 2017; 375:69. [PMID: 28653155 DOI: 10.1007/s41061-017-0156-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Functional polymeric materials have seen their way into every facet of materials chemistry and engineering. In this review article, we focus on a promising class of polymers, poly(aryleneethynylene)s, by covering several of the numerous applications found thus far for these materials. Additionally, we survey the current synthetic strategies used to create these polymers, with a focus on the emerging technique of alkyne metathesis. An overview is presented of the most recent catalytic systems that support alkyne metathesis as well as the more useful alkyne metathesis reaction capable of synthesizing poly(aryleneethynylene)s.
Collapse
Affiliation(s)
- Michael Ortiz
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, 80309, USA
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Chao Yu
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Yinghua Jin
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Wei Zhang
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
34
|
Campos VR, Gomes ATPC, Cunha AC, Neves MDGPMS, Ferreira VF, Cavaleiro JAS. Efficient access to β -vinylporphyrin derivatives via palladium cross coupling of β-bromoporphyrins with N-tosylhydrazones. Beilstein J Org Chem 2017; 13:195-202. [PMID: 28228860 PMCID: PMC5301804 DOI: 10.3762/bjoc.13.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/11/2017] [Indexed: 12/30/2022] Open
Abstract
This work describes a new approach to obtain new β-vinylporphyrin derivatives through palladium-catalyzed cross-coupling reaction of 2-bromo-5,10,15,20-tetraphenylporphyrinatozinc(II) with N-tosylhydrazones. This is the first report of the use of such synthetic methodology in porphyrin chemistry allowing the synthesis of new derivatives, containing β-arylvinyl substituents.
Collapse
Affiliation(s)
- Vinicius R Campos
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-150 Niterói, RJ, Brazil; QOPNA and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana T P C Gomes
- QOPNA and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Anna C Cunha
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-150 Niterói, RJ, Brazil
| | | | - Vitor F Ferreira
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-150 Niterói, RJ, Brazil
| | - José A S Cavaleiro
- QOPNA and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
35
|
Li T, Zhang D, Wang R, Fan Y, Guo X, Liu S, Ma Y, Zhao D. Synthesis, solvent-dependent emission and two-photon absorption of a triangular –[D–π–A]3– macrocycle. Org Chem Front 2017. [DOI: 10.1039/c6qo00845c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A large π–conjugated macrocycle featuring a –[D–π–A]3– backbone is synthesized, exhibiting strongly solvent-dependent fluorescence and evident two-photon absorption ability.
Collapse
Affiliation(s)
- Tian Li
- Beijing National Laboratory for Molecular Sciences
- Centre for the Soft Matter Science and Engineering and the Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing
| | - Di Zhang
- Beijing National Laboratory for Molecular Sciences
- Centre for the Soft Matter Science and Engineering and the Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing
| | - Ranran Wang
- Beijing National Laboratory for Molecular Sciences
- Centre for the Soft Matter Science and Engineering and the Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing
| | - Yuanpeng Fan
- Beijing National Laboratory for Molecular Sciences
- Centre for the Soft Matter Science and Engineering and the Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing
| | - Xinyan Guo
- Beijing National Laboratory for Molecular Sciences
- Centre for the Soft Matter Science and Engineering and the Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing
| | - Shuai Liu
- Beijing National Laboratory for Molecular Sciences
- Centre for the Soft Matter Science and Engineering and the Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences
- Centre for the Soft Matter Science and Engineering and the Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences
- Centre for the Soft Matter Science and Engineering and the Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing
| |
Collapse
|