1
|
Zhang R, Dong G. Skeletal Rearrangements of Amides via Breaking Inert Bonds. Chemistry 2025; 31:e202500595. [PMID: 40095718 PMCID: PMC12057600 DOI: 10.1002/chem.202500595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
Skeletal rearrangements of amides provide rapid access to complex nitrogen-containing scaffolds from simple readily available starting materials. While classical reactions such as the Hofmann and Curtius rearrangements have been widely utilized in organic synthesis, recent advances in amide activation strategies have brought new types of transformations and offered many new applications. This review focuses on the development of amide skeletal rearrangement reactions over the past two decades. The content is organized based on the initial bond cleavage pathways: C─N bond cleavage, C─C bond cleavage, and C═O bond activation.
Collapse
Affiliation(s)
- Rui Zhang
- Department of ChemistryThe University of ChicagoChicagoIllinoisUSA
| | - Guangbin Dong
- Department of ChemistryThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
2
|
Saha R, Hembram BC, Panda A, Bagh B. Iron-catalyzed peroxidation of fluorenes and 9-alkyl-9 H-fluorenes and oxidative cleavage of the CC bond in 9-alkylidene-fluorenes. Org Biomol Chem 2025; 23:4232-4239. [PMID: 40197730 DOI: 10.1039/d5ob00102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
A newly developed (NNN)FeCl2 complex was used as an efficient catalyst for the quaternary peroxidation of 9-alkyl-9H-fluorenes via selective C-H functionalization. This peroxidation involved a radical pathway. Peroxidation of 9H-fluorenes was also performed efficiently. The iron catalyst is also effective for the oxidative cleavage of the CC bond in 9-alkylidene fluorenes to yield 9-fluorenones.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.
| | - Bhairab Chand Hembram
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.
| | - Asutosh Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.
| |
Collapse
|
3
|
Chen L, Ni Q, Zhou Y, Liu Y. Gold(I)-catalyzed tandem cyclization/peroxidation of 2-alkynyl-1-carbonylbenzenes with TBHP. Org Biomol Chem 2025; 23:3177-3182. [PMID: 40045851 DOI: 10.1039/d5ob00026b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
A gold(I)-catalyzed tandem cyclization/peroxidation of 2-alkynyl-1-carbonylbenzenes with tert-butyl hydroperoxide (TBHP) has been successfully developed to access 1-peroxidized 1H-isochromene derivatives in moderate to good yields. The use of one of the resultant 1-peroxidized 1H-isochromenes (3a) for the construction of phenyl(8-phenylbicyclo[4.2.0]octa-1(6),2,4,7-tetraen-7-yl)methanone (4), phenyl(3-phenyl-1,3-dihydroisobenzofuran-1-yl)methanone (5) and 2-(2-benzoylphenyl)-1-phenylethan-1-one (6) has also been investigated, respectively.
Collapse
Affiliation(s)
- Lang Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Qibo Ni
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yan Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
4
|
Jena CK, Patnaik A, Nayak SS, Kumari S, Panda A, Dixit M, Sharma NK. PIDA-mediated synthesis of kynurenine derivatives by oxidative fragmentation of the tryptophan scaffold. Org Biomol Chem 2025; 23:3208-3223. [PMID: 40062636 DOI: 10.1039/d5ob00057b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Kynurenine metabolites are derived from the aromatic amino acid, tryptophan, and their chemical synthesis has been sought to understand the tryptophan-kynurenine-based biochemical reactions that could provide opportunities for exploring therapeutic values. This report describes the synthesis of kynurenine (kyn) derivatives from tryptophan-containing peptides using the versatile hypervalent iodine reagent, phenyliodine(III)diacetate (PIDA), through the C-C bond fragmentation of tryptophan's indole ring. However, BocNH-Trp-OH and N-arylated (both benzenoid and non-benzenoid) tryptophan derivatives produce unique spirocyclic molecules with PIDA under similar reaction conditions. In screening for therapeutic values, the sequence-specific kynurenine derivatives show inhibition of quorum sensing against multidrug-resistant pathogenic bacteria, Pseudomonas aeruginosa PA14 strain.
Collapse
Affiliation(s)
- Chinmay K Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni campus, Bhubaneswar-752050, Odisha, India.
- Homi Bhabha National Institute (HBNI)-Mumbai, Anushaktinagar, Mumbai, 400 094, India
| | - Aurobindo Patnaik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni campus, Bhubaneswar-752050, Odisha, India.
- Homi Bhabha National Institute (HBNI)-Mumbai, Anushaktinagar, Mumbai, 400 094, India
| | - Sushree S Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni campus, Bhubaneswar-752050, Odisha, India.
- Homi Bhabha National Institute (HBNI)-Mumbai, Anushaktinagar, Mumbai, 400 094, India
| | - Supriya Kumari
- School of Chemical Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni campus, Bhubaneswar-752050, Odisha, India.
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni campus, Bhubaneswar-752050, Odisha, India
| | - Ankita Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni campus, Bhubaneswar-752050, Odisha, India.
- Homi Bhabha National Institute (HBNI)-Mumbai, Anushaktinagar, Mumbai, 400 094, India
| | - Manjusha Dixit
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni campus, Bhubaneswar-752050, Odisha, India
- Homi Bhabha National Institute (HBNI)-Mumbai, Anushaktinagar, Mumbai, 400 094, India
| | - Nagendra K Sharma
- School of Chemical Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni campus, Bhubaneswar-752050, Odisha, India.
- Homi Bhabha National Institute (HBNI)-Mumbai, Anushaktinagar, Mumbai, 400 094, India
| |
Collapse
|
5
|
Zheng X, Wang M, Sun X, Gao Y, Chen H. Catalyst-free coupling of peroxypyrroloindolenines with amines to afford stable peroxyindolenines. Org Biomol Chem 2025; 23:1215-1218. [PMID: 39711314 DOI: 10.1039/d4ob01736f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Here we report a highly efficient method for coupling of peroxypyrroloindolenines with amines under catalyst-free conditions to obtain stable C2-N peroxyindolenines in high yields with remarkable functional group tolerance. Initial studies have shown that compound 13 exhibits potent inhibition of the B16/F10 cell line with an IC50 value of 2.18 μM.
Collapse
Affiliation(s)
- Xiaoshan Zheng
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Menghan Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Xianbin Sun
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
6
|
Wang J, Ji N, Gao Z, Tang XY, Wang L. Synthesis of 2-Sulfonyl Carbazoles via Oxidative C-H Functionalization of Tetrahydrocarbazoles with Sulfonyl Hydrazides. Org Lett 2025; 27:821-826. [PMID: 39797814 DOI: 10.1021/acs.orglett.4c04374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Herein, we report an approach for the synthesis of 2-sulfonyl carbazoles from the oxidative C-H sulfonylation of tetrahydrocarbazoles. The mechanistic study reveals that this special selectivity is realized by the addition of a sulfonyl radical to the 3,4-dihydrocabazole intermediate via dehydrogenative desaturation of tetrahydrocarbazoles. This approach features readily available starting materials, high regioselectivity, broad substrate scope, and attractive synthetic utility.
Collapse
Affiliation(s)
- Jiahua Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Na Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Zifeng Gao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiang-Ying Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Long Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
7
|
Tokushige K, Kobori Y, Asai S, Abe T. Indoline hemiaminals: a platform for accessing anthranilic acid derivatives through oxidative deformylation. Org Biomol Chem 2024; 22:7343-7348. [PMID: 39189407 DOI: 10.1039/d4ob01218f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
2-Aminobenzoyl chlorides possess both a nucleophilic nitrogen atom and an electrophilic carbonyl group, and thus selective acylation of nucleophiles is challenging; self-dimerization and sluggish reactions occur. Herein, we introduce a new synthetic protocol using 2-aminobenzoyl surrogates, allowing concise entry to decorated 2-aminobenzoyl derivatives in the absence of transition metals, acid chlorides, and specific reagents.
Collapse
Affiliation(s)
- Keisuke Tokushige
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan.
| | - Yuito Kobori
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan.
| | - Shota Asai
- School of Pharmacy, Shujitsu University, 1-6-1, Nishigawara, Naka-ku, Okayama, 7038516, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan.
| |
Collapse
|
8
|
Schmitt HL, Martymianov D, Green O, Delcaillau T, Park Kim YS, Morandi B. Regiodivergent Ring-Expansion of Oxindoles to Quinolinones. J Am Chem Soc 2024; 146:4301-4308. [PMID: 38335924 PMCID: PMC10885155 DOI: 10.1021/jacs.3c12119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The development of divergent methods to expedite structure-activity relationship studies is crucial to streamline discovery processes. We developed a rare example of regiodivergent ring expansion to access two regioisomers from a common starting material. To enable this regiodivergence, we identified two distinct reaction conditions for transforming oxindoles into quinolinone isomers. The presented methods proved to be compatible with a variety of functional groups, which enabled the late-stage diversification of bioactive oxindoles as well as facilitated the synthesis of quinolinone drugs and their derivatives.
Collapse
Affiliation(s)
- Hendrik L Schmitt
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Den Martymianov
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Ori Green
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Tristan Delcaillau
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Young Seo Park Kim
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Sankara CS, Namboothiri INN. Hauser-Kraus Annulation Initiated Multi-Cascade Reactions for Facile Access to Functionalized and Fused Oxazepines, Carbazoles and Phenanthridinediones. Chemistry 2024; 30:e202303517. [PMID: 37946675 DOI: 10.1002/chem.202303517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
The Hauser-Kraus (H-K) annulation of N-unsubstituted 3-olefinic oxindoles with 3-nucleophilic phthalides triggers a cascade of ring expansion and ring contraction reactions through several regioselective steps in one pot. While oxazepines were isolated in the presence of stoichiometric amounts of base at room temperature, carbazoles and phenanthridinediones were the products in the presence of excess base and microwave irradiation. Mechanistic studies guided by stepwise reactions and control experiments revealed that the isolable oxazepine intermediate, formed via ring expansion of the H-K adduct, is the key precursor to carbazole and phenanthridinedione via decarboxylative regioselective cyclizations.
Collapse
|
10
|
Zhu LY, Sun J, Liu D, Yan CG. Construction of diverse spirooxindoles via a domino reaction of arylamines, but-2-ynedioates and 3-hydroxy-3-(indol-3-yl)indolin-2-ones. Org Biomol Chem 2023; 21:9392-9397. [PMID: 37981814 DOI: 10.1039/d3ob01560b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
An iodine-promoted domino reaction of arylamines/benzylamines, dialkyl but-2-ynedioates and 3-hydroxy-3-(indol-3-yl)indolin-2-ones showed very interesting molecular diversity. The reaction in acetonitrile at 65 °C in the presence of 30% mmol I2 resulted in spiro[indoline-3,1'-pyrido[4,3-b]indoles] in satisfactory yields. When anilines without para-substituents were used in the reaction, a direct substitution of the hydroxyl group to 2-(phenylamino)maleate at the para-position of aniline gave chain products in good yields. Additionally, similar reactions with benzylamines not only gave spiro[indoline-3,1'-pyrido[4,3-b]indoles], but also afforded spiro[indoline-3,1'-pyrano[4,3-b]indol]-2-ones in lower yields. A plausible domino annulation mechanism was rationally proposed for the formation of different kinds of polycyclic compounds.
Collapse
Affiliation(s)
- Ling-Yun Zhu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Dan Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
11
|
Sugawara M, Sawamura M, Akakabe M, Ramadoss B, Sohtome Y, Sodeoka M. Pd-catalyzed Aerobic Cross-Dehydrogenative Coupling of Catechols with 2-Oxindoles and Benzofuranones: Reactivity Difference Between Monomer and Dimer. Chem Asian J 2022; 17:e202200807. [PMID: 36062560 PMCID: PMC9825984 DOI: 10.1002/asia.202200807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Persistent radicals, which are generated from 2-oxindole or benzofuranone dimers, are useful tools for designing the radical-based cross-coupling reaction to provide molecules containing a quaternary carbon. The persistent radical is accessible from both the dimer and monomer; however, the reactivity difference between these substrates for the oxidative cross-coupling reaction is not fully understood, most likely because of the mechanistic complexity. Here, we present details of an aerobic cross-dehydrogenative coupling (CDC) reaction using various monomers and catechols. UV-Vis analysis and mechanistic control experiments showed that the monomer is less reactive than the dimer under aerobic conditions. Our Pd(II)-BINAP-μ-hydroxo complex significantly improved the reactivity of the monomers for the aerobic CDC reaction with catechols, yielding results comparable to those of the corresponding dimer. The procedure, which enables the generation of the persistent radical in situ, is particularly useful when employing the monomer that is not readily converted to the corresponding dimer.
Collapse
Affiliation(s)
- Masumi Sugawara
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan
| | - Miki Sawamura
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan,Tokyo Medical and Dental UniversityTokyo113-8510Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan,Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science
| | - Boobalan Ramadoss
- Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science
| | - Yoshihiro Sohtome
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan,Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan,Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science,Tokyo Medical and Dental UniversityTokyo113-8510Japan
| |
Collapse
|
12
|
Wang L, Shu S, Lv L, Li Z. Copper-catalyzed remote trifluoromethylthiolation-peroxidation of unactivated alkenes via 1,5-hydrogen atom transfer. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Bera T, Singh B, Jana M, Saha J. Access to 3,3'-disubstituted peroxyoxindole derivatives and α-peroxyamides via azaoxyallyl cation-guided addition of hydroperoxides. Chem Commun (Camb) 2022; 58:7538-7541. [PMID: 35703384 DOI: 10.1039/d2cc02378d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a transition metal-free approach for access to 3,3'-disubstituted peroxyoxindole is disclosed, which harnesses a transient azaoxyallyl cation. This strategy is also applicable to the synthesis of structurally diverse α-peroxycarboxylic acid surrogates. The method exhibits good functional group tolerance and is suitable for generating a library of peroxy-containing compounds.
Collapse
Affiliation(s)
- Tishyasoumya Bera
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. .,Department of Chemistry, University of Kalyani, Kalyani-741235, India
| | - Bandana Singh
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Manoranjan Jana
- Department of Chemistry, University of Kalyani, Kalyani-741235, India
| | - Jaideep Saha
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
14
|
Vayer M, Pastor M, Kofink C, Maulide N. Electrochemical Rearrangement of 3-Hydroxyoxindoles into Benzoxazinones. Org Lett 2021; 24:27-32. [PMID: 34949089 PMCID: PMC8762708 DOI: 10.1021/acs.orglett.1c03569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We report an unexpected
rearrangement of 3-hydroxyoxindoles into
benzoxazinones using electrochemistry. Our reaction employs mild and
environmentally friendly conditions, and the benzoxazinone products
are obtained in moderate to excellent yields. Mechanistic experiments
suggest that a peroxide intermediate is likely involved.
Collapse
Affiliation(s)
- Marie Vayer
- Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Miryam Pastor
- Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Christiane Kofink
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Nuno Maulide
- Christian Doppler Laboratory for Entropy-Oriented Drug Design, Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
15
|
Mintz T, More NY, Gaster E, Pappo D. Iron-Catalyzed Oxidative Cross-Coupling of Phenols and Tyrosine Derivatives with 3-Alkyloxindoles. J Org Chem 2021; 86:18164-18178. [PMID: 34881564 DOI: 10.1021/acs.joc.1c02435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, a novel iron-catalyzed oxidative cross-coupling reaction between phenols and 3-alkyloxindole derivatives is reported. The efficient method, which is based on the FeCl3 catalyst and the t-BuOOt-Bu oxidant in 1,2-dichloroethane at 70 °C, affords 3-alkyl-3-(hydroxyaryl)oxindole compounds with a high degree of selectivity. The generality of the conditions was proven by reacting various substituted phenols, naphthols, and tyrosine derivatives with 3-alkyloxindoles. To apply the chemistry for the conjugation of tyrosine-containing short peptides with oxindolylalanine (Oia) derivatives, the reaction conditions were modified [Fe(O2CCF3)3 catalyst, t-BuOOt-Bu, HFIP, 70 °C], and amino acids with acid-stable N-protecting groups were used.
Collapse
Affiliation(s)
- Tomer Mintz
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nagnath Yadav More
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Eden Gaster
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Doron Pappo
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
16
|
Shaikh MA, Ubale AS, Gnanaprakasam B. Indium Catalyzed Sequential Regioselective Remote C−H Indolylation and Rearrangement Reaction of Peroxyoxindole. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Moseen A. Shaikh
- Department of Chemistry Indian Institute of Science Education and Research Pune 411008 India
| | - Akash S. Ubale
- Department of Chemistry Indian Institute of Science Education and Research Pune 411008 India
| | - Boopathy Gnanaprakasam
- Department of Chemistry Indian Institute of Science Education and Research Pune 411008 India
| |
Collapse
|
17
|
Yang F, Xu S, Fan H, Zhao X, Zhang X. One‐Pot Synthesis of 2‐Aminobenzophenones from 2‐Alkynyl Arylazides Catalyzed by Pd and Cu Precursors. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fan Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Shijie Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Hui Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Xuechun Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Xiaoxiang Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
18
|
Wang L, Ma Y, Jiang Y, Lv L, Li Z. A Mn-catalyzed remote C(sp 3)-H bond peroxidation triggered by radical trifluoromethylation of unactivated alkenes. Chem Commun (Camb) 2021; 57:7846-7849. [PMID: 34278408 DOI: 10.1039/d1cc03295j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A manganese-catalyzed radical relay strategy for the remote trifluoromethylation-peroxidation of unactivated alkenes is disclosed. The electrophilic CF3 group was added to the C[double bond, length as m-dash]C double bonds to afford remote C-centered radicals upon 1,5-HAT, which could be efficiently trapped by Mnn+1OOBu-t species to deliver 1,6-difunctionalized products selectively under mild conditions. t-BuOOH serves as both the oxidant and the peroxy precursor in this transformation.
Collapse
Affiliation(s)
- Leilei Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Yangyang Ma
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Yuhang Jiang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Leiyang Lv
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
19
|
Ubale AS, Shaikh MA, Gnanaprakasam B. Sequential Oxidative Fragmentation and Skeletal Rearrangement of Peroxides for the Synthesis of Quinazolinone Derivatives. J Org Chem 2021; 86:9621-9636. [PMID: 34232051 DOI: 10.1021/acs.joc.1c00889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For the first time, the sequential reaction of peroxyoxindole that involves base-promoted oxidative fragmentation to isocyanate formation and primary amine or amino alcohol accelerated skeletal rearrangement to synthesize exo-olefinic-substituted quinazolinone or oxazoloquinazolinone is reported. The advantages of this new reaction include a broad substrate scope and transition-metal-free and room-temperature conditions. The formation of the isocyanate as a key intermediate that accelerates oxidative skeletal rearrangement has been confirmed by trapping experiments and spectroscopic evidence.
Collapse
Affiliation(s)
- Akash S Ubale
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Moseen A Shaikh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
20
|
Qin H, Yang Z, Zhang Z, Liu C, He W, Fang Z, Guo K. An Electrochemical Route for Special Oxidative Ring-Opening of Indoles. Chemistry 2021; 27:13024-13028. [PMID: 34184801 DOI: 10.1002/chem.202101527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 11/09/2022]
Abstract
A novel electrochemical protocol for the oxidative cleavage of indoles has been developed, which offers a simple way to access synthetically useful anthranilic acid derivatives. In undivided cells, a wide variety of indoles and alcohol compounds are examined to afford amide ester aromatics without using extra oxidants and stoichiometric metal catalysts, which avoids the formation of undesired by-products and exhibits high atom economy. The products we described in this perspective represent a synthetic intermediate in numerous drug molecules and industrial chemical reagents and remarkably show potential application in the future.
Collapse
Affiliation(s)
- Hong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Zhao Yang
- School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Zhen Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| |
Collapse
|
21
|
Sohtome Y, Kanomata K, Sodeoka M. Cross-Coupling Reactions of Persistent Tertiary Carbon Radicals. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yoshihiro Sohtome
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kyohei Kanomata
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
22
|
Zhang W, Xiang S, Fan W, Jin J, Li Y, Huang D. A three-component iodine-catalyzed oxidative coupling reaction: a heterodifunctionalization of 3-methylindoles. Org Biomol Chem 2021; 19:5794-5799. [PMID: 34109340 DOI: 10.1039/d1ob00730k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A metal-free method for the synthesis of heterodifunctional indole derivatives is developed through TBHP/KI-mediated oxidative coupling. The reaction constructs C-O and C-C bonds in succession with the help of tert-butyl peroxy radicals generated by the TBHP/KI catalytic system, enabling the direct realization of the heterodifunctionalization of indole in one pot. The product of this reaction is a novel heterodifunctional compound. This work might provide a new effective method for the synthesis of polycyclic indole compounds.
Collapse
Affiliation(s)
- Wei Zhang
- Fujian Normal University, College of Chemistry and Materials Science, Fuzhou 350007, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shiqun Xiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jiang Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yinghua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Deguang Huang
- Fujian Normal University, College of Chemistry and Materials Science, Fuzhou 350007, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
23
|
Pan LN, Wang Q, Sun J, Sun QS, Yan CG. Molecular diversity of the acid promoted domino reaction of 3-hydroxy-3-(indol-3-yl)indolin-2-ones and cyclic mercapto-substituted β-enamino esters. NEW J CHEM 2021. [DOI: 10.1039/d1nj00947h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The acetic acid promoted reaction of 3-hydroxy-3-(indol-3-yl)indolin-2-ones and mercapto-substituted β-enamino esters showed very interesting molecular diversity.
Collapse
Affiliation(s)
- Liu-Na Pan
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Qing Wang
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Jing Sun
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Quan-Shun Sun
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| |
Collapse
|
24
|
Ye F, Liu Q, Cui R, Xu D, Gao Y, Chen H. Diverse Functionalization of Tetrahydro-β-carbolines or Tetrahydro-γ-carbolines via Oxidative Coupling Rearrangement. J Org Chem 2020; 86:794-812. [PMID: 33232143 DOI: 10.1021/acs.joc.0c02351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report herein diverse functionalization of tetrahydro-β-carbolines (THβCs) or tetrahydro-γ-carbolines (THγCs) via oxidative coupling rearrangement. The treatment of THβCs or THγCs with t-BuOOH (TBHP) afforded 3-peroxyindolenines, followed by HCl catalyzed indolation to form unexpected 2-indolyl-3-peroxyindolenines. Further rearrangement of these peroxides allows for rapid access to a skeletally diverse chemical library in good to excellent yields.
Collapse
Affiliation(s)
- Fu Ye
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qing Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ranran Cui
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Dekang Xu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
25
|
Sugawara M, Ohnishi R, Ezawa T, Akakabe M, Sawamura M, Hojo D, Hashizume D, Sohtome Y, Sodeoka M. Regiodivergent Oxidative Cross-Coupling of Catechols with Persistent tert-Carbon Radicals. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Masumi Sugawara
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Rikako Ohnishi
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Tetsuya Ezawa
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Miki Sawamura
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daiki Hojo
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Sohtome
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
26
|
Uyanik M, Tanaka H, Ishihara K. Hypoiodite-Catalyzed Chemoselective Tandem Oxidation of Homotryptamines to Peroxy- and Epoxytetrahydropyridoindolenines. Org Lett 2020; 22:8049-8054. [PMID: 32996315 DOI: 10.1021/acs.orglett.0c03001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We developed the hypoiodite-catalyzed tandem dearomative peroxycyclization of homotryptamine derivatives to peroxytetrahydropyridoindolenines under mild conditions. During the course of a mechanistic study, we found that a tandem oxidative cyclization/epoxidation as an unexpected reaction proceeded in the presence of TEMPO as an additive. Intramolecular oxidative aminocyclization of homotryptamines at the C-2 position would give tetrahydropyridoindole, a common intermediate for both reactions. Control experiments suggested that while oxidative coupling with TBHP at the C-3 position might afford peroxyindolenines, a preferential electrophilic addition of TEMPO+, which might be generated in situ by the hypoiodite-catalyzed oxidation of TEMPO, at C-3 position followed by elimination and epoxidation might give epoxyindolenines. This serendipitous finding prompted us to develop a chemoselective divergent synthesis of peroxy- and epoxyindolenines by simple modification of the reaction conditions.
Collapse
Affiliation(s)
- Muhammet Uyanik
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Hiroki Tanaka
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
27
|
Ubale AS, Chaudhari MB, Shaikh MA, Gnanaprakasam B. Manganese-Catalyzed Synthesis of Quaternary Peroxides: Application in Catalytic Deperoxidation and Rearrangement Reactions. J Org Chem 2020; 85:10488-10503. [DOI: 10.1021/acs.joc.0c00837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Akash S. Ubale
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Moreshwar B. Chaudhari
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Moseen A. Shaikh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
28
|
Inoa J, Patel M, Dominici G, Eldabagh R, Patel A, Lee J, Xing Y. Benzylic Hydroperoxidation via Visible-Light-Induced Csp 3-H Activation. J Org Chem 2020; 85:6181-6187. [PMID: 32242417 DOI: 10.1021/acs.joc.0c00385] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A highly efficient benzylic hydroperoxidation has been realized through a visible-light-induced Csp3-H activation. We believe that this reaction undergoes a direct HAT mechanism catalyzed by eosin Y. This approach features the use of a metal-free catalyst (eosin Y), an energy-economical light source (blue LED), and a sustainable oxidant (molecular oxygen). Primary, secondary, and tertiary hydroperoxides as well as silyl, benzyl, and acyl peroxides were successfully prepared with good yields and excellent functional group compatibility.
Collapse
Affiliation(s)
- Joan Inoa
- Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Road, Wayne, New Jersey 07470, United States
| | - Mansi Patel
- Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Road, Wayne, New Jersey 07470, United States
| | - Grecia Dominici
- Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Road, Wayne, New Jersey 07470, United States
| | - Reem Eldabagh
- Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Road, Wayne, New Jersey 07470, United States
| | - Anjali Patel
- Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Road, Wayne, New Jersey 07470, United States
| | - John Lee
- Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Road, Wayne, New Jersey 07470, United States
| | - Yalan Xing
- Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Road, Wayne, New Jersey 07470, United States
| |
Collapse
|
29
|
He J, Dong J, Su L, Wu S, Liu L, Yin SF, Zhou Y. Selective Oxidative Cleavage of 3-Methylindoles with Primary Amines Affording Quinazolinones. Org Lett 2020; 22:2522-2526. [DOI: 10.1021/acs.orglett.0c00271] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Junhui He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianyu Dong
- Department of Educational Science, Hunan First Normal University, Changsha 410205, China
| | - Lebin Su
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shaofeng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lixin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongbo Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
30
|
Nozawa‐Kumada K, Saga S, Matsuzawa Y, Hayashi M, Shigeno M, Kondo Y. Copper‐Catalyzed Oxidative Benzylic C(sp
3
)−H Cyclization for the Synthesis of β‐Lactams. Chemistry 2020; 26:4496-4499. [DOI: 10.1002/chem.201905777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Kanako Nozawa‐Kumada
- Graduate School of Pharmaceutical ScienceTohoku University Aoba, Sendai 980-8578 Japan
| | - Satoshi Saga
- Graduate School of Pharmaceutical ScienceTohoku University Aoba, Sendai 980-8578 Japan
| | - Yuta Matsuzawa
- Graduate School of Pharmaceutical ScienceTohoku University Aoba, Sendai 980-8578 Japan
| | - Masahito Hayashi
- Graduate School of Pharmaceutical ScienceTohoku University Aoba, Sendai 980-8578 Japan
| | - Masanori Shigeno
- Graduate School of Pharmaceutical ScienceTohoku University Aoba, Sendai 980-8578 Japan
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical ScienceTohoku University Aoba, Sendai 980-8578 Japan
| |
Collapse
|
31
|
Chaudhari MB, Jayan K, Gnanaprakasam B. Sn-Catalyzed Criegee-Type Rearrangement of Peroxyoxindoles Enabled by Catalytic Dual Activation of Esters and Peroxides. J Org Chem 2020; 85:3374-3382. [DOI: 10.1021/acs.joc.9b03160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Moreshwar B. Chaudhari
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Krishna Jayan
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
32
|
Ghosh A, Kolle S, Barak DS, Kant R, Batra S. Multicomponent Reaction for the Synthesis of 5,6-Dihydropyrrolo[2,1- a]isoquinolines. ACS OMEGA 2019; 4:20854-20867. [PMID: 31858071 PMCID: PMC6906948 DOI: 10.1021/acsomega.9b03546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 05/08/2023]
Abstract
A multicomponent reaction between isatin, tetrahydroisoquinoline, and terminal alkyne in the presence of benzoic acid for the synthesis of N-(substituted-2-(2-phenyl-5,6-dihydropyrrolo[2,1-a]isoquinolin-3-yl)phenyl)-3,4-dihydroisoquinoline-2(1H)-carboxamides is described. This three-component reaction proceeds via sequential formation of spirooxindole, generation of isocyanate functionality via cleavage of the C2-C3 bond in the isatin subunit of spirooxindole, and addition of the second molecule of tetrahydroisoquinoline to the isocyanate group to offer title compounds. Expansion of the protocol to four-component by including an additional primary amine affords 1-substituted-3-(2-(2-phenyl-5,6-dihydropyrrolo[2,1-a]isoquinolin-3-yl)phenyl)urea in low to moderate yields. However, the reaction of intermediate spirooxindole with tetrahydroisoquinoline or any primary or secondary amine produced the title compound in excellent yields.
Collapse
Affiliation(s)
- Aritra Ghosh
- Medicinal
and Process Chemistry Division and Molecular and Structural Biology
Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
- Academy
of Scientific and Innovative Research, CSIR-
Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Shivalinga Kolle
- Medicinal
and Process Chemistry Division and Molecular and Structural Biology
Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| | - Dinesh S. Barak
- Medicinal
and Process Chemistry Division and Molecular and Structural Biology
Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| | - Ruchir Kant
- Medicinal
and Process Chemistry Division and Molecular and Structural Biology
Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| | - Sanjay Batra
- Medicinal
and Process Chemistry Division and Molecular and Structural Biology
Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
- Academy
of Scientific and Innovative Research, CSIR-
Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
- E-mail: ; . Tel. +91-522-2772450 xtn 4727
| |
Collapse
|
33
|
Hajra S, Hazra A, Saleh SKA, Mondal AS. Aqueous tert-Butyl Hydroperoxide Mediated Regioselective Ring-Opening Reactions of Spiro-aziridine-epoxy Oxindoles: Synthesis of 3-Peroxy-3-substituted Oxindoles and Their Acid-Mediated Rearrangement. Org Lett 2019; 21:10154-10158. [DOI: 10.1021/acs.orglett.9b04229] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Saumen Hajra
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - Atanu Hazra
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - SK Abu Saleh
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - Ananda Shankar Mondal
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
34
|
Norwood VM, Huigens RW. Harnessing the Chemistry of the Indole Heterocycle to Drive Discoveries in Biology and Medicine. Chembiochem 2019; 20:2273-2297. [DOI: 10.1002/cbic.201800768] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Verrill M. Norwood
- Department of Medicinal ChemistryCenter for Natural Products Drug Discovery and Development (CNPD3)University of Florida 1345 Center Drive Gainesville FL 32610 USA
| | - Robert W. Huigens
- Department of Medicinal ChemistryCenter for Natural Products Drug Discovery and Development (CNPD3)University of Florida 1345 Center Drive Gainesville FL 32610 USA
| |
Collapse
|
35
|
Abstract
Facile regioselective oxidation of indoles to 2-oxindoles promoted by sulfuric acid adsorbed on silica gel is reported. The demonstrated practical site-selective heterogeneous oxidation reactions conveniently take place with a broad substrate scope and functional group tolerances. The present oxidation strategy is also employed to accomplish the total synthesis of natural products donaxaridine and donaxarine. On the basis of analytical and spectral data it is evidenced that donaxarine stays in equilibrium with its hydrated ring opened form. The structural features essential for this type of oxidation and plausible mechanism are discussed in brief.
Collapse
Affiliation(s)
- Santosh V Shelar
- Division of Organic Chemistry, National Chemical Laboratory (CSIR), Pune 411 008, India. and Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 025, India
| | - Narshinha P Argade
- Division of Organic Chemistry, National Chemical Laboratory (CSIR), Pune 411 008, India. and Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 025, India
| |
Collapse
|
36
|
Hou Y, Hu J, Xu R, Pan S, Zeng X, Zhong G. Indium-Mediated Synthesis of Benzylic Hydroperoxides. Org Lett 2019; 21:4428-4432. [DOI: 10.1021/acs.orglett.9b01070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuxuan Hou
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Jinjin Hu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Ruigang Xu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Shulei Pan
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiaofei Zeng
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
37
|
Hong G, Nahide PD, Neelam UK, Amadeo P, Vijeta A, Curto JM, Hendrick CE, VanGelder KF, Kozlowski MC. Palladium-Catalyzed Chemoselective Activation of sp 3 vs sp 2 C-H Bonds: Oxidative Coupling To Form Quaternary Centers. ACS Catal 2019; 9:3716-3724. [PMID: 31777683 DOI: 10.1021/acscatal.9b00091] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The oxidative activation of alkyl C-H bonds vs arene C-H bonds with Pd(OAc)2 has been found to be generalizable to a number of nucleophilic substrates allowing the formation of a range of hindered quaternary centers. The substrates share a common mechanistic path wherein Pd(II) initiates an oxidative dimerization. The resultant dimer modifies the palladium catalyst to favor activation of alkyl C-H bonds in contrast to the trends typically observed via a concerted metalation deprotonation mechanism. Notably, insertion occurs at the terminus of the alkyl arene for hindered substrates. Two different oxidant systems were discovered that turn over the process. Parameters have been identified that predict, which substrates are productive in this reaction.
Collapse
Affiliation(s)
- Gang Hong
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals and School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Pradip D. Nahide
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Uday Kumar Neelam
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Peter Amadeo
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Arjun Vijeta
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - John M. Curto
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Charles E. Hendrick
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kelsey F. VanGelder
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marisa C. Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
38
|
Chaudhari MB, Chaudhary A, Kumar V, Gnanaprakasam B. The Rearrangement of Peroxides for the Construction of Fluorophoric 1,4-Benzoxazin-3-one Derivatives. Org Lett 2019; 21:1617-1621. [DOI: 10.1021/acs.orglett.9b00155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Moreshwar B. Chaudhari
- Department of Chemistry, Indian Institute of Science Education and Research, Pune-411008, Maharashtra, India
| | - Atul Chaudhary
- Department of Chemistry, Indian Institute of Science Education and Research, Pune-411008, Maharashtra, India
| | - Vishnupriya Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune-411008, Maharashtra, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune-411008, Maharashtra, India
| |
Collapse
|
39
|
Chaudhari MB, Mohanta N, Pandey AM, Vandana M, Karmodiya K, Gnanaprakasam B. Peroxidation of 2-oxindole and barbituric acid derivatives under batch and continuous flow using an eco-friendly ethyl acetate solvent. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00068b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have demonstrated the magnetically retrievable Fe(OH)3Fe3O4catalyzed C–H peroxidation of 2-oxindole and barbituric acid derivatives under batch and continuous flow process for the first time.
Collapse
Affiliation(s)
- Moreshwar B. Chaudhari
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| | - Nirmala Mohanta
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| | - Akanksha M. Pandey
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| | - Madhusoodhanan Vandana
- Department of Biology
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| | - Krishanpal Karmodiya
- Department of Biology
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| | - Boopathy Gnanaprakasam
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| |
Collapse
|
40
|
Cao J, Sun J, Yan CG. Construction of indeno[1,2-a]fluorene via domino reaction of 1,3-indanedione and 3-arylideneindolin-2-ones or chalcones. Org Biomol Chem 2019; 17:9008-9013. [DOI: 10.1039/c9ob01779h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The base promoted domino reaction of 1,3-indanedione with 3-arylideneindolin-2-ones or chalcones afforded novel polysubstituted indeno[1,2-a]fluorenes.
Collapse
Affiliation(s)
- Jun Cao
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Jing Sun
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| |
Collapse
|
41
|
Lu X, Bai Y, Li Y, Shi Y, Li L, Wu Y, Zhong F. Assembly of C3a-Peroxylated Pyrroloindolines via Interrupted Witkop Oxidation. Org Lett 2018; 20:7937-7941. [DOI: 10.1021/acs.orglett.8b03509] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xunbo Lu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Yulong Bai
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Yan Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Yufeng Shi
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Longjie Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
42
|
Singh R, Nagesh K, Yugandhar D, Prasanthi AVG. Metal- and Oxidant-Free Modular Approach To Access N-Alkoxy Oxindoles via Aryne Annulation. Org Lett 2018; 20:4848-4853. [PMID: 30044101 DOI: 10.1021/acs.orglett.8b01972] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An unprecedented metal- and oxidant-free (intermolecular) approach to access N-alkoxy oxindoles via [3 + 2] cycloadition of in situ generated electrophilic species viz. aryne and (putative) aza-oxyallyl cation is reported. This approach is amenable to both C3-unsubstituted as well as C3-substituted oxindoles. A one-pot manipulation further makes this reaction highly practical. The versatility of this approach was demonstrated through valuable synthetic transformations.
Collapse
Affiliation(s)
- Ritesh Singh
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Raebareli - 229010 , UP , India.,Organic Synthesis and Process Chemistry Division , CSIR-Indian Institute of Chemical Technology , Hyderabad - 500007 , Telangana , India
| | - Kommu Nagesh
- Organic Synthesis and Process Chemistry Division , CSIR-Indian Institute of Chemical Technology , Hyderabad - 500007 , Telangana , India
| | - Doddapaneni Yugandhar
- Organic Synthesis and Process Chemistry Division , CSIR-Indian Institute of Chemical Technology , Hyderabad - 500007 , Telangana , India
| | - A V G Prasanthi
- Organic Synthesis and Process Chemistry Division , CSIR-Indian Institute of Chemical Technology , Hyderabad - 500007 , Telangana , India
| |
Collapse
|
43
|
Chen WT, Wei WT. Recent Developments in the C(sp3
)−H Functionalization of 2-Oxindoles through Radical Reactions. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wei-Ting Chen
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 P. R. China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 P. R. China
| |
Collapse
|
44
|
Li QL, Li ZY, Wang GW. Palladium-Catalyzed Decarboxylative ortho-Acylation of Anilines with Carbamate as a Removable Directing Group. ACS OMEGA 2018; 3:4187-4198. [PMID: 31458653 PMCID: PMC6641432 DOI: 10.1021/acsomega.8b00441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/04/2018] [Indexed: 05/12/2023]
Abstract
An efficient palladium-catalyzed decarboxylative ortho-acylation of anilines with α-oxocarboxylic acids has been realized by using carbamate as a directing group (DG). The reaction proceeds smoothly with high regioselectivity to afford diverse acylation products of aniline derivatives in moderate to good yields under mild conditions. This transformation exhibits broad substrate scope and highly functional group tolerance. In addition, the employed DG can be easily removed to give the corresponding 2-amino aromatic ketones. Importantly, several transformations of the synthesized ortho-acylated anilines into several synthetically valuable products have been demonstrated for their utilities.
Collapse
Affiliation(s)
- Qi-Li Li
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials (iChEM), Hefei National Laboratory
for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhong-Yuan Li
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials (iChEM), Hefei National Laboratory
for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guan-Wu Wang
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials (iChEM), Hefei National Laboratory
for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
- E-mail:
| |
Collapse
|
45
|
Chen WT, Bao WH, Ying WW, Zhu WM, Liang H, Wei WT. Copper-Promoted Tandem Radical Reaction of 2-Oxindoles with Formamides: Facile Synthesis of Unsymmetrical Urea Derivatives. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Wei-Ting Chen
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Wen-Hui Bao
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Wei-Wei Ying
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Wen-Ming Zhu
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 China
| |
Collapse
|
46
|
Vertesaljai P, Ghiviriga I, Grenning AJ. Complex Hydroindoles by an Intramolecular Nitrile-Intercepted Allylic Alkylation Cascade Reaction. Org Lett 2018; 20:1970-1973. [DOI: 10.1021/acs.orglett.8b00499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter Vertesaljai
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Alexander J. Grenning
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
47
|
Chaudhari MB, Moorthy S, Patil S, Bisht GS, Mohamed H, Basu S, Gnanaprakasam B. Iron-Catalyzed Batch/Continuous Flow C–H Functionalization Module for the Synthesis of Anticancer Peroxides. J Org Chem 2018; 83:1358-1368. [DOI: 10.1021/acs.joc.7b02854] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Moreshwar B. Chaudhari
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Suresh Moorthy
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Sohan Patil
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Girish Singh Bisht
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Haneef Mohamed
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
48
|
Di Gregorio G, Mari M, Bartolucci S, Bartoccini F, Piersanti G. Divergent reactions of oxindoles with amino alcohols via the borrowing hydrogen process: oxindole ring opening vs. C3 alkylation. Org Chem Front 2018. [DOI: 10.1039/c8qo00184g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxindoles react with N-acetyl amino alcohols to form tryptamine-derived oxindoles, whereas analogous reactions with N-alkyl amino alcohols lead to lactam formation via a relatively mild borrowing hydrogen process.
Collapse
Affiliation(s)
- Giovanni Di Gregorio
- Department of Biomolecular Sciences
- University of Urbino “Carlo Bo”
- 61029 Urbino
- Italy
| | - Michele Mari
- Department of Biomolecular Sciences
- University of Urbino “Carlo Bo”
- 61029 Urbino
- Italy
| | - Silvia Bartolucci
- Department of Biomolecular Sciences
- University of Urbino “Carlo Bo”
- 61029 Urbino
- Italy
| | - Francesca Bartoccini
- Department of Biomolecular Sciences
- University of Urbino “Carlo Bo”
- 61029 Urbino
- Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences
- University of Urbino “Carlo Bo”
- 61029 Urbino
- Italy
| |
Collapse
|
49
|
Wei WT, Zhu WM, Ying WW, Wang YN, Bao WH, Gao LH, Luo YJ, Liang H. Metal-Free Nitration of the C(sp
3
)−H Bonds of 2-Oxindoles through Radical Coupling Reaction at Room Temperature. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700870] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wen-Ting Wei
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 People's Republic of China
| | - Wen-Ming Zhu
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 People's Republic of China
| | - Wei-Wei Ying
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 People's Republic of China
| | - Yi-Ning Wang
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 People's Republic of China
| | - Wen-Hui Bao
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 People's Republic of China
| | - Le-Han Gao
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 People's Republic of China
| | - Yun-Jie Luo
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 People's Republic of China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 People's Republic of China
| |
Collapse
|