1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025; 125:4603-4764. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Li K, Gilberti AL, Marden JA, Akula HK, Pollard AC, Guo S, Hu B, Tonge PJ, Qu W. Synthesis and Biological Evaluation of Fluorine-18 and Deuterium Labeled l-Fluoroalanines as Positron Emission Tomography Imaging Agents for Cancer Detection. J Med Chem 2024; 67:10293-10305. [PMID: 38838188 PMCID: PMC11258582 DOI: 10.1021/acs.jmedchem.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
To fully explore the potential of 18F-labeled l-fluoroalanine for imaging cancer and other chronic diseases, a simple and mild radiosynthesis method has been established to produce optically pure l-3-[18F]fluoroalanine (l-[18F]FAla), using a serine-derivatized, five-membered-ring sulfamidate as the radiofluorination precursor. A deuterated analogue, l-3-[18F]fluoroalanine-d3 (l-[18F]FAla-d3), was also prepared to improve metabolic stability. Both l-[18F]FAla and l-[18F]FAla-d3 were rapidly taken up by 9L/lacZ, MIA PaCa-2, and U87MG cells and were shown to be substrates for the alanine-serine-cysteine (ASC) amino acid transporter. The ability of l-[18F]FAla, l-[18F]FAla-d3, and the d-enantiomer, d-[18F]FAla-d3, to image tumors was evaluated in U87MG tumor-bearing mice. Despite the significant bone uptake was observed for both l-[18F]FAla and l-[18F]FAla-d3, the latter had enhanced tumor uptake compared to l-[18F]FAla, and d-[18F]FAla-d3 was not specifically taken up by the tumors. The enhanced tumor uptake of l-[18F]FAla-d3 compared with its nondeuterated counterpart, l-[18F]FAla, warranted the further biological investigation of this radiotracer as a potential cancer imaging agent.
Collapse
Affiliation(s)
- Kaixuan Li
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Alexa L. Gilberti
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Jocelyn A. Marden
- Department of Psychiatry and Behavioral Health, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Hari K. Akula
- Department of Psychiatry and Behavioral Health, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- PET Research Core, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Alyssa C. Pollard
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Shuwen Guo
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Bao Hu
- Department of Psychiatry and Behavioral Health, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- PET Research Core, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Peter J. Tonge
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Radiology, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- Stony Brook Cancer Center, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Wenchao Qu
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Psychiatry and Behavioral Health, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- PET Research Core, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| |
Collapse
|
3
|
Kojima Y, Nishii Y, Hirano K. Asymmetric Synthesis of SCF 3-Substituted Alkylboronates by Copper-Catalyzed Hydroboration of 1-Trifluoromethylthioalkenes. Angew Chem Int Ed Engl 2024; 63:e202403337. [PMID: 38472112 DOI: 10.1002/anie.202403337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
A synthetic method for preparation of optically active trifluoromethylthio (SCF3) compounds by a copper-catalyzed regio- and enantioselective hydroboration of 1-trifluoromethylthioalkenes with H-Bpin has been developed. The enantioselective hydrocupration of an in situ generated CuH species and subsequent boration reaction generate a chiral SCF3-containing alkylboronate, of which Bpin moiety can be further transformed to deliver various optically active SCF3 molecules. Computational studies suggest that the SCF3 group successfully controls the regioselectivity in the reaction.
Collapse
Affiliation(s)
- Yuki Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Zhang W, Tian Y, Liu XD, Luan C, Liu JR, Gu QS, Li ZL, Liu XY. Copper-Catalyzed Enantioselective C(sp 3 )-SCF 3 Coupling of Carbon-Centered Benzyl Radicals with (Me 4 N)SCF 3. Angew Chem Int Ed Engl 2024; 63:e202319850. [PMID: 38273811 DOI: 10.1002/anie.202319850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
In contrast with the well-established C(sp2 )-SCF3 cross-coupling to forge the Ar-SCF3 bond, the corresponding enantioselective coupling of readily available alkyl electrophiles to forge chiral C(sp3 )-SCF3 bond has remained largely unexplored. We herein disclose a copper-catalyzed enantioselective radical C(sp3 )-SCF3 coupling of a range of secondary/tertiary benzyl radicals with the easily available (Me4 N)SCF3 reagent. The key to the success lies in the utilization of chiral phosphino-oxazoline-derived anionic N,N,P-ligands through tuning electronic and steric effects for the simultaneous control of the reaction initiation and enantioselectivity. This strategy can successfully realize two types of asymmetric radical reactions, including enantioconvergent C(sp3 )-SCF3 cross-coupling of racemic benzyl halides and three-component 1,2-carbotrifluoromethylthiolation of arylated alkenes under mild reaction conditions. It therefore provides a highly flexible platform for the rapid assembly of an array of enantioenriched SCF3 -containing molecules of interest in organic synthesis and medicinal chemistry.
Collapse
Affiliation(s)
- Wei Zhang
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Tian
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao-Dong Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Cheng Luan
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji-Ren Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhong-Liang Li
- School of Physical Sciences, Great Bay University, Dongguan, 523000, China
| | - Xin-Yuan Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
5
|
Gregorc J, Lensen N, Chaume G, Iskra J, Brigaud T. Trifluoromethylthiolation of Tryptophan and Tyrosine Derivatives: A Tool for Enhancing the Local Hydrophobicity of Peptides. J Org Chem 2023; 88:13169-13177. [PMID: 37672679 PMCID: PMC10507666 DOI: 10.1021/acs.joc.3c01373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 09/08/2023]
Abstract
The incorporation of fluorinated groups into peptides significantly affects their biophysical properties. We report herein the synthesis of Fmoc-protected trifluoromethylthiolated tyrosine (CF3S-Tyr) and tryptophan (CF3S-Trp) analogues on a gram scale (77-93% yield) and demonstrate their use as highly hydrophobic fluorinated building blocks for peptide chemistry. The developed methodology was successfully applied to the late-stage regioselective trifluoromethylthiolation of Trp residues in short peptides (66-80% yield) and the synthesis of various CF3S-analogues of biologically active monoamines. To prove the concept, Fmoc-(CF3S)Tyr and -Trp were incorporated into the endomorphin-1 chain (EM-1) and into model tripeptides by solid-phase peptide synthesis. A remarkable enhancement of the local hydrophobicity of the trifluoromethylthiolated peptides was quantified by the chromatographic hydrophobicity index determination method, demonstrating the high potential of CF3S-containing amino acids for the rational design of bioactive peptides.
Collapse
Affiliation(s)
- Jure Gregorc
- Chair
of Organic Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
- CY
Cergy Paris Université, CNRS, BioCIS, Cergy Pontoise 95000, France
- Université
Paris-Saclay, CNRS, BioCIS, Orsay 91400, France
| | - Nathalie Lensen
- CY
Cergy Paris Université, CNRS, BioCIS, Cergy Pontoise 95000, France
- Université
Paris-Saclay, CNRS, BioCIS, Orsay 91400, France
| | - Grégory Chaume
- CY
Cergy Paris Université, CNRS, BioCIS, Cergy Pontoise 95000, France
- Université
Paris-Saclay, CNRS, BioCIS, Orsay 91400, France
| | - Jernej Iskra
- Chair
of Organic Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
| | - Thierry Brigaud
- CY
Cergy Paris Université, CNRS, BioCIS, Cergy Pontoise 95000, France
- Université
Paris-Saclay, CNRS, BioCIS, Orsay 91400, France
| |
Collapse
|
6
|
Marie N, Ma JA, Cahard D. Amphiphilic Polyfluorinated Amino Ethers from Cyclic Sulfamidates. J Org Chem 2022; 87:16665-16675. [PMID: 36417566 DOI: 10.1021/acs.joc.2c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Regioselective ring opening of cyclic sulfamidates was achieved by means of nucleophilic polyfluorinated alkoxides to access achiral and chiral β- and γ-ORF amines and α-amino esters. Subsequent transformations provide free amines ready for incorporation into bioactive substances through amide bond formation or nucleophilic aromatic substitution.
Collapse
Affiliation(s)
- Nicolas Marie
- UMR 6014 COBRA, CNRS, Université de Rouen-Normandie, INSA Rouen, IRCOF, Mont Saint Aignan 76821, France
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Dominique Cahard
- UMR 6014 COBRA, CNRS, Université de Rouen-Normandie, INSA Rouen, IRCOF, Mont Saint Aignan 76821, France
| |
Collapse
|
7
|
Zeng JL, Xu ZH, Niu LF, Yao C, Liang LL, Zou YL, Yang L. Generating Monofluoro‐Substituted Amines and Amino Acids by the Interaction of Inexpensive KF and Sulfamidates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun-Liang Zeng
- Xuchang University College of chemical and materials engineering 88 Bayi Road, Weidu District, 461000 Xuchang City CHINA
| | - Zhi-Hong Xu
- Xuchang University college of chemical and materials engineering CHINA
| | - Liang-Feng Niu
- Xuchang University college of chemical and materials engineering CHINA
| | - Chuan Yao
- Xuchang University college of chemical and matericals engineering CHINA
| | - Lu-Lu Liang
- Xuchang University college of chemical and materials engineering CHINA
| | - Yu-Lu Zou
- Xuchang University college of chemical and matericals engineering CHINA
| | - Lijun Yang
- Chinese Academy of Medical Sciences & Peking Union Medical College key laboratory of radiopharmacokinetics for innovative drugs CHINA
| |
Collapse
|
8
|
Mizuta S, Kitamura K, Morii Y, Ishihara J, Yamaguchi T, Ishikawa T. Trifluoromethylthiolation of Hindered α-Bromoamides with Nucleophilic Trifluoromethylthiolating Reagents. J Org Chem 2021; 86:18017-18029. [PMID: 34855413 DOI: 10.1021/acs.joc.1c02316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
General methods have not been previously developed for the synthesis of sterically hindered α-SCF3-substituted carbonyl compounds using nucleophilic trifluoromethylthiolating reagents. Thus, we herein report sp3C-SCF3 bond formation in hindered α-bromoamides containing 3-bromo-oxindoles and linear α-bromoamides using CuSCF3 or AgSCF3 under mild conditions to access sterically hindered α-SCF3-substituted amides. This transformation is applicable to not only 3-SCF3-substituted oxindoles but also primary and secondary amides and reveals a broad functional group tolerance. This method will benefit the fields of medicinal and agricultural chemistry.
Collapse
Affiliation(s)
- Satoshi Mizuta
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Kanami Kitamura
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Yuki Morii
- Department of Pharmaceutical Organic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Jun Ishihara
- Department of Pharmaceutical Organic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Tomoko Yamaguchi
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
9
|
Guin S, Majee D, Samanta S. Unmasking the reverse reactivity of cyclic N-sulfonyl ketimines: multifaceted applications in organic synthesis. Chem Commun (Camb) 2021; 57:9010-9028. [PMID: 34498642 DOI: 10.1039/d1cc03439a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The chemistry related to the exploration of cyclic N-sulfonyl ketimines and their derivatives has attracted significant attention in the last few decades because of their intriguing structures and properties. They serve broadly as reactive synthons in various reactions to create a diverse set of synthetically and biologically attractive molecules. Furthermore, these moieties, which possess multiple heteroatoms (N, O and S), display or can enhance many biological activities. In the case of synthetic reactions, chemists mainly focus on the chemical manipulation of the highly reactive prochiral CN bond of N-sulfonyl ketimines. Besides their traditional role as electrophiles, N-sulfonyl ketimines possess α-Csp3-H protons, and thus behave as potential carbonucleophiles, where they can undergo several C-X (X = C, N and O) bond-forming reactions with different types of electrophiles under various conditions to form a wide range of fascinating asymmetric and non-asymmetric versions of fused heterocycles, carbocycles, spiro-fused skeletons, pyridines, pyrroles, etc. Herein, we highlight the recent examples from our research work and others covering the scope of cyclic N-sulfonyl ketimines as useful carbonucleophiles. In addition, the detailed mechanistic studies of the above-mentioned reactions are also presented.
Collapse
Affiliation(s)
- Soumitra Guin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| | - Debashis Majee
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| | - Sampak Samanta
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| |
Collapse
|
10
|
Han ZZ, Dong T, Ming XX, Kuang F, Zhang CP. Synthesis and Biological Evaluation of CF 3 Se-Substituted α-Amino Acid Derivatives. ChemMedChem 2021; 16:3177-3180. [PMID: 34268896 DOI: 10.1002/cmdc.202100451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Indexed: 11/07/2022]
Abstract
Several CF3 Se-substituted α-amino acid derivatives, such as (R)-2-amino-3-((trifluoromethyl)selanyl)propanoates (5 a/6 a), (S)-2-amino-4-((trifluoromethyl)selanyl)butanoates (5 b/6 b), (2R,3R)-2-amino-3-((trifluoromethyl)selanyl)butanoates (5 c/6 c), (R)-2-((S)-2-amino-3-phenylpropanamido)-3-((trifluoromethyl)selanyl)propanoates (11 a/12 a), and (R)-2-(2-aminoacetamido)-3-((trifluoromethyl)selanyl)propanoates (11 b/12 b), were readily synthesized from natural amino acids and [Me4 N][SeCF3 ]. The primary in vitro cytotoxicity assays revealed that compounds 6 a, 11 a and 12 a were more effective cell growth inhibitors than the other tested CF3 Se-substituted derivatives towards MCF-7, HCT116, and SK-OV-3 cells, with their IC50 values being less than 10 μM for MCF-7 and HCT116 cells. This study indicated the potentials of CF3 Se moiety as a pharmaceutically relevant group in the design and synthesis of novel biologically active molecules.
Collapse
Affiliation(s)
- Zhou-Zhou Han
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| | - Tao Dong
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| | - Xiao-Xia Ming
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| | - Fu Kuang
- Department of phase I clinical trial center, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 40010, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
11
|
Hill SA, Steinfort R, Hartmann L. Progress, challenges and future directions of heterocycles as building blocks in iterative methodologies towards sequence-defined oligomers and polymers. Polym Chem 2021. [DOI: 10.1039/d1py00425e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heterocyclic building blocks for iterative methodologies leading to sequence-defined oligomers and polymers are reviewed. Solid- as well as solution-phase methods, challenges surrounding these systems and potential future directions are presented.
Collapse
Affiliation(s)
- Stephen A. Hill
- Institute of Organic and Macromolecular Chemistry
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Robert Steinfort
- Institute of Organic and Macromolecular Chemistry
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Laura Hartmann
- Institute of Organic and Macromolecular Chemistry
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| |
Collapse
|
12
|
Yang X, Chang D, Zhao R, Shi L. Recent Advances and Uses of (Me
4
N)XCF
3
(X=S, Se) in the Synthesis of Trifluoromethylthiolated and Trifluoromethylselenolated Compounds. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000575] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xi‐Hui Yang
- School of Science Harbin Institute of Technology (Shenzhen) 518055 Shenzhen P. R. China
| | - Denghu Chang
- School of Science Harbin Institute of Technology (Shenzhen) 518055 Shenzhen P. R. China
| | - Rong Zhao
- School of Science Harbin Institute of Technology (Shenzhen) 518055 Shenzhen P. R. China
| | - Lei Shi
- School of Science Harbin Institute of Technology (Shenzhen) 518055 Shenzhen P. R. China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University 300071 Tianjin P. R. China
| |
Collapse
|
13
|
Liu YL, Qing FL, Xu XH. 1,2-Bis(trifluoromethylthiolation) of Aromatic Epoxides with AgSCF 3. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yin-Li Liu
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Science, Chinese Academy of Sciences; 345 Lingling Lu 200032 Shanghai China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Science, Chinese Academy of Sciences; 345 Lingling Lu 200032 Shanghai China
- Key Laboratory of Science and Technology of Eco-Textiles; Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; 2999 North Renmin Lu 201620 Shanghai China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Science, Chinese Academy of Sciences; 345 Lingling Lu 200032 Shanghai China
| |
Collapse
|
14
|
Newton JJ, Jelier BJ, Meanwell M, Martin RE, Britton R, Friesen CM. Quaternary Ammonium Trifluoromethoxide Salts as Stable Sources of Nucleophilic OCF 3. Org Lett 2020; 22:1785-1790. [PMID: 32053386 DOI: 10.1021/acs.orglett.0c00099] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of nucleophilic tertiary amines with trifluoromethyl and pentafluoroethyl methyl ethers provides quaternary ammonium trifluoromethoxide (NR4OCF3) and pentafluoroethoxide (NR4OCF2CF3) salts, respectively, in good yields. The new trifluoromethoxide salts disclosed herein are uniquely stable for extended periods of time in both the solid state and in solution, which complements contemporary reagents. Here we describe the preparation of a range of NR4OCF3 salts, their long-term stability, and utility in substitution reactions.
Collapse
Affiliation(s)
- Josiah J Newton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6.,Department of Chemistry, Trinity Western University, Langley, British Columbia Canada, V2Y 1Y1
| | - Benson J Jelier
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Michael Meanwell
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Chadron M Friesen
- Department of Chemistry, Trinity Western University, Langley, British Columbia Canada, V2Y 1Y1
| |
Collapse
|
15
|
Eitzinger A, Brière JF, Cahard D, Waser M. Enantioselective catalytic synthesis of α-aryl-α-SCF 3-β 2,2-amino acids. Org Biomol Chem 2020; 18:405-408. [PMID: 31915785 PMCID: PMC6989214 DOI: 10.1039/c9ob02666e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We herein report a novel entry towards chiral α-SCF3-β2,2-amino acids by carrying out the ammonium salt-catalyzed α-trifluoromethylthiolation of isoxazolidin-5-ones. This approach allowed for high enantioselectivities and high yields and the obtained heterocycles proved to be versatile platforms to access other targets of potential interest.
Collapse
Affiliation(s)
- Andreas Eitzinger
- Johannes Kepler University Linz, Institute of Organic Chemistry, Altenbergerstraße 69, 4040 Linz, Austria
| | | | - Dominique Cahard
- CNRS, UMR 6014 COBRA, Normandie Univ, UNIROUEN, INSA Rouen, 76000 Rouen, France
| | - Mario Waser
- Johannes Kepler University Linz, Institute of Organic Chemistry, Altenbergerstraße 69, 4040 Linz, Austria
| |
Collapse
|
16
|
Du M, Yu L, Du T, Li Z, Luo Y, Meng X, Tian Z, Zheng C, Cao W, Zhao G. N-Protecting group tuning of the enantioselectivity in Strecker reactions of trifluoromethyl ketimines to synthesize quaternary α-trifluoromethyl amino nitriles by ion pair catalysis. Chem Commun (Camb) 2020; 56:1581-1584. [PMID: 31934692 DOI: 10.1039/c9cc09151c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enantioselective Strecker reaction to construct trifluoromethylated quaternary stereocenters with N-PMP and unexplored N-Boc trifluoromethyl ketimines catalyzed using an organophosphine dual-reagent catalyst has been developed. The enantioselectivities of the corresponding products with the same catalyst could be switched by using different N-protecting groups (N-PMP or N-Boc). The trifluoromethyl amino nitriles were obtained in high yield and high enantioselectivity in a short time and could be easily converted to a variety of useful trifluoromethyl-containing compounds.
Collapse
Affiliation(s)
- Mengyuan Du
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. China.
| | - Longhui Yu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Ting Du
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Zhaokun Li
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Yueyang Luo
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Xiangyu Meng
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Zhengtao Tian
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Weiguo Cao
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. China.
| | - Gang Zhao
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| |
Collapse
|
17
|
Zhu M, Fu W, Guo W, Tian Y, Wang Z, Ji B. Visible-light-induced radical trifluoromethylthiolation of N-(o-cyanobiaryl)acrylamides. Org Biomol Chem 2019; 17:3374-3380. [PMID: 30860236 DOI: 10.1039/c9ob00342h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An efficient and general visible-light-mediated trifluoromethylthiolation of N-(o-cyanobiaryl)acrylamides has been successfully accomplished using N-trifluoromethylthiosaccharin as an effective source of SCF3 radicals. The reaction was proposed to proceed via a domino radical trifluoromethylthiolation/cyano insertion/cyclization to afford the corresponding SCF3-containing ring-fused phenanthridine derivatives in moderate to good yields.
Collapse
Affiliation(s)
- Mei Zhu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan 471022, P. R. China.
| | | | | | | | | | | |
Collapse
|
18
|
Eskici M, Karanfil A. Stereoselective synthesis of cis-2,6-disubstituted piperidines from 1,2-cyclic sulfamidates. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Hardy MA, Chachignon H, Cahard D. Advances in Asymmetric Di‐and Trifluoromethylthiolation, and Di‐ and Trifluoromethoxylation Reactions. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Melissa A. Hardy
- CNRS, UMR 6014 COBRANormandie Université INSA Rouen. 76821 Mont Saint Aignan France
- Department of ChemistryUniversity of California Berkeley California 94720 United States
| | - Hélène Chachignon
- CNRS, UMR 6014 COBRANormandie Université INSA Rouen. 76821 Mont Saint Aignan France
| | - Dominique Cahard
- CNRS, UMR 6014 COBRANormandie Université INSA Rouen. 76821 Mont Saint Aignan France
| |
Collapse
|
20
|
Qin T, Jiang Q, Ji J, Luo J, Zhao X. Chiral selenide-catalyzed enantioselective synthesis of trifluoromethylthiolated 2,5-disubstituted oxazolines. Org Biomol Chem 2019; 17:1763-1766. [PMID: 30427031 DOI: 10.1039/c8ob02575d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral selenide-catalyzed enantioselective trifluoromethylthiolation of 1,1-disubstituted alkenes is disclosed. By this method, a variety of chiral trifluoromethylthiolated 2,5-disubstituted oxazolines were obtained in good yields with high enantioselectivities. This work not only provides a new pathway for the synthesis of chiral oxazolines, but also expands the library of chiral trifluoromethylthiolated molecules.
Collapse
Affiliation(s)
- Tian Qin
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | | | | | | | | |
Collapse
|
21
|
Liu S, Ma H, Zhang Z, Lin L, Yuan G, Tang X, Nie D, Jiang S, Yang G, Tang G. Synthesis of enantiopure 18F-trifluoromethyl cysteine as a structure-mimetic amino acid tracer for glioma imaging. Theranostics 2019; 9:1144-1153. [PMID: 30867821 PMCID: PMC6401404 DOI: 10.7150/thno.29405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/05/2019] [Indexed: 12/16/2022] Open
Abstract
Although 11C-labelled sulfur-containing amino acids (SAAs) including L-methyl-[11C]methionine and S-[11C]-methyl-L-cysteine, are attractive tracers for glioma positron emission tomography (PET) imaging, their applications are limited by the short half-life of the radionuclide 11C (t1/2 = 20.4 min). However, development of 18F-labelled SAAs (18F, t1/2 = 109.8 min) without significant structural changes or relying on prosthetic groups remains to be a great challenge due to the absence of adequate space for chemical modification. Methods: We herein present 18F-trifluoromethylated D- and L-cysteines which were designed by replacing the methyl group with 18F-trifluoromethyl group using a structure-based bioisosterism strategy. These two enantiomers were synthesized stereoselectively from serine-derived cyclic sulfamidates via a nucleophilic 18F-trifluoromethylthiolation reaction followed by a deprotection reaction. Furthermore, we conducted preliminary in vitro and in vivo studies to investigate the feasibility of using 18F-trifluoromethylated cysteines as PET tracers for glioma imaging. Results: The two-step radiosynthesis provided the desired products in excellent enantiopurity (ee > 99%) with 14% ± 3% of radiochemical yield. In vitro cell study demonstrated that both enantiomers were taken up efficiently by C6 tumor cells and were mainly transported by systems L and ASC. Among them, the D-enantiomer exhibited relatively good stability and high tumor-specific accumulation in the animal studies. Conclusion: Our findings indicate that 18F-trifluoromethylated D-cysteine, a new SAA tracer, may be a potential candidate for glioma imaging. Taken together, our study represents a first step toward developing 18F-trifluoromethylated cysteines as structure-mimetic tracers for PET tumor imaging.
Collapse
Affiliation(s)
- Shaoyu Liu
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Hui Ma
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Zhanwen Zhang
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
- Department of Nuclear Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People's Republic of China
| | - Liping Lin
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Gongjun Yuan
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Xiaolan Tang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Dahong Nie
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Shende Jiang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Ganghua Tang
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| |
Collapse
|
22
|
Asymmetric Electrophilic Difluoromethylthiolation of Indanone-Based β-Keto Esters Using Difluoromethanesulfonyl Hypervalent Iodonium Ylides. Molecules 2019; 24:molecules24020221. [PMID: 30634428 PMCID: PMC6359606 DOI: 10.3390/molecules24020221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/29/2018] [Accepted: 01/03/2019] [Indexed: 11/16/2022] Open
Abstract
The first electrophilic diastereoselective direct introduction of the difluoromethylthio group is described. We used a chiral auxiliary-based approach to illustrate the versatility of our recently developed difluoromethanesulfonyl hypervalent iodonium ylide reagents for the difluoromethylthiolation of indanone-based β-keto esters. Chiral SCF2H-featuring compounds were obtained in up to 93% ee value.
Collapse
|
23
|
Bolek S, Ignatowska J. Ring opening reactions of cyclic sulfamidates. Synthesis of β-fluoroaryl alanines and derivatives of 4,4-difluoroglutamic acid. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Xu J, Zhang Y, Qin T, Zhao X. Catalytic Regio- and Enantioselective Oxytrifluoromethylthiolation of Aliphatic Internal Alkenes by Neighboring Group Assistance. Org Lett 2018; 20:6384-6388. [DOI: 10.1021/acs.orglett.8b02672] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jia Xu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yuanyuan Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Tian Qin
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
25
|
Maury J, Force G, Darses B, Lebœuf D. Boron Trifluoride‐Mediated Trifluoromethylthiolation of
N
‐Acyliminiums. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Julien Maury
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Univ. Paris-SudUniversité Paris-Saclay Bâtiment 420 91405 Orsay cedex France
| | - Guillaume Force
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Univ. Paris-SudUniversité Paris-Saclay Bâtiment 420 91405 Orsay cedex France
| | - Benjamin Darses
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301Univ. Paris-Sud, Université Paris-Saclay 1 av. de la Terrasse 91198 Gif-sur-Yvette France
| | - David Lebœuf
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Univ. Paris-SudUniversité Paris-Saclay Bâtiment 420 91405 Orsay cedex France
| |
Collapse
|
26
|
Mechanistic Insights into the Decarboxylative Electrophilic Trifluoromethylthiolation of β-Ketocarboxylic Acids. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800305] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Zhen L, Yuan K, Li XY, Zhang C, Yang J, Fan H, Jiang L. Cascade Reaction of Propargyl Amines with AgSCF3, as Well as One-Pot Reaction of Propargyl Amines, AgSCF3, and Di-tert-butyl Peroxide: Access to Allenyl Thiocyanates and Allenyl Trifluoromethylthioethers. Org Lett 2018; 20:3109-3113. [DOI: 10.1021/acs.orglett.8b01181] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Long Zhen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Kun Yuan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiu-yan Li
- Shanghai Key Lab for Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chenyun Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jun Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hui Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Liqin Jiang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
28
|
Xiao Z, Liu Y, Zheng L, Liu C, Guo Y, Chen QY. Oxidative Radical Intermolecular Trifluoromethylthioarylation of Styrenes by Arenediazonium Salts and Copper(I) Trifluoromethylthiolate. J Org Chem 2018; 83:5836-5843. [DOI: 10.1021/acs.joc.8b00650] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhiwei Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yongan Liu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liping Zheng
- School of Chemical Engineering and Food Science, Zhengzhou Institute of Technology, 18 Yingcai Street, Zhengzhou 450044, China
| | - Chao Liu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qing-Yun Chen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
29
|
Verhoog S, Kee CW, Wang Y, Khotavivattana T, Wilson TC, Kersemans V, Smart S, Tredwell M, Davis BG, Gouverneur V. 18F-Trifluoromethylation of Unmodified Peptides with 5- 18F-(Trifluoromethyl)dibenzothiophenium Trifluoromethanesulfonate. J Am Chem Soc 2018; 140:1572-1575. [PMID: 29301394 DOI: 10.1021/jacs.7b10227] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The 18F-labeling of 5-(trifluoromethyl)-dibenzothiophenium trifluoromethanesulfonate, commonly referred to as the Umemoto reagent, has been accomplished applying a halogen exchange 18F-fluorination with 18F-fluoride, followed by oxidative cyclization with Oxone and trifluoromethanesulfonic anhydride. This new 18F-reagent allows for the direct chemoselective 18F-labeling of unmodified peptides at the thiol cysteine residue.
Collapse
Affiliation(s)
- Stefan Verhoog
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Choon Wee Kee
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Yanlan Wang
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Tanatorn Khotavivattana
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Thomas C Wilson
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Veerle Kersemans
- Oxford Institute for Radiation Oncology, University of Oxford , Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Sean Smart
- Oxford Institute for Radiation Oncology, University of Oxford , Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Matthew Tredwell
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Benjamin G Davis
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
30
|
Chachignon H, Kondrashov EV, Cahard D. Diastereoselective Electrophilic Trifluoromethylthiolation of Chiral Oxazolidinones: Access to Enantiopure α-SCF3
Alcohols. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701474] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hélène Chachignon
- CNRS, UMR 6014 COBRA; Normandie Université; INSA Rouen. 76821 Mont Saint Aignan France
| | - Evgeniy V. Kondrashov
- CNRS, UMR 6014 COBRA; Normandie Université; INSA Rouen. 76821 Mont Saint Aignan France
- A. E. Favorsky Institute of Chemistry; Siberian Branch of the Russian Academy of Sciences; 1, Favorsky Str. Irkutsk 664033 Russia
| | - Dominique Cahard
- CNRS, UMR 6014 COBRA; Normandie Université; INSA Rouen. 76821 Mont Saint Aignan France
| |
Collapse
|
31
|
Jiang H, Zhu R, Zhu C, Chen F, Wu W. Nucleophilic trifluoromethylthiolation of bromoalkynones with AgSCF3: C(sp)–SCF3 bond formation towards ynonyl trifluoromethyl sulfides. Org Biomol Chem 2018; 16:1646-1650. [DOI: 10.1039/c8ob00007g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C(sp)–SCF3 bond formation via the AgSCF3 mediated nucleophilic trifluoromethylthiolation of bromoalkynones, delivering various ynonyl trifluoromethyl sulfides in high yields.
Collapse
Affiliation(s)
- Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Rui Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Fulin Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
32
|
Navo CD, Mazo N, Avenoza A, Busto JH, Peregrina JM, Jiménez-Osés G. Substituent Effects on the Reactivity of Cyclic Tertiary Sulfamidates. J Org Chem 2017; 82:13250-13255. [DOI: 10.1021/acs.joc.7b02352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Claudio D. Navo
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Nuria Mazo
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Alberto Avenoza
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús H. Busto
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús M. Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| |
Collapse
|
33
|
Li M, Xue XS, Cheng JP. Mechanism and Origins of Stereoinduction in Natural Cinchona Alkaloid Catalyzed Asymmetric Electrophilic Trifluoromethylthiolation of β-Keto Esters with N-Trifluoromethylthiophthalimide as Electrophilic SCF3 Source. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Man Li
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People’s Republic of China
| | - Xiao-Song Xue
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jin-Pei Cheng
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People’s Republic of China
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
34
|
Li M, Zhou B, Xue XS, Cheng JP. Establishing the Trifluoromethylthio Radical Donating Abilities of Electrophilic SCF3-Transfer Reagents. J Org Chem 2017; 82:8697-8702. [DOI: 10.1021/acs.joc.7b01771] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Man Li
- State
Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Biying Zhou
- State
Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Song Xue
- State
Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jin-Pei Cheng
- State
Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|