1
|
Fan J, Wei PL, Li Y, Zhang S, Ren Z, Li W, Yin WB. Developing filamentous fungal chassis for natural product production. BIORESOURCE TECHNOLOGY 2025; 415:131703. [PMID: 39477163 DOI: 10.1016/j.biortech.2024.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The growing demand for green and sustainable production of high-value chemicals has driven the interest in microbial chassis. Recent advances in synthetic biology and metabolic engineering have reinforced filamentous fungi as promising chassis cells to produce bioactive natural products. Compared to the most used model organisms, Escherichia coli and Saccharomyces cerevisiae, most filamentous fungi are natural producers of secondary metabolites and possess an inherent pre-mRNA splicing system and abundant biosynthetic precursors. In this review, we summarize recent advances in the application of filamentous fungi as chassis cells. Emphasis is placed on strategies for developing a filamentous fungal chassis, including the establishment of mature genetic manipulation and efficient genetic tools, the catalogue of regulatory elements, and the optimization of endogenous metabolism. Furthermore, we provide an outlook on the advanced techniques for further engineering and application of filamentous fungal chassis.
Collapse
Affiliation(s)
- Jie Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Peng-Lin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuanyuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengquan Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zedong Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Lu Y, Duan MH, Zhao X, Zhang Y, Yang Y, Xu R, Kang YS, Wang ZL, Zhang YZ, Li CW. Pestiorosins A-F, New Papulacandins Isolated from the Fungus Pestalotiopsis rosea YNJ21. Chem Biodivers 2025; 22:e202401921. [PMID: 39246262 DOI: 10.1002/cbdv.202401921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Six previously unreported papulacandins, namely pestiorosins A-F (1-6), were isolated from the fermentation products of the fungus Pestalotiopsis rosea YNJ21 isolated from the fruitbody of Amanita exitialis. The structures of these compounds, along with a known compound called pestiocandin (7), were determined using MS, NMR data, and modified Mosher's method. All compounds exhibited significant antifungal activity against Candida albicans, with MIC values ranging from 0.06 to 2.00 μg/mL. In terms of cytotoxicity assays, compounds 3 and 6 demonstrated moderate inhibitory activity against human breast cancer MCF-7 cells with IC50 values of 24.50 and 16.83 μM, respectively. On the other hand, compound 7 displayed similar levels of inhibitory activity against mice microglial BV2 cells with an IC50 value of 24.51 μM.
Collapse
Affiliation(s)
- Yue Lu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ming-Hua Duan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xue Zhao
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yu Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Rui Xu
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ya-Shuai Kang
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zi-Lin Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - You-Zhi Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Chang-Wei Li
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|
3
|
Han C, Song A, He Y, Yang L, Chen L, Dai W, Wu Q, Yuan S. Genome mining and biosynthetic pathways of marine-derived fungal bioactive natural products. Front Microbiol 2024; 15:1520446. [PMID: 39726967 PMCID: PMC11669671 DOI: 10.3389/fmicb.2024.1520446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Marine fungal natural products (MFNPs) are a vital source of pharmaceuticals, primarily synthesized by relevant biosynthetic gene clusters (BGCs). However, many of these BGCs remain silent under standard laboratory culture conditions, delaying the development of novel drugs from MFNPs to some extent. This review highlights recent efforts in genome mining and biosynthetic pathways of bioactive natural products from marine fungi, focusing on methods such as bioinformatics analysis, gene knockout, and heterologous expression to identify relevant BGCs and elucidate the biosynthetic pathways and enzyme functions of MFNPs. The research efforts presented in this review provide essential insights for future gene-guided mining and biosynthetic pathway analysis in MFNPs.
Collapse
Affiliation(s)
- Caihua Han
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Anjing Song
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Yueying He
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Liu Yang
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Litong Chen
- Center of Ocean Expedition, School of Atmospheric Science, Sun Yat-sen University, Zhuhai, China
| | - Wei Dai
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qilin Wu
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Siwen Yuan
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
4
|
Jiang P, Fu X, Niu H, Chen S, Liu F, Luo Y, Zhang D, Lei H. Recent advances on Pestalotiopsis genus: chemistry, biological activities, structure-activity relationship, and biosynthesis. Arch Pharm Res 2023:10.1007/s12272-023-01453-2. [PMID: 37389739 DOI: 10.1007/s12272-023-01453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Strains of the fungal genus Pestalotiopsis are reported as large promising sources of structurally varied biologically active metabolites. Many bioactive secondary metabolites with diverse structural features have been derived from Pestalotiopsis. Moreover, some of these compounds can potentially be developed into lead compounds. Herein, we have systematically reviewed the chemical constituents and bioactivities of the fungal genus Pestalotiopsis, covering a period ranging from January 2016 to December 2022. As many as 307 compounds, including terpenoids, coumarins, lactones, polyketides, and alkaloids, were isolated during this period. Furthermore, for the benefit of readers, the biosynthesis and potential medicinal value of these new compounds are also discussed in this review. Finally, the perspectives and directions for future research and the potential applications of the new compounds are summarized in various tables.
Collapse
Affiliation(s)
- Peng Jiang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xiujuan Fu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hong Niu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Siwei Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Feifei Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Yu Luo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
5
|
Pestalotiopsis Diversity: Species, Dispositions, Secondary Metabolites, and Bioactivities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228088. [PMID: 36432188 PMCID: PMC9695833 DOI: 10.3390/molecules27228088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2022]
Abstract
Pestalotiopsis species have gained attention thanks to their structurally complex and biologically active secondary metabolites. In past decades, several new secondary metabolites were isolated and identified. Their bioactivities were tested, including anticancer, antifungal, antibacterial, and nematicidal activity. Since the previous review published in 2014, new secondary metabolites were isolated and identified from Pestalotiopsis species and unidentified strains. This review gathered published articles from 2014 to 2021 and focused on 239 new secondary metabolites and their bioactivities. To date, 384 Pestalotiopsis species have been discovered in diverse ecological habitats, with the majority of them unstudied. Some may contain secondary metabolites with unique bioactivities that might benefit pharmacology.
Collapse
|
6
|
Yang BY, Sun WG, Liu JJ, Wang JP, Hu ZX, Zhang YH. A new pair of cytotoxic enantiomeric isoprenylated chromone derivatives from Pestalotiopsis sp. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:528-534. [PMID: 34236260 DOI: 10.1080/10286020.2021.1946042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
A new pair of enantiomeric isoprenylated chromone derivatives, (±)-pestaloficiol X [(±)-1], along with a known compound pestaloficiol J (2), were isolated from the plant endophytic fungus Pestalotiopsis sp. The racemic mixture 1 was separated through chiral HPLC. The structures of new compounds (±)-1 were elucidated on the basis of extensive spectroscopic data and their absolute configurations were further configured through computational analysis of their electronic circular dichroism (ECD) spectra. Compound (+)-1 showed significant inhibitory potency against HL-60 and HEP-3B cell lines, with IC50 values of 1.35 ± 0.15 and 3.70 ± 0.33 μM, respectively, while compound (-)-1 showed significant inhibitory potency against HL-60 and HEP-3B cell lines, with IC50 values of 2.39 ± 0.26 and 2.99 ± 0.35 μM, respectively.
Collapse
Affiliation(s)
- Bei-Ye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Guang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun-Jun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jian-Ping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zheng-Xi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yong-Hui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Combination Strategy of Genetic Dereplication and Manipulation of Epigenetic Regulators Reveals a Novel Compound from Plant Endophytic Fungus. Int J Mol Sci 2022; 23:ijms23073686. [PMID: 35409046 PMCID: PMC8998291 DOI: 10.3390/ijms23073686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
The strategies of genetic dereplication and manipulation of epigenetic regulators to activate the cryptic gene clusters are effective to discover natural products with novel structure in filamentous fungi. In this study, a combination of genetic dereplication (deletion of pesthetic acid biosynthetic gene, PfptaA) and manipulation of epigenetic regulators (deletion of histone methyltransferase gene PfcclA and histone deacetylase gene PfhdaA) was developed in plant endophytic fungus Pestalotiopsis fici. The deletion of PfptaA with PfcclA and/or PfhdaA led to isolation of 1 novel compound, pestaloficiol X (1), as well as another 11 known compounds with obvious yield changes. The proposed biosynthesis pathway of pestaloficiol X was speculated using comparative analysis of homologous biosynthetic gene clusters. Moreover, phenotypic effects on the conidial development and response to oxidative stressors in the mutants were explored. Our results revealed that the new strain with deletion of PfcclA or PfhdaA in ΔPfptaA background host can neutralise the hyperformation of conidia in the PfptaA mutant, and that the ΔPfptaA ΔPfhdaA mutant was generally not sensitive to oxidative stressors as much as the ΔPfptaA ΔcclA mutant in comparison with the single mutant ΔPfptaA or the parental strains. This combinatorial approach can be applied to discover new natural products in filamentous fungi.
Collapse
|
8
|
Gupta P, Verma A, Rai N, Singh AK, Singh SK, Kumar B, Kumar R, Gautam V. Mass Spectrometry-Based Technology and Workflows for Studying the Chemistry of Fungal Endophyte Derived Bioactive Compounds. ACS Chem Biol 2021; 16:2068-2086. [PMID: 34724607 DOI: 10.1021/acschembio.1c00581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bioactive compounds have gained substantial attention in research and have conferred great advancements in the industrial and pharmacological fields. Highly diverse fungi and their metabolome serve as a big platform to be explored for their diverse bioactive compounds. Omics tools coupled with bioinformatics, statistical, and well-developed algorithm tools have elucidated immense knowledge about fungal endophyte derived bioactive compounds. Further, these compounds are subjected to chromatography-gas chromatography and liquid chromatography (LC), spectroscopy-nuclear magnetic resonance (NMR), and "soft ionization" technique-matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) based analytical techniques for structural characterization. The mass spectrometry (MS)-based approach, being highly sensitive, reproducible, and reliable, produces quick and high-profile identification. Coupling these techniques with MS has resulted in a descriptive account of the identification and quantification of fungal endophyte derived bioactive compounds. This paper emphasizes the workflows of the above-mentioned techniques, their advancement, and future directions to study the unraveled area of chemistry of fungal endophyte-derived bioactive compounds.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Anurag Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Brijesh Kumar
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
9
|
Lyu HN, Zhang J, Zhou S, Liu HW, Zhuang WY, Li SM, Yin WB. Heterologous expression of a single fungal HR-PKS leads to the formation of diverse 2-alkenyl-tetrahydropyrans in model fungi. Org Biomol Chem 2021; 19:8377-8383. [PMID: 34528986 DOI: 10.1039/d1ob01501j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Alkenyl-tetrahydropyrans belong to a rare class of natural products that exhibit broad antifungal activities. Their structural instability and rareness in nature have restrained their discovery and drug development. In this study, the heterologous expression of a single highly reducing polyketide synthase (HR-PKS, App1) from Trichoderma applanatum in Aspergillus nidulans leads to the formation of seven 2-alkenyl-tetrahydropyran derivatives including one known compound virensol C (1) and six new compounds (2-7). However, introducing App1 into Saccharomyces cerevisiae resulted in the identification of additional two 2-alkenyl-tetrahydropyrans lacking the hydroxyl or methoxyl group at the C-2 position (8 and 9). The structures of the isolated compounds were elucidated by extensive spectroscopic analysis using NMR and HR-ESI-MS.
Collapse
Affiliation(s)
- Hai-Ning Lyu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Jinyu Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Shuang Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Hong-Wei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| |
Collapse
|
10
|
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem 2021; 19:1644-1704. [PMID: 33320161 DOI: 10.1039/d0ob02162h] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungal meroterpenoids are secondary metabolites from mixed terpene-biosynthetic origins. Their intriguing chemical structural diversification and complexity, potential bioactivities, and pharmacological significance make them attractive targets in natural product chemistry, organic synthesis, and biosynthesis. This review provides a systematic overview of the isolation, chemical structural features, biological activities, and fungal biodiversity of 1585 novel meroterpenoids from 79 genera terrestrial and marine-derived fungi including macrofungi, Basidiomycetes, in 441 research papers in 2009-2019. Based on the nonterpenoid starting moiety in their biosynthesis pathway, meroterpenoids were classified into four categories (polyketide-terpenoid, indole-, shikimate-, and miscellaneous-) with polyketide-terpenoids (mainly tetraketide-) and shikimate-terpenoids as the primary source. Basidiomycota produced 37.5% of meroterpenoids, mostly shikimate-terpenoids. The genera of Ganoderma, Penicillium, Aspergillus, and Stachybotrys are the four dominant producers. Moreover, about 56% of meroterpenoids display various pronounced bioactivities, including cytotoxicity, enzyme inhibition, antibacterial, anti-inflammatory, antiviral, antifungal activities. It's exciting that several meroterpenoids including antroquinonol and 4-acetyl antroquinonol B were developed into phase II clinically used drugs. We assume that the chemical diversity and therapeutic potential of these fungal meroterpenoids will provide biologists and medicinal chemists with a large promising sustainable treasure-trove for drug discovery.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
11
|
Aghdam SA, Brown AMV. Deep learning approaches for natural product discovery from plant endophytic microbiomes. ENVIRONMENTAL MICROBIOME 2021; 16:6. [PMID: 33758794 PMCID: PMC7972023 DOI: 10.1186/s40793-021-00375-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/21/2021] [Indexed: 05/10/2023]
Abstract
Plant microbiomes are not only diverse, but also appear to host a vast pool of secondary metabolites holding great promise for bioactive natural products and drug discovery. Yet, most microbes within plants appear to be uncultivable, and for those that can be cultivated, their metabolic potential lies largely hidden through regulatory silencing of biosynthetic genes. The recent explosion of powerful interdisciplinary approaches, including multi-omics methods to address multi-trophic interactions and artificial intelligence-based computational approaches to infer distribution of function, together present a paradigm shift in high-throughput approaches to natural product discovery from plant-associated microbes. Arguably, the key to characterizing and harnessing this biochemical capacity depends on a novel, systematic approach to characterize the triggers that turn on secondary metabolite biosynthesis through molecular or genetic signals from the host plant, members of the rich 'in planta' community, or from the environment. This review explores breakthrough approaches for natural product discovery from plant microbiomes, emphasizing the promise of deep learning as a tool for endophyte bioprospecting, endophyte biochemical novelty prediction, and endophyte regulatory control. It concludes with a proposed pipeline to harness global databases (genomic, metabolomic, regulomic, and chemical) to uncover and unsilence desirable natural products. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s40793-021-00375-0.
Collapse
Affiliation(s)
- Shiva Abdollahi Aghdam
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX 79409 USA
| | - Amanda May Vivian Brown
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX 79409 USA
| |
Collapse
|
12
|
Inducing new bioactive metabolites production from coculture of Pestalotiopsis sp. and Penicillium bialowiezense. Bioorg Chem 2021; 110:104826. [PMID: 33780746 DOI: 10.1016/j.bioorg.2021.104826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022]
Abstract
Coculturing two or more fungi is a useful strategy to awaken the silent genes to produce structurally diverse and bioactive natural products. Through the coculture of Pestalotiopsis sp. and Penicillium bialowiezense, six new isoprenylated chromane derivatives, including two pairs of enantiomeric ones (1a/1b-2a/2b) and two optical pure ones (3-4), two new isoprenylated phenol glucoside derivatives (6-7), as well as eight known structural analogues (5 and 8-14), were obtained. The structures of these new compounds were characterized by NMR spectroscopy, single-crystal X-ray crystallography, and ECD calculation. The Δ10,11 double bond of pestaloficin D (5) was revised to E-configurated based on the extensive spectroscopic analyses. Compounds 1a/1b and 2a/2b were the first examples of enantiomeric isoprenylated chromane derivatives, which were successfully separated by chiral HPLC. Additionally, all the isolated compounds were evaluated for the in vitro β-glucuronidase (GUS) and butyrylcholinesterase (BChE) inhibitory activities. Compounds 1a and 1b showed significant β-glucuronidase inhibitory potency with IC50 values of 7.6 and 10.3 μM, respectively. Compound 14 exhibited moderate BChE inhibitory activity with an IC50 value of 21.3 μM. In addition, the structure-enzyme inhibitory activity relationship of compounds 1-14 is discussed.
Collapse
|
13
|
Sagita R, Quax WJ, Haslinger K. Current State and Future Directions of Genetics and Genomics of Endophytic Fungi for Bioprospecting Efforts. Front Bioeng Biotechnol 2021; 9:649906. [PMID: 33791289 PMCID: PMC8005728 DOI: 10.3389/fbioe.2021.649906] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
The bioprospecting of secondary metabolites from endophytic fungi received great attention in the 1990s and 2000s, when the controversy around taxol production from Taxus spp. endophytes was at its height. Since then, hundreds of reports have described the isolation and characterization of putative secondary metabolites from endophytic fungi. However, only very few studies also report the genetic basis for these phenotypic observations. With low sequencing cost and fast sample turnaround, genetics- and genomics-based approaches have risen to become comprehensive approaches to study natural products from a wide-range of organisms, especially to elucidate underlying biosynthetic pathways. However, in the field of fungal endophyte biology, elucidation of biosynthetic pathways is still a major challenge. As a relatively poorly investigated group of microorganisms, even in the light of recent efforts to sequence more fungal genomes, such as the 1000 Fungal Genomes Project at the Joint Genome Institute (JGI), the basis for bioprospecting of enzymes and pathways from endophytic fungi is still rather slim. In this review we want to discuss the current approaches and tools used to associate phenotype and genotype to elucidate biosynthetic pathways of secondary metabolites in endophytic fungi through the lens of bioprospecting. This review will point out the reported successes and shortcomings, and discuss future directions in sampling, and genetics and genomics of endophytic fungi. Identifying responsible biosynthetic genes for the numerous secondary metabolites isolated from endophytic fungi opens the opportunity to explore the genetic potential of producer strains to discover novel secondary metabolites and enhance secondary metabolite production by metabolic engineering resulting in novel and more affordable medicines and food additives.
Collapse
Affiliation(s)
| | | | - Kristina Haslinger
- Groningen Institute of Pharmacy, Chemical and Pharmaceutical Biology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
14
|
Guo Z, Zou ZM. Discovery of New Secondary Metabolites by Epigenetic Regulation and NMR Comparison from the Plant Endophytic Fungus Monosporascus eutypoides. Molecules 2020; 25:molecules25184192. [PMID: 32932749 PMCID: PMC7570479 DOI: 10.3390/molecules25184192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/29/2023] Open
Abstract
Overexpression of the histone acetyltransferase and the 1H NMR spectroscopic experiments of the endophytic fungus Monosporascus eutypoides resulted in the isolation of two new compounds, monosporasols A (1) and B (2), and two known compounds, pestaloficin C (3) and arthrinone (4). Their planar structures and absolute configurations were determined by spectroscopic analysis including high resolution electrospray ionization mass spectroscopy (HRESIMS), one-dimensional (1D) and two-dimensional (2D) NMR, and calculated electronic circular dichroism data. Compounds 1–2 were screened in cytotoxic bioassays against HeLa, HCT-8, A549 and MCF-7 cells. Our work highlights the enormous potential of epigenetic manipulation along with the NMR comparison as an effective strategy for unlocking the chemical diversity encoded by fungal genomes.
Collapse
|
15
|
Liu H, Pu YH, Ren JW, Li EW, Guo LX, Yin WB. Genetic dereplication driven discovery of a tricinoloniol acid biosynthetic pathway in Trichoderma hypoxylon. Org Biomol Chem 2020; 18:5344-5348. [PMID: 32638809 DOI: 10.1039/d0ob01202e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A genetic dereplication approach in combination with differential gene expression led to the discovery of three new sesquiterpenes, tricinoloniol acids (TRAs) A-C (1-3) and the known fusidilactone A (4) from T. hypoxylon. Comparative transcriptomic analysis and targeted deletion identified the biosynthetic route for TRAs. Our results demonstrate an alternative application of the genetic dereplication method for exploring the biosynthesis of cryptic secondary metabolites (SMs), which utilizes the coordinated expression of trichothecene (tri) and tra cluster genes.
Collapse
Affiliation(s)
- Huan Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China. and State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yu-Han Pu
- Environmental and Resources Institute, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Jin-Wei Ren
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Er-Wei Li
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Li-Xia Guo
- Environmental and Resources Institute, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Wen-Bing Yin
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China. and State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
16
|
Liu Z, Zhao JY, Sun SF, Li Y, Liu YB. Fungi: outstanding source of novel chemical scaffolds. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:99-120. [PMID: 30047298 DOI: 10.1080/10286020.2018.1488833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
A large number of remarkable studies on the secondary metabolites of fungi have been conducted in recent years. This review gives an overview of one hundred and sixty-seven molecules with novel skeletons and their bioactivities that have been reported in seventy-nine articles published from 2013 to 2017. Our statistical data showed that endophytic fungi and marine-derived fungi are the major sources of novel bioactive secondary metabolites.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing-Yi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Sen-Feng Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yun-Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
17
|
Lyu HN, Liu HW, Keller NP, Yin WB. Harnessing diverse transcriptional regulators for natural product discovery in fungi. Nat Prod Rep 2020; 37:6-16. [DOI: 10.1039/c8np00027a] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers diverse transcriptional regulators for the activation of secondary metabolism and novel natural product discovery in fungi.
Collapse
Affiliation(s)
- Hai-Ning Lyu
- State Key Laboratory of Mycology
- Institute of Microbiology
- Chinese Academy of Sciences
- Beijing
- China
| | - Hong-Wei Liu
- State Key Laboratory of Mycology
- Institute of Microbiology
- Chinese Academy of Sciences
- Beijing
- China
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology and Bacteriology
- University of Wisconsin–Madison
- Madison
- USA
| | - Wen-Bing Yin
- State Key Laboratory of Mycology
- Institute of Microbiology
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
18
|
Chen L, Wu H, Liu H, Li E, Ren J, Wang W, Wang S, Yin WB. Genetic dereplication of Trichoderma hypoxylon reveals two novel polycyclic lactones. Bioorg Chem 2019; 91:103185. [PMID: 31430681 DOI: 10.1016/j.bioorg.2019.103185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/24/2019] [Accepted: 08/04/2019] [Indexed: 01/09/2023]
Abstract
Previous study demonstrated large scale production of trichochecenes which limited the discovery of novel metabolites in Trichoderma hypoxylon. By genetic deletion of trichothecene synthase encoding gene thtri5, we created the dereplication mutant which eliminated the production of trichothecenes. Through chemical isolation, we characterized a couple of rare new polycyclic lactones tricholactones A and B from the thtri5 deletion strain. The structures of these two compounds were well determined by NMR, HR-ESI-MS and IECD analysis.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - HongBo Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Erwei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shihua Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Strategy for efficient cloning of biosynthetic gene clusters from fungi. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1087-1095. [DOI: 10.1007/s11427-018-9511-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022]
|
20
|
Rao L, You YX, Su Y, Liu Y, He Q, Fan Y, Hu F, Xu YK, Zhang CR. Two spiroketal derivatives with an unprecedented amino group and their cytotoxicity evaluation from the endophytic fungus Pestalotiopsis flavidula. Fitoterapia 2019; 135:5-8. [PMID: 30914329 DOI: 10.1016/j.fitote.2019.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Two new spiroketal derivatives with an unprecedented amino group, 2'-aminodechloromaldoxin (1) and 2'-aminodechlorogeodoxin (2), along with one known analogue dechloromaldoxin (3), were isolated from the plant endophytic fungus Pestalotiopsis flavidula. Their structures were elucidated on the basis of extensive spectroscopic analysis. The purification was cytotoxicity-guided which indicated the extract, fractions and compounds were evaluated in vitro for anti-proliferative activity against a panel of human cancer cell lines. The results showed compounds 1 and 2 with moderate cytotoxicity while 3 was inactive, which suggested -NH2 group might play a very important role for their cytotoxicity. This is the first study for P. flavidula and the first time to report the spiroketal derivatives as alkaloids from the Pestalotiopsis genus.
Collapse
Affiliation(s)
- Li Rao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yun-Xia You
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yu Su
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yu Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qian He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yue Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - You-Kai Xu
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Chuan-Rui Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
21
|
Lin H, Lyu H, Zhou S, Yu J, Keller NP, Chen L, Yin WB. Deletion of a global regulator LaeB leads to the discovery of novel polyketides in Aspergillus nidulans. Org Biomol Chem 2019; 16:4973-4976. [PMID: 29947411 DOI: 10.1039/c8ob01326h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By disruption of LaeB, a global regulator recently characterized in Aspergillus nidulans, eight cryptic compounds in the mutant were identified, including seven polyketides and one NRPS-like product. Among the isolates, two phthalides and two dibenzo[1,4]dioxins are new compounds, revealing that the genetic manipulation of the global regulator represents a promising approach for the discovery of novel natural products in fungi.
Collapse
Affiliation(s)
- Haizhou Lin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhou S, Zhang P, Zhou H, Liu X, Li SM, Guo L, Li K, Yin WB. A new regulator RsdA mediating fungal secondary metabolism has a detrimental impact on asexual development in Pestalotiopsis fici. Environ Microbiol 2018; 21:416-426. [PMID: 30421486 DOI: 10.1111/1462-2920.14473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/26/2018] [Accepted: 11/04/2018] [Indexed: 12/20/2022]
Abstract
Secondary metabolite (SM) production and development are correlated processes in fungi that are often coordinated by pleiotropic regulators. The eukaryotic regulators are critical players in mediating SM production related to fungal development, yet little data are available to support this hypothesis. In this study, a global regulator, RsdA (regulation of secondary metabolism and development), was identified through genome-wide analysis and deletion of the regulator gene in the endophytic fungus Pestalotiopsis fici. Here, we established that RsdA regulation of SMs is accompanied by the repression of asexual development. Deletion of rsdA significantly reduces not only asexual development, resulting in low sporulation and abnormal conidia, but also the major SM production, while remarkably increasing the melanin production. Overproduction of melanin leads to the formation of unusual, heavily pigmented hyphae. Transcriptome analysis data provide the evidence that RsdA globally regulates genes involved in secondary metabolism and asexual development. Double deletion of rsdA and the melanin polyketide synthase gene PfmaE confirm that RsdA regulation of asexual development is independent of the melanin biosynthetic pathway. Finally, our results demonstrate that RsdA can be used for the discovery of secondary metabolites in filamentous fungi.
Collapse
Affiliation(s)
- Shuang Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Haichuan Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Liangdong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
23
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2017. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:815-836. [PMID: 31033347 DOI: 10.1080/10286020.2018.1521804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 06/09/2023]
Abstract
The new natural products reported in 2017 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2017 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , People's Republic of China
| | - Shi-Shan Yu
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , People's Republic of China
| |
Collapse
|
24
|
Bai J, Mu R, Dou M, Yan D, Liu B, Wei Q, Wan J, Tang Y, Hu Y. Epigenetic modification in histone deacetylase deletion strain of Calcarisporium arbuscula leads to diverse diterpenoids. Acta Pharm Sin B 2018; 8:687-697. [PMID: 30109192 PMCID: PMC6090014 DOI: 10.1016/j.apsb.2017.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/21/2017] [Accepted: 10/15/2017] [Indexed: 12/28/2022] Open
Abstract
Epigenetic modifications have been proved to be a powerful way to activate silent gene clusters and lead to diverse secondary metabolites in fungi. Previously, inactivation of a histone H3 deacetylase in Calcarisporium arbuscula had led to pleiotropic activation and overexpression of more than 75% of the biosynthetic genes and isolation of ten compounds. Further investigation of the crude extract of C. arbuscula ΔhdaA strain resulted in the isolation of twelve new diterpenoids including three cassanes (1−3), one cleistanthane (4), six pimaranes (5−10), and two isopimaranes (11 and 12) along with two know cleistanthane analogues. Their structures were elucidated by extensive NMR spectroscopic data analysis. Compounds 2 and 4 showed potent inhibitory effects on the expression of MMP1 and MMP2 (matrix metalloproteinases family) in human breast cancer (MCF-7) cells.
Collapse
Affiliation(s)
- Jian Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rong Mu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Man Dou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Daojiang Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bingyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qian Wei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Wan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Corresponding author.
| |
Collapse
|
25
|
Kotha S, Meshram M, Dommaraju Y. Design and Synthesis of Polycycles, Heterocycles, and Macrocycles via Strategic Utilization of Ring-Closing Metathesis. CHEM REC 2018; 18:1613-1632. [PMID: 29920922 DOI: 10.1002/tcr.201800025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/18/2018] [Indexed: 02/04/2023]
Abstract
In this perspective, we summarize new synthetic approaches for the construction of various polycyclic compounds involving ring-closing metathesis as a key step. In this regard, we used ring-closing metathesis in combination with other popular reactions like Suzuki-Miyaura coupling, Claisen rearrangement, Fischer indolization, Grignard addition, Diels-Alder reaction, and [2+2] cycloaddition reaction etc. To this end, a variety of functional molecules such as α-amino acids, cyclophanes, heterocycles, propellanes, spirocycles, and macrocycles have been prepared. The strategies developed and the molecules prepared here play a key role in designing new materials and also act as lead compounds in drug design. The strategies and tactics developed here are useful to design polycycles, macrocycles, and heterocycles of diverse ring systems.
Collapse
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400 076, India
| | - Milind Meshram
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400 076, India
| | - Yuvaraj Dommaraju
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400 076, India
| |
Collapse
|
26
|
The developmental regulator Pcz1 affects the production of secondary metabolites in the filamentous fungus Penicillium roqueforti. Microbiol Res 2018; 212-213:67-74. [PMID: 29853169 DOI: 10.1016/j.micres.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/16/2018] [Accepted: 05/03/2018] [Indexed: 12/27/2022]
Abstract
Penicillium roqueforti is used in the production of several kinds of ripened blue-veined cheeses. In addition, this fungus produces interesting secondary metabolites such as roquefortine C, andrastin A and mycophenolic acid. To date, there is scarce information concerning the regulation of the production of these secondary metabolites. Recently, the gene named pcz1 (Penicillium C6 zinc domain protein 1) was described in P. roqueforti, which encodes for a Zn(II)2Cys6 protein that controls growth and developmental processes in this fungus. However, its effect on secondary metabolism is currently unknown. In this work, we have analyzed how the overexpression and down-regulation of pcz1 affect the production of roquefortine C, andrastin A and mycophenolic acid in P. roqueforti. The three metabolites were drastically reduced in the pcz1 down-regulated strains. However, when pcz1 was overexpressed, only mycophenolic acid was overproduced while, on the contrary, levels of roquefortine C and andrastin A were diminished. Importantly, these results match the expression pattern of key genes involved in the biosynthesis of these metabolites. Taken together, our results suggest that Pcz1 plays a key role in regulating secondary metabolism in the fungus Penicillium roqueforti.
Collapse
|
27
|
Liu H, Wang G, Li W, Liu X, Li E, Yin WB. A highly efficient genetic system for the identification of a harzianum B biosynthetic gene cluster in Trichoderma hypoxylon. MICROBIOLOGY-SGM 2018; 164:769-778. [PMID: 29557773 DOI: 10.1099/mic.0.000649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trichoderma hypoxylon is a fungicolous species which produces rich secondary metabolites. However, no genetic transformation method is available for further studies. Here, we developed a marker-less transformation system based on the complementation of an uridine/uracil biosynthetic gene by protoplast transformation. An uridine/uracil auxotrophic mutant of Δthpyr4 was obtained by using a positive screening protocol with 5'-fluoroorotic acid as a selective reagent. To improve the homologous integration rates, the orthologues of ku70 and lig4 which play critical roles in non-homologous end-joining recombination were disrupted. The resulting thlig4 mutant showed remarkable transformation rates of 89 %, while no change was found in the thku70 deletion mutant compared with the WT strain. This suggests that thlig4 play a key role in the non-homologous recombination in this strain. Using this system, the biosynthetic gene cluster of trichothecene (tri) harzianum B was identified by deletion of the thtri5 in T. hypoxylon. Comparative genome analysis revealed that the trichothecene biosynthetic gene cluster in T. hypoxylon shared similar organizations with T. arundinaceum and T. brevicompactum, even though their encoded products are different in structures. Taken together, the highly efficient genetic system provides a convenient tool for studying the biosynthetic diversity and mining the novel natural product from the fungi.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Gang Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Wei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Erwei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| |
Collapse
|
28
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as caesalpinflavin A from Caesalpinia enneaphylla.
Collapse
|