1
|
Kolarski D, Szymanski W, Feringa BL. Spatiotemporal Control Over Circadian Rhythms With Light. Med Res Rev 2025; 45:968-984. [PMID: 39757143 PMCID: PMC11976375 DOI: 10.1002/med.22099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Circadian rhythms are endogenous biological oscillators that synchronize internal physiological processes and behaviors with external environmental changes, sustaining homeostasis and health. Disruption of circadian rhythms leads to numerous diseases, including cardiovascular and metabolic diseases, cancer, diabetes, and neurological disorders. Despite the potential to restore healthy rhythms in the organism, pharmacological chronotherapy lacks spatial and temporal resolution. Addressing this challenge, chrono-photopharmacology, the approach that employs small molecules with light-controlled activity, enables the modulation of circadian rhythms when and where needed. Two approaches-relying on irreversible and reversible drug activation-have been proposed for this purpose. These methodologies are based on photoremovable protecting groups and photoswitches, respectively. Designing photoresponsive bioactive molecules requires meticulous structural optimization to obtain the desired chemical and photophysical properties, and the design principles, detailed guidelines and challenges are summarized here. In this review, we also analyze all the known circadian modulators responsive to light and dissect the rationale following their construction and application to control circadian biology from the protein level to living organisms. Finally, we present the strength of a reversible approach in allowing the modulation of the circadian period and the phase.
Collapse
Affiliation(s)
- Dušan Kolarski
- Max Planck Institute for Multidisciplinary SciencesNanoBioPhotonicsGöttingenGermany
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for ChemistryUniversity of GroningenGroningenThe Netherlands
- Department of Radiology, Medical Imaging CenterUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of PharmacyUniversity of GroningenGroningenThe Netherlands
| | - Ben L. Feringa
- Centre for Systems Chemistry, Stratingh Institute for ChemistryUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
2
|
Hu H, Wei S, Zhang C, Gao C, Sun C, Du Y, Hu B. Multiple pyrazolylazoindole/indazole scaffold based visible-light photoswitches with versatile controlled photophysical properties. Mol Divers 2025:10.1007/s11030-025-11161-2. [PMID: 40080342 DOI: 10.1007/s11030-025-11161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Azoheteroarenes-based photoswitches with high bidirectional isomerization and long thermal half-life (t1/2) have attracted widespread attention from researchers. The diversity of molecular scaffolds has a profound impact on photoswitching performance, herein, we incorporated dynamic connection sites and scaffold optimization to construct a series of pyrazolyazoindole/indazoles (PAIs)-based photoswitches with adjustable photoswitching properties and versatile photophysical properties upon the irradiation of special wavelength, among them 4Z-H can be switched between states "lock" and "unlock" by Cu2+ ion and EDTA. Thermal stability of series 3Z and 4Z was more stable than other PAIs photoswitches for their intramolecular forces, while the steric effect weakened the thermal stability of series 5D, these results clarified the relationship between the PAIs scaffolds and their photoswitching properties. More importantly, ionic photoswitches (4D-N+) synthesized by modification of quaternary ammonium salt fragment exhibited excellent reversible photoswitching properties in aqueous solution with alkaline condition and concentrated glutathione (GSH). The assembly of fluorescence group (triphenylamine) endowed the PAIs scaffolds with optically controlled fluorescence properties. This research elucidated the relationship of scaffold-modification-function of PAIs and would inevitably provide a reliable foundation for the development of intelligent organic materials with photoswitching systems.
Collapse
Affiliation(s)
- Haoran Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Siyi Wei
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Chong Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Chao Gao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Chengguo Sun
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Yang Du
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Bingcheng Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China.
| |
Collapse
|
3
|
Fink M, Stäuble J, Weisgerber M, Carreira EM. Aryl Azocyclopropeniums: Minimalist, Visible-Light Photoswitches. J Am Chem Soc 2024; 146:9519-9525. [PMID: 38547006 PMCID: PMC11010232 DOI: 10.1021/jacs.4c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
We report convenient syntheses of aryl azocyclopropeniums and a study of their photochemical properties. Incorporation of the smallest arene leads to pronounced redshift of the π-π* absorbance band, compared to azobenzenes. Photoisomerization under purple or green light irradiation affords Z- or E-isomers in ratios up to 94% Z or 90% E, and the switches proved stable over multiple irradiation cycles. Thermal half-lives of metastable Z-isomers range from minutes to hours in acetonitrile and water. These properties together with the concise, versatile syntheses render aryl azocyclopropeniums exciting additions to the tool kit of readily available molecular photoswitches for wide ranging applications.
Collapse
Affiliation(s)
- Moritz Fink
- Department of Chemistry and
Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Jannik Stäuble
- Department of Chemistry and
Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Maïté Weisgerber
- Department of Chemistry and
Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Erick M. Carreira
- Department of Chemistry and
Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Lv Y, Ye H, You L. Multiple control of azoquinoline based molecular photoswitches. Chem Sci 2024; 15:3290-3299. [PMID: 38425524 PMCID: PMC10901508 DOI: 10.1039/d3sc05879d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Multi-addressable molecular switches with high sophistication are creating intensive interest, but are challenging to control. Herein, we incorporated ring-chain dynamic covalent sites into azoquinoline scaffolds for the construction of multi-responsive and multi-state switching systems. The manipulation of ring-chain equilibrium by acid/base and dynamic covalent reactions with primary/secondary amines allowed the regulation of E/Z photoisomerization. Moreover, the carboxyl and quinoline motifs provided recognition handles for the chelation of metal ions and turning off photoswitching, with otherwise inaccessible Z-isomer complexes obtained via the change of stimulation sequence. Particularly, the distinct metal binding behaviors of primary amine and secondary amine products offered a facile way for modulating E/Z switching and dynamic covalent reactivity. As a result, multiple control of azoarene photoswitches was accomplished, including light, pH, metal ions, and amine nucleophiles, with interplay between diverse stimuli further enabling addressable multi-state switching within reaction networks. The underlying structural and mechanistic insights were elucidated, paving the way for the creation of complex switching systems, molecular assemblies, and intelligent materials.
Collapse
Affiliation(s)
- Youming Lv
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 China
| |
Collapse
|
5
|
Orvoš J, Pančík F, Fischer R. Facile One‐Step Oxidation of
N
‐Boc‐Protected Diarylhydrazines to Diaryldiazenes with (Diacetoxyiodo)benzene under Mild Conditions. European J Org Chem 2023. [DOI: 10.1002/ejoc.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Jakub Orvoš
- Institute of Organic Chemistry Catalysis and Petrochemistry Slovak University of Technology in Bratislava Radlinského 9 812 37 Bratislava Slovak Republic
| | - Filip Pančík
- Institute of Chemistry Slovak Academy of Sciences Dúbravská cesta 9 845 38 Bratislava Slovak Republic
| | - Róbert Fischer
- Institute of Organic Chemistry Catalysis and Petrochemistry Slovak University of Technology in Bratislava Radlinského 9 812 37 Bratislava Slovak Republic
| |
Collapse
|
6
|
Doronina EP, Jouikov V, Sidorkin VF. Molecular Design of Silicon‐Containing Diazenes: Absorbance of
E
and
Z
Isomers in the Near‐Infrared Region. Chemistry 2022; 28:e202201508. [DOI: 10.1002/chem.202201508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Evgeniya P. Doronina
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky st. 664033 Irkutsk Russian Federation
| | | | - Valery F. Sidorkin
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky st. 664033 Irkutsk Russian Federation
| |
Collapse
|
7
|
Kennedy ADW, DiNardi RG, Fillbrook LL, Donald WA, Beves JE. Visible-Light Switching of Metallosupramolecular Assemblies. Chemistry 2022; 28:e202104461. [PMID: 35102616 PMCID: PMC9302685 DOI: 10.1002/chem.202104461] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/11/2022]
Abstract
A photoswitchable ligand and palladium(II) ions form a dynamic mixture of self-assembled metallosupramolecular structures. The photoswitching ligand is an ortho-fluoroazobenzene with appended pyridyl groups. Combining the E-isomer with palladium(II) salts affords a double-walled triangle with composition [Pd3 L6 ]6+ and a distorted tetrahedron [Pd4 L8 ]8+ (1 : 2 ratio at 298 K). Irradiation with 410 nm light generates a photostationary state with approximately 80 % of the E-isomer of the ligand and results in the selective disassembly of the tetrahedron, the more thermodynamically stable structure, and the formation of the triangle, the more kinetically inert product. The triangle is then slowly transformed back into the tetrahedron over 2 days at 333 K. The Z-isomer of the ligand does not form any well-defined structures and has a thermal half-life of 25 days at 298 K. This approach shows how a thermodynamically preferred self-assembled structure can be reversibly pumped to a kinetic trap by small perturbations of the isomer distribution using non-destructive visible light.
Collapse
Affiliation(s)
| | - Ray G. DiNardi
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Lucy L. Fillbrook
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - William A. Donald
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Jonathon E. Beves
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
8
|
Wang H, Bisoyi H, Zhang X, Hassan F, Li Q. Visible Light-Driven Molecular Switches and Motors: Recent Developments and Applications. Chemistry 2021; 28:e202103906. [PMID: 34964995 DOI: 10.1002/chem.202103906] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/09/2022]
Abstract
Inspired by human vision, a diverse range of light-driven molecular switches and motors has been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc . The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.
Collapse
Affiliation(s)
- Hao Wang
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Hari Bisoyi
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Xinfang Zhang
- Kent State University, Advanced Materials and Liquid Crystal Institue, UNITED STATES
| | - Fathy Hassan
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Quan Li
- Kent State University, Liquid Crystal Institute and Chemical Physics Interdiscinplary Program, 3273 Crown Pointe Drive, 44224, Stow, UNITED STATES
| |
Collapse
|
9
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
10
|
Vicenti I, Martina MG, Boccuto A, De Angelis M, Giavarini G, Dragoni F, Marchi S, Trombetta CM, Crespan E, Maga G, Eydoux C, Decroly E, Montomoli E, Nencioni L, Zazzi M, Radi M. System-oriented optimization of multi-target 2,6-diaminopurine derivatives: Easily accessible broad-spectrum antivirals active against flaviviruses, influenza virus and SARS-CoV-2. Eur J Med Chem 2021; 224:113683. [PMID: 34273661 PMCID: PMC8255191 DOI: 10.1016/j.ejmech.2021.113683] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022]
Abstract
The worldwide circulation of different viruses coupled with the increased frequency and diversity of new outbreaks, strongly highlight the need for new antiviral drugs to quickly react against potential pandemic pathogens. Broad-spectrum antiviral agents (BSAAs) represent the ideal option for a prompt response against multiple viruses, new and re-emerging. Starting from previously identified anti-flavivirus hits, we report herein the identification of promising BSAAs by submitting the multi-target 2,6-diaminopurine chemotype to a system-oriented optimization based on phenotypic screening on cell cultures infected with different viruses. Among the synthesized compounds, 6i showed low micromolar potency against Dengue, Zika, West Nile and Influenza A viruses (IC50 = 0.5-5.3 μM) with high selectivity index. Interestingly, 6i also inhibited SARS-CoV-2 replication in different cell lines, with higher potency on Calu-3 cells that better mimic the SARS-CoV-2 infection in vivo (IC50 = 0.5 μM, SI = 240). The multi-target effect of 6i on flavivirus replication was also analyzed in whole cell studies (in vitro selection and immunofluorescence) and against isolated host/viral targets.
Collapse
Affiliation(s)
- Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maria Grazia Martina
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124, Parma, Italy
| | - Adele Boccuto
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giorgia Giavarini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124, Parma, Italy
| | - Filippo Dragoni
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Emmanuele Crespan
- Istituto di Genetica Molecolare, IGM-CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Giovanni Maga
- Istituto di Genetica Molecolare, IGM-CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Cecilia Eydoux
- AFMB, CNRS, Université Aix-Marseille, UMR 7257, Marseille, France
| | - Etienne Decroly
- AFMB, CNRS, Université Aix-Marseille, UMR 7257, Marseille, France
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; VisMederi s.r.l, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124, Parma, Italy.
| |
Collapse
|
11
|
Sengupta S, Das P. Application of diazonium chemistry in purine modifications: A focused review. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saumitra Sengupta
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Parthasarathi Das
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| |
Collapse
|
12
|
Chen H, Chen W, Lin Y, Xie Y, Liu SH, Yin J. Visible and near-infrared light activated azo dyes. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Ryazantsev MN, Strashkov DM, Nikolaev DM, Shtyrov AA, Panov MS. Photopharmacological compounds based on azobenzenes and azoheteroarenes: principles of molecular design, molecular modelling, and synthesis. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
He Y, Shangguan Z, Zhang Z, Xie M, Yu C, Li T. Azobispyrazole Family as Photoswitches Combining (Near‐) Quantitative Bidirectional Isomerization and Widely Tunable Thermal Half‐Lives from Hours to Years**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yixin He
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhichun Shangguan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhao‐Yang Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| | - Mingchen Xie
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| | - Tao Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
15
|
He Y, Shangguan Z, Zhang ZY, Xie M, Yu C, Li T. Azobispyrazole Family as Photoswitches Combining (Near-) Quantitative Bidirectional Isomerization and Widely Tunable Thermal Half-Lives from Hours to Years*. Angew Chem Int Ed Engl 2021; 60:16539-16546. [PMID: 33852166 DOI: 10.1002/anie.202103705] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Indexed: 11/08/2022]
Abstract
Azobenzenes are classical molecular photoswitches that have been widely used. In recent endeavors of molecular design, replacing one or both phenyl rings with heteroaromatic rings has emerged as a strategy to expand molecular diversity and access improved photoswitching properties. Many mono-heteroaryl azo molecules with unique structures and/or properties have been developed, but the potential of bis-heteroaryl architectures is far from fully exploited. We report a family of azobispyrazoles, which combine (near-)quantitative bidirectional photoconversion and widely tunable Z-isomer thermal half-lives from hours to years. The two five-membered rings remarkably weaken the intramolecular steric hindrance, providing new possibilities for engineering the geometric and electronic structure of azo photoswitches. Azobispyrazoles generally exhibit twisted Z-isomers that facilitate complete Z→E photoisomerization, and their thermal stability can be broadly adjusted regardless of the twisted shape, overcoming the conflict between photoconversion (favored by the twisted shape) and Z-isomer stability (favored by the orthogonal shape) encountered by mono-heteroaryl azo switches.
Collapse
Affiliation(s)
- Yixin He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhichun Shangguan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingchen Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
16
|
Kolarski D, Sugiyama A, Rodat T, Schulte A, Peifer C, Itami K, Hirota T, Feringa BL, Szymanski W. Reductive stability evaluation of 6-azopurine photoswitches for the regulation of CKIα activity and circadian rhythms. Org Biomol Chem 2021; 19:2312-2321. [DOI: 10.1039/d1ob00014d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
6-Azopurines were evaluated for their reductive stability, and the ability to modulate CKIα activity and cellular circadian rhythms, revealing key challenges for long-term activity modulation utilizing chronophotopharmacology.
Collapse
Affiliation(s)
- Dušan Kolarski
- Stratingh Institute for Chemistry
- University of Groningen
- Groningen
- The Netherlands
| | - Akiko Sugiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM)
- Nagoya University
- Nagoya 464-8601
- Japan
| | - Theo Rodat
- Department of Pharmaceutical and Medicinal Chemistry
- Christian-Albrechts-University of Kiel
- 24118 Kiel
- Germany
| | - Albert Schulte
- Stratingh Institute for Chemistry
- University of Groningen
- Groningen
- The Netherlands
| | - Christian Peifer
- Department of Pharmaceutical and Medicinal Chemistry
- Christian-Albrechts-University of Kiel
- 24118 Kiel
- Germany
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM)
- Nagoya University
- Nagoya 464-8601
- Japan
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules (WPI-ITbM)
- Nagoya University
- Nagoya 464-8601
- Japan
| | - Ben L. Feringa
- Stratingh Institute for Chemistry
- University of Groningen
- Groningen
- The Netherlands
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry
- University of Groningen
- Groningen
- The Netherlands
- Medical Imaging Center
| |
Collapse
|
17
|
Zhilin ES, Polkovnichenko MS, Ananyev IV, Fershtat LL, Makhova NN. Novel Arylazo‐1,2,5‐oxadiazole Photoswitches: Synthesis, Photoisomerization and Nitric Oxide Releasing Properties. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Egor S. Zhilin
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moskva 119991 Leninsky Prospect, 47 Moscow Russia
| | - Michael S. Polkovnichenko
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moskva 119991 Leninsky Prospect, 47 Moscow Russia
- Department of Chemistry M. V. Lomonosov Moscow State University Moskva 119991 Leninskie Gory 1–3 Moscow Russia
| | - Ivan V. Ananyev
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Moskva 119991 Vavilova str., 28 Moscow Russia
| | - Leonid L. Fershtat
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moskva 119991 Leninsky Prospect, 47 Moscow Russia
| | - Nina N. Makhova
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moskva 119991 Leninsky Prospect, 47 Moscow Russia
| |
Collapse
|
18
|
Hammill ML, Islam G, Desaulniers JP. Synthesis, Derivatization and Photochemical Control of ortho-Functionalized Tetrachlorinated Azobenzene-Modified siRNAs. Chembiochem 2020; 21:2367-2372. [PMID: 32232952 DOI: 10.1002/cbic.202000188] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 12/12/2022]
Abstract
We report the chemical synthesis and derivatization of an ortho-functionalized tetrachlorinated azobenzene diol. A 4',4-dimethoxytrityl (DMT) phosphoramidite was synthesized for its site-specific incorporation within the sense strand of an siRNA duplex to form ortho-functionalized tetrachlorinated azobenzene-containing siRNAs (Cl-siRNAzos). Compared to a non-halogenated azobenzene, ortho-functionalized tetrachlorinated azobenzenes are capable of red-shifting the π→π* transition from the ultraviolet (UV) portion of the electromagnetic spectrum into the visible range. Within this visible range, the azobenzene molecule can be reliably converted from trans to cis with red light (660 nm), and converted back to trans with violet wavelength light (410 nm) and/or thermal relaxation. We also report the gene-silencing ability of these Cl-siRNAzos in cell culture as well as their reversible control with visible light for up to 24 hours.
Collapse
Affiliation(s)
- Matthew L Hammill
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Golam Islam
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| |
Collapse
|
19
|
Kennedy ADW, Sandler I, Andréasson J, Ho J, Beves JE. Visible‐Light Photoswitching by Azobenzazoles. Chemistry 2020; 26:1103-1110. [DOI: 10.1002/chem.201904309] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Indexed: 11/09/2022]
Affiliation(s)
| | - Isolde Sandler
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 412 96 Göteborg Sweden
| | - Junming Ho
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | | |
Collapse
|
20
|
Balgotra S, Verma PK, Vishwakarma RA, Sawant SD. Catalytic advances in direct functionalizations using arylated hydrazines as the building blocks. CATALYSIS REVIEWS 2019. [DOI: 10.1080/01614940.2019.1702191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shilpi Balgotra
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Praveen Kumar Verma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ram A. Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sanghapal D. Sawant
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
21
|
Pithan PM, Kuhlmann C, Engelhard C, Ihmels H. Synthesis of 5-Alkyl- and 5-Phenylamino-Substituted Azothiazole Dyes with Solvatochromic and DNA-Binding Properties. Chemistry 2019; 25:16088-16098. [PMID: 31523866 PMCID: PMC6973281 DOI: 10.1002/chem.201903657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/09/2019] [Indexed: 01/24/2023]
Abstract
A series of new 5-mono- and 5,5'-bisamino-substituted azothiazole derivatives was synthesized from the readily available diethyl azothiazole-4,4'-dicarboxylate. This reaction most likely comprises an initial Michael-type addition by the respective primary alkyl and aromatic amines at the carbon atom C5 of the substrate. Subsequently, the resulting intermediates are readily oxidized by molecular oxygen to afford the amino-substituted azothiazole derivatives. The latter exhibit remarkably red-shifted absorption bands (λabs =507-661 nm) with high molar extinction coefficients and show a strong positive solvatochromism. As revealed by spectrometric titrations and circular and linear dichroism studies, the water-soluble, bis-(dimethylaminopropylamino)-substituted azo dye associates with duplex DNA by formation of aggregates along the phosphate backbone at high ligand-DNA ratios (LDR) and by intercalation at low LDR, which also leads to a significant increase of the otherwise low emission intensity at 671 nm.
Collapse
Affiliation(s)
- Phil M. Pithan
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and EngineeringUniversity of SiegenAdolf-Reichwein-Str. 257068SiegenGermany
| | - Christopher Kuhlmann
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and EngineeringUniversity of SiegenAdolf-Reichwein-Str. 257068SiegenGermany
| | - Carsten Engelhard
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and EngineeringUniversity of SiegenAdolf-Reichwein-Str. 257068SiegenGermany
| | - Heiko Ihmels
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and EngineeringUniversity of SiegenAdolf-Reichwein-Str. 257068SiegenGermany
| |
Collapse
|
22
|
Kolarski D, Sugiyama A, Breton G, Rakers C, Ono D, Schulte A, Tama F, Itami K, Szymanski W, Hirota T, Feringa BL. Controlling the Circadian Clock with High Temporal Resolution through Photodosing. J Am Chem Soc 2019; 141:15784-15791. [PMID: 31509406 PMCID: PMC6787957 DOI: 10.1021/jacs.9b05445] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Circadian clocks,
biological timekeepers that are present in almost
every cell of our body, are complex systems whose disruption is connected
to various diseases. Controlling cellular clock function with high
temporal resolution in an inducible manner would yield an innovative
approach for the circadian rhythm regulation. In the present study,
we present structure-guided incorporation of photoremovable protecting
groups into a circadian clock modifier, longdaysin, which inhibits
casein kinase I (CKI). Using photodeprotection by UV or visible light
(400 nm) as the external stimulus, we have achieved quantitative and
light-inducible control over the CKI activity accompanied by an accurate
regulation of circadian period in cultured human cells and mouse tissues,
as well as in living zebrafish. This research paves the way for the
application of photodosing in achieving precise temporal control over
the biological timing and opens the door for chronophotopharmacology
to deeper understand the circadian clock system.
Collapse
Affiliation(s)
- Dušan Kolarski
- Centre for Systems Chemistry , Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| | - Akiko Sugiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8601 , Japan
| | - Ghislain Breton
- Department of Integrative Biology and Pharmacology, McGovern Medical School , University of Texas Health Science Center at Houston , 6431 Fannin St, MSB 4.216 , 77030 Houston , United States
| | - Christin Rakers
- Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida-shimoadachi-cho, Sakyo-ku , Kyoto 606-8501 , Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8601 , Japan
| | - Albert Schulte
- Centre for Systems Chemistry , Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| | - Florence Tama
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8601 , Japan.,Department of Physics, Graduate School of Science , Nagoya University , Nagoya 464-8601 , Japan.,Computational Structural Biology Unit , RIKEN-Center for Computational Science , Kobe , Hyogo 650-0047 , Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8601 , Japan
| | - Wiktor Szymanski
- Centre for Systems Chemistry , Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands.,University Medical Center Groningen, Department of Radiology, Medical Imaging Center , University of Groningen , Hanzeplein 1 , 9713 GZ Groningen , The Netherlands
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8601 , Japan
| | - Ben L Feringa
- Centre for Systems Chemistry , Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| |
Collapse
|
23
|
Kumar P, Srivastava A, Sah C, Devi S, Venkataramani S. Arylazo‐3,5‐dimethylisoxazoles: Azoheteroarene Photoswitches Exhibiting High
Z
‐Isomer Stability, Solid‐State Photochromism, and Reversible Light‐Induced Phase Transition. Chemistry 2019; 25:11924-11932. [DOI: 10.1002/chem.201902150] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/01/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Pravesh Kumar
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| | - Anjali Srivastava
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| | - Chitranjan Sah
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| | - Sudha Devi
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| | - Sugumar Venkataramani
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| |
Collapse
|
24
|
Rustler K, Maleeva G, Bregestovski P, König B. Azologization of serotonin 5-HT 3 receptor antagonists. Beilstein J Org Chem 2019; 15:780-788. [PMID: 30992726 PMCID: PMC6444460 DOI: 10.3762/bjoc.15.74] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/14/2019] [Indexed: 01/05/2023] Open
Abstract
The serotonin 5-hydroxytryptamine 3 receptor (5-HT3R) plays a unique role within the seven classes of the serotonin receptor family, as it represents the only ionotropic receptor, while the other six members are G protein-coupled receptors (GPCRs). The 5-HT3 receptor is related to chemo-/radiotherapy provoked emesis and dysfunction leads to neurodevelopmental disorders and psychopathologies. Since the development of the first serotonin receptor antagonist in the early 1990s, the range of highly selective and potent drugs expanded based on various chemical structures. Nevertheless, on-off-targeting of a pharmacophore's activity with high spatiotemporal resolution as provided by photopharmacology remains an unsolved challenge bearing additionally the opportunity for detailed receptor examination. In the presented work, we summarize the synthesis, photochromic properties and in vitro characterization of azobenzene-based photochromic derivatives of published 5-HT3R antagonists. Despite reported proof of principle of direct azologization, only one of the investigated derivatives showed antagonistic activity lacking isomer specificity.
Collapse
Affiliation(s)
- Karin Rustler
- Institute of Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Galyna Maleeva
- Aix-Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
| | - Piotr Bregestovski
- Aix-Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
- Department of Normal Physiology, Kazan State Medical University, Kazan, Russia
- Institute of Neurosciences, Kazan State Medical University, Kazan, Russia
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
25
|
Simeth NA, Bellisario A, Crespi S, Fagnoni M, König B. Substituent Effects on 3-Arylazoindole Photoswitches. J Org Chem 2019; 84:6565-6575. [DOI: 10.1021/acs.joc.8b02973] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nadja A. Simeth
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| | - Alfredo Bellisario
- Department of Physics, Università di Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Stefano Crespi
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
- PhotoGreen Lab, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
26
|
Crespi S, Simeth NA, Bellisario A, Fagnoni M, König B. Unraveling the Thermal Isomerization Mechanisms of Heteroaryl Azoswitches: Phenylazoindoles as Case Study. J Phys Chem A 2019; 123:1814-1823. [PMID: 30741541 DOI: 10.1021/acs.jpca.8b11734] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The research on heteroaromatic azoswitches has been blossoming in recent years due to their astonishingly broad range of properties. Minimal chemical modifications can drastically change the demeanor of these switches, regarding photophysical and (photo)chemical properties, promoting them as ideal scaffolds for a vast variety of applications based on bistable light-addressable systems. However, most of the characteristics exhibited by heteroaryl azoswitches were found empirically, and only a few works focus on their rationalization. Herein we report on a mechanistic study employing phenylazoindoles as a model reference, combining spectroscopic experiments with comprehensive computational analysis. This approach will elucidate the intrinsic correlations between the molecular structure of the switch and its thermal behavior, allowing a more rational design transferable to various heteroaryl azoswitches.
Collapse
Affiliation(s)
- Stefano Crespi
- Institut für Organische Chemie , Universität Regensburg , Universitätsstrasse 31 , 93040 Regensburg , Germany
| | - Nadja A Simeth
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands
| | - Alfredo Bellisario
- Department of Physics , University of Pavia , Via Bassi 6 , 27100 Pavia , Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry , University of Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Burkhard König
- Institut für Organische Chemie , Universität Regensburg , Universitätsstrasse 31 , 93040 Regensburg , Germany
| |
Collapse
|
27
|
|
28
|
Xu Y, Gao C, Andréasson J, Grøtli M. Synthesis and Photophysical Characterization of Azoheteroarenes. Org Lett 2018; 20:4875-4879. [PMID: 30079733 DOI: 10.1021/acs.orglett.8b02014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A set of azoheteroarenes have been synthesized with Buchwald-Hartwig coupling and microwave-assisted O2 oxidation as the key steps. Several compounds exhibit good to excellent photoswitching properties (high switching efficiency, good fatigue resistance, and thermal stability of Z-isomer) relevant for photocontrolled applications, which pave the way for use in photopharmacology.
Collapse
Affiliation(s)
- Yongjin Xu
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-412 96 Gothenburg , Sweden
| | - Chunxia Gao
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-412 96 Gothenburg , Sweden
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Physical Chemistry , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-412 96 Gothenburg , Sweden
| |
Collapse
|
29
|
Zheng L, Lin L, Qu K, Adhikary A, Sevilla MD, Greenberg MM. Independent Photochemical Generation and Reactivity of Nitrogen-Centered Purine Nucleoside Radicals from Hydrazines. Org Lett 2017; 19:6444-6447. [PMID: 29125775 DOI: 10.1021/acs.orglett.7b03368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photochemical precursors that produce dA• and dG(N2-H)• are needed to investigate their reactivity. The synthesis of two 1,1-diphenylhydrazines (1, 2) and their use as photochemical sources of dA• and dG(N2-H)• is presented. Trapping studies indicate production of these radicals with good fidelity, and 1 was incorporated into an oligonucleotide via solid-phase synthesis. Cyclic voltammetric studies show that reduction potentials of 1 and 2 are lower than those of widely used "hole sinks", e.g., 8-oxodGuo and 7-deazadGuo, to investigate DNA-hole transfer processes. These molecules could be useful (a) as sources of dA• and dG(N2-H)• at specific sites in oligonucleotides and (b) as "hole sinks" for the study of DNA-hole transfer processes.
Collapse
Affiliation(s)
- Liwei Zheng
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Lu Lin
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Ke Qu
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Amitava Adhikary
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Michael D Sevilla
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|