1
|
Tseng HK, Lee TY, Chiang YC, Kuo WH, Tseng HW, Wang HK, Ni CK, Lin CC. Versatile Strategy for the Chemoenzymatic Synthesis of Branched Human Milk Oligosaccharides Containing the Lacto-N-Biose Motif. Angew Chem Int Ed Engl 2025; 64:e202419021. [PMID: 39589188 DOI: 10.1002/anie.202419021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 11/27/2024]
Abstract
Human milk oligosaccharides (HMOs) exhibit prebiotic, antimicrobial, and immunomodulatory properties and confer significant benefits to infants. Branched HMOs are constructed through diverse glycosidic linkages and prominently feature the lacto-N-biose (LNB, Gal-β1,3-GlcNAc) motif with fucose and/or sialic acid modifications, displaying structural complexity that surpasses that of N- and O-glycans. However, synthesizing comprehensive libraries of branched HMO is challenging due to this complexity. Although a few systematic synthetic strategies have emerged, many of them rely on labor-intensive chemical methodologies or exploit the substrate specificity of human N-acetylglucosaminyltransferase 2 (hGCNT2). In this study, we capitalized on the substrate promiscuities of hGCNT2 and bacterial glycosyltransferases (GTs) to construct a universal tetrasaccharide core in a highly efficient manner. This core was systematically and flexibly extended to generate diverse branched HMOs utilizing the promiscuity of bacterial GTs coupled with N-trifluoroacetyl glucosamine (GlcNTFA), which facilitated sugar chain elongation. The GlcNTFA residues were subsequently converted into various N-modified glucosamines through straightforward chemical manipulations to modulate the activities of additional GTs during glycan extension. These masked amino groups were ultimately reverted to N-acetyl groups, facilitating the synthesis of a broad range of asymmetric and multiantennary HMOs featuring LNB moieties, including many previously inaccessible structures.
Collapse
Affiliation(s)
- Hsin-Kai Tseng
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Ting-Yi Lee
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Yu-Ching Chiang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Wen-Hua Kuo
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Hsien-Wei Tseng
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Hung-Kai Wang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
2
|
Yao W, Ye XS. Donor Preactivation-Based Glycan Assembly: from Manual to Automated Synthesis. Acc Chem Res 2024; 57:1577-1594. [PMID: 38623919 DOI: 10.1021/acs.accounts.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Carbohydrates are called the third chain of life. Carbohydrates participate in many important biochemical functions in living species, and the biological information carried by them is several orders of magnitude larger than that of nucleic acids and proteins. However, due to the intrinsic complexity and heterogeneity of carbohydrate structures, furnishing pure and structurally well-defined glycans for functional studies is a formidable task, especially for homogeneous large-size glycans. To address this issue, we have developed a donor preactivation-based one-pot glycosylation strategy enabling multiple sequential glycosylations in a single reaction vessel.The donor preactivation-based one-pot glycosylation refers to the strategy in which the glycosyl donor is activated in the absence of a glycosyl acceptor to generate a reactive intermediate. Subsequently, the glycosyl acceptor with the same anomeric leaving group is added, leading to a glycosyl coupling reaction, which is then iterated to rapidly achieve the desired glycan in the same reactor. The advantages of this strategy include the following: (1) unique chemoselectivity is obtained after preactivation; (2) it is independent of the reactivity of glycosyl donors; (3) multiple-step glycosylations are enabled without the need for intermediate purification; (4) only stoichiometric building blocks are required without complex protecting group manipulations. Using this protocol, a range of glycans including tumor-associated carbohydrate antigens, various glycosaminoglycans, complex N-glycans, and diverse bacterial glycans have been synthesized manually. Gratifyingly, the synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units has been achieved, which created a precedent in the field of polysaccharide synthesis. Recently, the synthesis of a highly branched arabinogalactan from traditional Chinese medicine featuring 140 monosaccharide units has been also accomplished to evaluate its anti-pancreatic-cancer activity. In the spirit of green and sustainable chemistry, this strategy can also be applied to light-driven glycosylation reactions, where either UV or visible light can be used for the activation of glycosyl donors.Automated synthesis is an advanced approach to the construction of complex glycans. Based on the two preactivation modes (general promoter activation mode and light-induced activation mode), a universal and highly efficient automated solution-phase synthesizer was further developed to drive glycan assembly from manual to automated synthesis. Using this synthesizer, a library of oligosaccharides covering various glycoforms and glycosidic linkages was assembled rapidly, either in a general promoter-activation mode or in a light-induced-activation mode. The automated synthesis of a fully protected fondaparinux pentasaccharide was realized on a gram scale. Furthermore, the automated synthesis of large-size polysaccharides was performed, allowing the assembly of arabinans up to an astonishing 1080-mer using the automated multiplicative synthesis strategy, taking glycan synthesis to a new height far beyond the synthesis of nucleic acids (up to 200-mer) and proteins (up to 472-mer).
Collapse
Affiliation(s)
- Wenlong Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
3
|
Liu Y, Li B, Zheng X, Xiong D, Ye X. Cancer Vaccines Based on Fluorine-Modified KH-1 Elicit Robust Immune Response. Molecules 2023; 28:molecules28041934. [PMID: 36838925 PMCID: PMC9963332 DOI: 10.3390/molecules28041934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
KH-1 is a tumor-associated carbohydrate antigen (TACA), which serves as a valuable target of antitumor vaccines for cancer immunotherapies. However, most TACAs are thymus-independent antigens (TD-Ag), and they tend to induce immunological tolerance, leading to their low immunogenicity. To overcome these problems, some fluorinated derivatives of the KH-1 antigen were designed, synthesized, and conjugated to the carrier protein CRM197 to form glycoconjugates, which were used for immunological studies with Freund's adjuvant. The results showed that fluorine-modified N-acyl KH-1 conjugates can induce higher titers of antibodies, especially IgG, which can recognize KH-1-positive cancer cells and can eliminate cancer cells through complement-dependent cytotoxicity (CDC). The trifluoro-modified KH-1-TF-CRM197 showed great potential as an anticancer vaccine candidate.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China
| | - Bohan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China
| | - Xiujing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China
| | - Decai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China
- The NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, 27 Shanda Nanlu, Jinan 250100, China
- Correspondence: (D.X.); (X.Y.)
| | - Xinshan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China
- Correspondence: (D.X.); (X.Y.)
| |
Collapse
|
4
|
Li X, Liao C, Xu Y, Lu QH, Chen S, Su L, Zou Y, Shao F, Lu W, Zhang WD, Hu HG. Configuration-Specific Antibody for Bacterial Heptosylation: An Antiadhesion Therapeutic Strategy. J Am Chem Soc 2023; 145:322-333. [PMID: 36542493 DOI: 10.1021/jacs.2c09990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alternative antibacterial therapies refractory to existing mechanisms of antibiotic resistance are urgently needed. One such attractive therapy is to inhibit bacterial adhesion and colonization. Ser O-heptosylation (Ser O-Hep) on autotransporters of Gram-negative bacteria is a novel glycosylation and has been proven to be essential for bacterial colonization. Herein, we chemically synthesized glycopeptides containing this atypical glycan structure and an absolute C6 configuration through the assembly of Ser O-Hep building blocks. Using glycopeptides as haptens, we generated first-in-class poly- and monoclonal antibodies, termed Anti-SerHep1a and Anti-SerHep1b, that stereoselectively recognize Ser O-heptosylation (d/l-glycero) with high specificity in vitro and in vivo. Importantly, these antibodies effectively blocked diffusely adhering Escherichia coli 2787 adhesion to HeLa cells and in mice in a dose- and Ser O-Hep-dependent manner. Together, these antibodies represent not only useful tools for the discovery of unknown serine O-heptosylated proteins bearing various C6 chiral centers but also a novel class of antiadhesion therapeutic agents for the treatment of bacterial infection.
Collapse
Affiliation(s)
- Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.,School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Chongbing Liao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Yue Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qiu-He Lu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Si Chen
- School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Li Su
- School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yan Zou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Wei-Dong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hong-Gang Hu
- School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Xiong T, Xie R, Huang C, Lan X, Huang N, Yao H. Recent advances in the synthesis of thiosugars using glycal donors. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2027433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tao Xiong
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, P. R. China
| | - Rui Xie
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, P. R. China
| | - Cai Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, P. R. China
| | - Xin Lan
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, P. R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, P. R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, P. R. China
| |
Collapse
|
6
|
Xia H, Ye J, Cao H, Liu X, Zhang Y, Liu CC. Enzymatic modular assembly of hybrid Lewis antigens. Org Biomol Chem 2021; 19:8041-8048. [PMID: 34473187 DOI: 10.1039/d1ob01579f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enzymatic synthesis of hybrid Lewis antigens including KH-1 (Lewis y-Lewis x-Lactose, Ley-Lex-Lac), Lewis a-Lewis x-Lactose (Lea-Lex-Lac), and Lewis b-Lewis x-Lactose (Leb-Lex-Lac) has been achieved using a facile enzymatic modular assembly strategy. Starting from a readily available tetrasaccharide, 3 complex hybrid Lewis antigens were achieved in over 40% total yields in less than 5 linear steps of sequential enzymatic glycosylation using 6 enzyme modules. The regio-selective fucosylation was achieved by simply controlling the donor-acceptor ratio. This strategy provides an easy access to these biologically important complex hybrid Lewis antigens at preparative scales.
Collapse
Affiliation(s)
- Hui Xia
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China.
| | - Jinfeng Ye
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hongzhi Cao
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xianwei Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China.
| | - Yan Zhang
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
7
|
Liu M, Qin X, Ye XS. Glycan Assembly Strategy: From Concept to Application. CHEM REC 2021; 21:3256-3277. [PMID: 34498347 DOI: 10.1002/tcr.202100183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Glycans have been hot topics in recent years due to their exhibition of numerous biological activities. However, the heterogeneity of their natural source and the complexity of their chemical synthesis impede the progress in their biological research. Thus, the development of glycan assembly strategies to acquire plenty of structurally well-defined glycans is an important issue in carbohydrate chemistry. In this review, the latest advances in glycan assembly strategies from concepts to their applications in carbohydrate synthesis, including chemical and enzymatic/chemo-enzymatic approaches, as well as solution-phase and solid-phase/tag-assisted synthesis, are summarized. Furthermore, the automated glycan assembly techniques are also outlined.
Collapse
Affiliation(s)
- Mingli Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
8
|
Abstract
Few classes of natural products rival the structural audacity of oligosaccharides. Their complexity, however, has stood as an immense roadblock to translational research, as access to homogeneous material from nature is challenging. Thus, while carbohydrates are critical to the myriad functional and structural aspects of the biological sciences, their behavior is largely descriptive. This challenge presents an attractive opportunity for synthetic chemistry, particularly in the area of human milk science. First, there is an inordinate need for synthesizing homogeneous human milk oligosaccharides (HMOs). Superimposed on this goal is the mission of conducting syntheses at scale to enable animal studies. Herein, we present a personalized rumination of our involvement, and that of our colleagues, which has led to the synthesis and characterization of HMOs and mechanistic probes. Along the way, we highlight chemical, chemoenzymatic, and synthetic biology based approaches. We close with a discussion on emergent challenges and opportunities for synthesis, broadly defined, in human milk science.
Collapse
Affiliation(s)
- Lianyan L. Xu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
9
|
Cai L, Meng L, Zeng J, Wan Q. Sequential activation of thioglycosides enables one-pot glycosylation. Org Chem Front 2021. [DOI: 10.1039/d0qo01414a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review describes recent developments in relative reactivity value (RRV) controlled sequential glycosylation, pre-activation based iterative glycosylation, and sulfoxide activation initiated one-pot glycosylation.
Collapse
Affiliation(s)
- Lei Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| |
Collapse
|
10
|
Guo J, Jiang W, Li Q, Jaiswal M, Guo Z. Comparative immunological studies of tumor-associated Lewis X, Lewis Y, and KH-1 antigens. Carbohydr Res 2020; 492:107999. [PMID: 32272238 PMCID: PMC7261630 DOI: 10.1016/j.carres.2020.107999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 10/24/2022]
Abstract
Tumor-associated carbohydrate antigens Lewis X (Lex), Lewis Y (Ley), and KH-1 are useful targets for cancer immunotherapy. In this regard, an insight into the structure-immunogenicity relationships of these antigens is important but this has not been systematically investigated yet. In the current study, Lex, Ley, and KH-1 antigens with a lactose unit at the reducing end as a spacer were synthesized and coupled with keyhole limpet hemocyanin (KLH) protein. Immunological evaluations of the resultant conjugates revealed that they all could elicit robust immune responses whilst the Ley conjugate could provoke the highest titers of total and IgG antibodies. The binding assays of their antisera to each antigen and to cancer cells showed that each antiserum had extensive cross-reaction with all three antigens as protein conjugates and strong but somewhat antigen-selective binding towards MCF-7 cancer cell. Moreover, none of these antisera had obvious binding to SKMEL-28 cancer cell that does not express Lex, Ley and KH-1. The results of assays of these antisera to mediate complement-dependent cytotoxicity (CDC) to MCF-7 and SKMEL-28 cancer cells were very similar to the results of binding assays. Thus, it was concluded that all three antigens could form effective conjugate vaccines whereas the Ley conjugate induced the most robust immune responses and the antiserum of Lex had the highest binding and cytotoxicity to target cancer cells. In addition, as the antibodies induced by each antigen had extensive cross-reaction with other two antigens, either Lex or Ley or the two combined can be utilized to formulate effective conjugate vaccines for cancer immunotherapy. Another paradigm-shifting discovery of this study is that the presentation of Lex, Ley, and KH-1 antigens on cancer cell can be different from that in synthetic conjugates, which should be taken into consideration during the design and optimization of related cancer vaccines or immunotherapies.
Collapse
Affiliation(s)
- Jiatong Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, United States
| | - Wenjie Jiang
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, United States
| | - Qingjiang Li
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, United States
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, United States.
| |
Collapse
|
11
|
Li BH, Yao W, Yang H, Wu C, Xiong DC, Yin Y, Ye XS. Total synthesis of tumor-associated KH-1 antigen core nonasaccharideviaphoto-induced glycosylation. Org Chem Front 2020. [DOI: 10.1039/d0qo00314j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
KH-1 antigen core nonasaccharide was efficiently assembled by photo-induced glycosylation.
Collapse
Affiliation(s)
- Bo-Han Li
- Institute of Systems Biomedicine
- Department of Pathology
- Beijing Key Laboratory of Tumor Systems Biology
- School of Basic Medical Sciences
- Peking University Health Science Center
| | - Wenlong Yao
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Hong Yang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Congying Wu
- Institute of Systems Biomedicine
- Department of Pathology
- Beijing Key Laboratory of Tumor Systems Biology
- School of Basic Medical Sciences
- Peking University Health Science Center
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Yuxin Yin
- Institute of Systems Biomedicine
- Department of Pathology
- Beijing Key Laboratory of Tumor Systems Biology
- School of Basic Medical Sciences
- Peking University Health Science Center
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|
12
|
Huang HH, Fang JL, Wang HK, Sun CY, Tsai TW, Huang YT, Kuo CY, Wang YJ, Liao CC, Yu CC. Substrate Characterization of Bacteroides fragilis α1,3/4-Fucosyltransferase Enabling Access to Programmable One-Pot Enzymatic Synthesis of KH-1 Antigen. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hsin-Hui Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Jia-Lin Fang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Hung-Kai Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Chih-Yuan Sun
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Teng-Wei Tsai
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Yu-Ting Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Cheng-Yu Kuo
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Yi-Jyun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Chi-Chun Liao
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Ching-Ching Yu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| |
Collapse
|
13
|
Guberman M, Bräutigam M, Seeberger PH. Automated glycan assembly of Lewis type I and II oligosaccharide antigens. Chem Sci 2019; 10:5634-5640. [PMID: 31293748 PMCID: PMC6552968 DOI: 10.1039/c9sc00768g] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/27/2019] [Indexed: 12/20/2022] Open
Abstract
Human blood group related glycan antigens are fucosylated (neo-)lactoseries oligosaccharides that play crucial roles in pathogenic processes. Lewis type-II-chain antigens mark the surface of cancer cells, but are also mediators of bacterial infections. To investigate the biological roles of Lewis type glycans a host of synthetic approaches has been developed. Here, we illustrate how automated glycan assembly (AGA) using a set of six monosaccharide building blocks provides quick access to a series of more than ten defined Lewis type-I and type-II antigens, including Lex, Ley, Lea, Leb and KH-1. Glycans with up to three α-fucose branches were assembled following a strictly linear approach and obtained in excellent stereoselectivity and purity.
Collapse
Affiliation(s)
- Mónica Guberman
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany .
- Department of Chemistry and Biochemistry , Freie Universität Berlin , Arnimalle 22 , 14195 Berlin , Germany
| | - Maria Bräutigam
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany .
| | - Peter H Seeberger
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany .
- Department of Chemistry and Biochemistry , Freie Universität Berlin , Arnimalle 22 , 14195 Berlin , Germany
| |
Collapse
|
14
|
Carthy CM, Tacke M, Zhu X. N
-Trifluoromethylthiosaccharin/TMSOTf: A New Mild Promoter System for Thioglycoside Activation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Cian Mc Carthy
- Centre for Synthesis and Chemical Biology; UCD School of Chemistry; University College Dublin; Belfield Dublin 4 Ireland
| | - Matthias Tacke
- Centre for Synthesis and Chemical Biology; UCD School of Chemistry; University College Dublin; Belfield Dublin 4 Ireland
| | - Xiangming Zhu
- Centre for Synthesis and Chemical Biology; UCD School of Chemistry; University College Dublin; Belfield Dublin 4 Ireland
| |
Collapse
|
15
|
Wang Y, Wu Y, Xiong D, Ye X. Total Synthesis of a Hyperbranched
N
‐Linked Hexasaccharide Attached to ATCV‐1 Major Capsid Protein without Precedent. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yong‐Shi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking University Xue Yuan Road No. 38, Beijing 100191 China
| | - Yong Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking University Xue Yuan Road No. 38, Beijing 100191 China
| | - De‐Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking University Xue Yuan Road No. 38, Beijing 100191 China
- State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 200031 China
| | - Xin‐Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking University Xue Yuan Road No. 38, Beijing 100191 China
| |
Collapse
|
16
|
Zhang X, Liu H, Lin L, Yao W, Zhao J, Wu M, Li Z. Synthesis of Fucosylated Chondroitin Sulfate Nonasaccharide as a Novel Anticoagulant Targeting Intrinsic Factor Xase Complex. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Huiying Liu
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Wang Yao
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| |
Collapse
|
17
|
Zhang X, Liu H, Lin L, Yao W, Zhao J, Wu M, Li Z. Synthesis of Fucosylated Chondroitin Sulfate Nonasaccharide as a Novel Anticoagulant Targeting Intrinsic Factor Xase Complex. Angew Chem Int Ed Engl 2018; 57:12880-12885. [PMID: 30067300 DOI: 10.1002/anie.201807546] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Huiying Liu
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Wang Yao
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| |
Collapse
|