1
|
Zhang Z, Hu J, Ding H, Zhang L, Rao P. A convergent synthetic approach to the tetracyclic core framework of khayanolide-type limonoids. Beilstein J Org Chem 2025; 21:926-934. [PMID: 40438309 PMCID: PMC12117208 DOI: 10.3762/bjoc.21.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/25/2025] [Indexed: 06/01/2025] Open
Abstract
A convergent approach for the enantioselective construction of an advanced intermediate containing the [5,5,6,6]-tetracyclic core framework of the khayanolide-type limonoids was described. The strategy features an acylative kinetic resolution of the benzylic alcohol, a 1,2-Grignard addition and an AcOH-interrupted Nazarov cyclization.
Collapse
Affiliation(s)
- Zhiyang Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jialei Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Hangzhou DAC Biotechnology Co., Ltd 369 Qiaoxin Road, Qiantang District, Hangzhou 310018, Zhejiang, China
| | - Hanfeng Ding
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Peirong Rao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Chen L, Lv C, Meng Y, Yang Z, Xin W, Zhu Y, Wang X, Wang B, Ding X, Wang Z, Wei X, Zhang X, Fu X, Meng X, Zhang M, Huo M, Li Y, Yu H, Wei Y, Geng L. The Latest Progress in the Chemistry of Daphniphyllum Alkaloids. Molecules 2024; 29:5498. [PMID: 39683658 DOI: 10.3390/molecules29235498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Daphniphyllum alkaloids (DAs) are interesting molecules with rich molecular skeletons and diverse biological activities. Since their discovery, phytochemists have isolated, purified, and identified more than 350 DAs. Synthetic chemists, attracted by the structure and activity of DAs, have accomplished many elegant synthetic jobs. Herein, we summarize work on the isolation, structural identification, bioactivity testing, and synthesis of DAs from 2018 to 2023, with the aim of providing a reference for future studies.
Collapse
Affiliation(s)
- Lujuan Chen
- Belgorod Institute of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Chao Lv
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Yinping Meng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zhen Yang
- Belgorod Institute of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Wenbin Xin
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Yuxue Zhu
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuehan Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Baozhen Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuan Ding
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zhaoxia Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuyue Wei
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xinyue Zhang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuexue Fu
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xiangru Meng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Meimei Zhang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Manyu Huo
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Ying Li
- School of Life Sciences, Dezhou University, Dezhou 253023, China
| | - Hui Yu
- Health and Medicine College, Dezhou University, Dezhou 253023, China
| | - Yuxia Wei
- School of Life Sciences, Dezhou University, Dezhou 253023, China
| | - Longlong Geng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| |
Collapse
|
3
|
Zhang Y, Chen Y, Song M, Tan B, Jiang Y, Yan C, Jiang Y, Hu X, Zhang C, Chen W, Xu J. Total Syntheses of Calyciphylline A-Type Alkaloids (-)-10-Deoxydaphnipaxianine A, (+)-Daphlongamine E and (+)-Calyciphylline R via Late-Stage Divinyl Carbinol Rearrangements. J Am Chem Soc 2022; 144:16042-16051. [PMID: 36007885 DOI: 10.1021/jacs.2c05957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Among the famous Daphniphyllum alkaloids family, the calyciphylline A-type subfamily has triggered particular interest from the organic synthesis community in recent years. Here, we report divergent total syntheses of three calyciphylline A-type alkaloids, namely, (-)-10-deoxydaphnipaxianine A, (+)-daphlongamine E, and (+)-calyciphylline R. Our work highlights an efficient, divergent strategy via late-stage divinyl carbinol rearrangements, including an unprecedented oxidative Nazarov electrocyclization using an unfunctionalized tertiary divinyl carbinol and an unusual allylic alcohol rearrangement. A highly efficient "donor-acceptor" platinum catalyst was used for a critical nitrile hydration step. Moreover, the power of selective amide reductions has also been showcased by novel and classic tactics.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuye Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Manrong Song
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yujia Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chongyuan Yan
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuyang Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyue Hu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chengqian Zhang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenqing Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Komine K, Ninomiya R, Fukuda H, Ishihara J. A Stereoselective Synthesis of Fused Carbocycles with a cis-1,2-Diol Moiety by Desymmetrization: SmI 2-mediated Pinacol Coupling of meso-Cyclic 1,3-Diones. Chem Pharm Bull (Tokyo) 2021; 70:89-93. [PMID: 34732589 DOI: 10.1248/cpb.c21-00837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SmI2-mediated desymmetrization of a meso-cyclic 1,3-dione pinacol coupling is described. The reaction proceeds with high stereoselectivity to provide fused carbocyclic compounds with three contiguous stereogenic centers featuring an all-carbon quaternary center and a cis-1,2-diol moiety.
Collapse
Affiliation(s)
- Keita Komine
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Riki Ninomiya
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Hayato Fukuda
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Jun Ishihara
- Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
5
|
Wang X, Xie G, Zhao Y, Zheng K, Fang Y, Wang X. Facile pinacol coupling of aliphatic ketones by Brook rearrangement in the presence of samarium species. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Wang B, Xu B, Xun W, Guo Y, Zhang J, Qiu FG. A General Strategy for the Construction of Calyciphylline A‐Type Alkaloids: Divergent Total Syntheses of (−)‐Daphenylline and (−)‐Himalensine A. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bingyang Wang
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Bo Xu
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wen Xun
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yiming Guo
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jing Zhang
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fayang G. Qiu
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
7
|
Wang B, Xu B, Xun W, Guo Y, Zhang J, Qiu FG. A General Strategy for the Construction of Calyciphylline A-Type Alkaloids: Divergent Total Syntheses of (-)-Daphenylline and (-)-Himalensine A. Angew Chem Int Ed Engl 2021; 60:9439-9443. [PMID: 33569888 DOI: 10.1002/anie.202016212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/31/2021] [Indexed: 12/16/2022]
Abstract
An efficient general strategy for the synthesis of the Daphniphyllum alkaloids via the rapid construction of a common core intermediate has been established, based on which a divergent total synthesis of (-)-daphenylline and (-)-himalensine A has been accomplished in 16 and 19 steps, respectively. The present work features an enantioselective Mg(ClO4 )2 -catalyzed intramolecular amidocyclization to construct the aza-bridged core structure; a Cu-catalyzed intramolecular cyclopropanation and subsequent phosphine-catalyzed Cope-type rearrangement to furnish the himalensine A scaffold; and a one-pot Diels-Alder/aromatization method to assemble the aromatic skeleton of daphenylline.
Collapse
Affiliation(s)
- Bingyang Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Xun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fayang G Qiu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Abstract
The triterpenoids Daphniphyllum alkaloids share the unique fused hexacyclic ring framework are isolated from the genus Daphniphyllum. These natural products possess comprehensive biological activities and exhibit excellent potential medicinal appliment. This review covers the reported isolation studies and biological activities of Daphniphyllum alkaloids spanning the period from 1966 to the beginning of 2020, In the meantime, the total synthesis of Daphniphyllum alkaloids will be emphatically summarized for supplement over this review series.
Collapse
|
9
|
Pu LY, Yang F, Chen JQ, Xiong Y, Bin HY, Xie JH, Zhou QL. Enantioselective Total Syntheses of Pentacyclic Homoproaporphine Alkaloids. Org Lett 2020; 22:7526-7530. [PMID: 32937077 DOI: 10.1021/acs.orglett.0c02720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Herein we report the first enantioselective total syntheses of pentacyclic homoproaporphine alkaloids by means of a route, which includes a tandem retro-oxa-Michael addition and nucleophilic substitution to generate the oxa-benzobicyclco[3.3.1]nonane core structure, a Pictet-Spengler cyclization to construct the fused B and C rings, and sequential Baeyer-Villiger oxidation and pinacol-type cyclization to install the hydroxyl-lactol moiety of D ring. With this unified route, six pentacyclic homoproaporphine alkaloids have been synthesized enantioselectively.
Collapse
Affiliation(s)
- Liu-Yang Pu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fan Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ji-Qiang Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Xiong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huai-Yu Bin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Abstract
Daphnezomines A and B are structurally unusual Daphniphyllum alkaloids that contain a unique aza-adamantane core skeleton. Herein, a modular approach to these alkaloids is presented that exploits a diverse array of reaction strategies. Commencing from a chiral pool terpene-(S)-carvone, the azabicyclo[3.3.1]nonane backbone, which occurs widely in Daphniphyllum alkaloids, was easily accessed through a Sharpless allylic amination and a palladium-catalyzed oxidative cyclization. A protecting group enabled a stereoselective B-alkyl Suzuki-Miyaura coupling sequence and an Fe-mediated hydrogen atom transfer (HAT)-based radical cyclization were then applied to construct C6 and C8 stereocenters. A final epimer locking strategy enabled the assembly of the highly congested aza-adamantane core, thereby achieving the first total synthesis of (-)-daphnezomines A and B in 14 steps.
Collapse
Affiliation(s)
- Guangpeng Xu
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China.,National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Jinbao Wu
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Luyang Li
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Yunan Lu
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Chao Li
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Bartolo ND, Read JA, Valentín EM, Woerpel KA. Reactions of Allylmagnesium Reagents with Carbonyl Compounds and Compounds with C═N Double Bonds: Their Diastereoselectivities Generally Cannot Be Analyzed Using the Felkin-Anh and Chelation-Control Models. Chem Rev 2020; 120:1513-1619. [PMID: 31904936 PMCID: PMC7018623 DOI: 10.1021/acs.chemrev.9b00414] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This review describes the additions of allylmagnesium reagents to carbonyl compounds and to imines, focusing on the differences in reactivity between allylmagnesium halides and other Grignard reagents. In many cases, allylmagnesium reagents either react with low stereoselectivity when other Grignard reagents react with high selectivity, or allylmagnesium reagents react with the opposite stereoselectivity. This review collects hundreds of examples, discusses the origins of stereoselectivities or the lack of stereoselectivity, and evaluates why selectivity may not occur and when it will likely occur.
Collapse
Affiliation(s)
- Nicole D. Bartolo
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
| | - Jacquelyne A. Read
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
- Department of Chemistry, University of Utah, 315 South 1400
East, Salt Lake City, UT 84112, USA
| | - Elizabeth M. Valentín
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
- Department of Chemistry, Susquehanna University, 514
University Avenue, Selinsgrove, PA 17870, USA
| | - K. A. Woerpel
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
| |
Collapse
|
12
|
Du C, Fang J, Chen J, Liu Z, Li H, Wang X, Xie X, She X. Construction of the Tetracyclic Core of Calyciphylline B-Type Daphniphyllum Alkaloids. Org Lett 2019; 21:8718-8721. [PMID: 31613108 DOI: 10.1021/acs.orglett.9b03322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A double cyclization strategy was developed to construct the common tetracyclic core of calyciphylline B-type alkaloids. Key features of the synthesis included asymmetric Evans alkylation, ring-closing metathesis reaction, intermolecular amidation, intramolecular aza-Michael addition, and aldol condensation reactions. This strategy may be applied to the total syntheses of this type of natural product.
Collapse
Affiliation(s)
- Chenglong Du
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P.R. China
| | - Jing Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P.R. China
| | - Jinyan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P.R. China
| | - Zaimin Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P.R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P.R. China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P.R. China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P.R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P.R. China
| |
Collapse
|
13
|
Diaz-Muñoz G, Miranda IL, Sartori SK, de Rezende DC, Alves Nogueira Diaz M. Use of chiral auxiliaries in the asymmetric synthesis of biologically active compounds: A review. Chirality 2019; 31:776-812. [PMID: 31418934 DOI: 10.1002/chir.23103] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 01/16/2023]
Abstract
This review article describes the use of some of the most popular chiral auxiliaries in the asymmetric synthesis of biologically active compounds. Chiral auxiliaries derived from naturally occurring compounds, such as amino acids, carbohydrates, and terpenes, are considered essential tools for the construction of highly complex molecules. We highlight the auxiliaries of Evans, Corey, Yamada, Enders, Oppolzer, and Kunz, which led to remarkable progress in asymmetric synthesis in the last decades and continue to bring advances until the present day.
Collapse
Affiliation(s)
- Gaspar Diaz-Muñoz
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabel Luzia Miranda
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Suélen Karine Sartori
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | |
Collapse
|
14
|
Guo LD, Hu J, Zhang Y, Tu W, Zhang Y, Pu F, Xu J. Enantioselective Total Synthesis of (-)-Caldaphnidine O via a Radical Cyclization Cascade. J Am Chem Soc 2019; 141:13043-13048. [PMID: 31381311 DOI: 10.1021/jacs.9b07558] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The synthetically challenging, diverse chemical skeletons and promising biological profiles of the Daphniphyllum alkaloids have generated intense interest from the synthetic chemistry community. Herein, the first and enantioselective total synthesis of (-)-caldaphnidine O, a complex bukittinggine-type Daphniphyllum alkaloid, is described. The key transformations in this concise approach included an intramolecular aza-Michael addition, a ring expansion reaction sequence, a Sm(II)/Fe(III)-mediated Kagan-Molander coupling, and the rapid formation of the entire hexacyclic ring skeleton of the target molecule via a radical cyclization cascade reaction, which was inspired by an unexpected radical detosylation observed in our recent dapholdhamine B synthesis.
Collapse
Affiliation(s)
- Lian-Dong Guo
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Jingping Hu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Yan Zhang
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Wentong Tu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Yue Zhang
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Fan Pu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| |
Collapse
|
15
|
Guo LD, Hou J, Tu W, Zhang Y, Zhang Y, Chen L, Xu J. Total Synthesis of Dapholdhamine B and Dapholdhamine B Lactone. J Am Chem Soc 2019; 141:11713-11720. [DOI: 10.1021/jacs.9b05641] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lian-Dong Guo
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Jieping Hou
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Wentong Tu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Yan Zhang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Yue Zhang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Louxi Chen
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
16
|
Nakamura H, Kawakami M, Tsukano C, Takemoto Y. Concise Construction of the ACDE Ring System of Calyciphylline A Type Alkaloids by a [5+2] Cycloaddition. Chemistry 2019; 25:8701-8704. [PMID: 31063603 DOI: 10.1002/chem.201901690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Indexed: 12/27/2022]
Abstract
A concise route for construction of the ACDE ring skeleton in calyciphylline A type alkaloids was developed using an intramolecular [5+2] cycloaddition reaction of an oxidopyrylium species bearing a tetrasubstituted olefin. Key to the success of this reaction was the combination of acid and base, which accelerated the construction of this skeleton containing a spiro ring and vicinal quaternary carbon centers. The resultant tricyclic ADE ring compound was converted to an ACDE ring model through C-H oxidation and an aza-Wittig reaction.
Collapse
Affiliation(s)
- Hugh Nakamura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Manami Kawakami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Chihiro Tsukano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
17
|
Chen Y, Hu J, Guo LD, Tian P, Xu T, Xu J. Synthesis of the Core Structure of Daphnimacropodines. Org Lett 2019; 21:4309-4312. [PMID: 31141376 DOI: 10.1021/acs.orglett.9b01486] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Daphniphyllum alkaloids daphnimacropodines A-C possess a highly congested ring system and share a common tetracyclic ring skeleton. To access the challenging chemical structure of daphnimacropodines, a divergent synthetic approach toward their total synthesis is described. A stereoselective synthesis of the core structure of daphnimacropodines has been achieved from a simple diketone building block. Our approach features an intramolecular carbamate aza-Michael addition and a hydropyrrole synthesis via a Au-catalyzed alkyne hydration followed by an aldol condensation, whereas all the other attempts failed.
Collapse
Affiliation(s)
- Yuye Chen
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Taipa , Macau 999078 , China
| | - Jingping Hu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China.,School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150006 , China
| | - Lian-Dong Guo
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Peilin Tian
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Tianyue Xu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| |
Collapse
|
18
|
Chen Y, Hu J, Guo L, Zhong W, Ning C, Xu J. A Concise Total Synthesis of (−)‐Himalensine A. Angew Chem Int Ed Engl 2019; 58:7390-7394. [DOI: 10.1002/anie.201902908] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yuye Chen
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of Macau China
| | - Jingping Hu
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin Heilongjiang China
| | - Lian‐Dong Guo
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
| | - Weihe Zhong
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
| | - Chengqing Ning
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
- SUSTech Academy for Advanced Interdisciplinary Studies Shenzhen Guangdong China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
| |
Collapse
|
19
|
Zhong J, Chen K, Qiu Y, He H, Gao S. A Unified Strategy To Construct the Tetracyclic Ring of Calyciphylline A Alkaloids: Total Synthesis of Himalensine A. Org Lett 2019; 21:3741-3745. [DOI: 10.1021/acs.orglett.9b01184] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiaxin Zhong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Kuanwei Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yuanyou Qiu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
20
|
Chen Y, Hu J, Guo L, Zhong W, Ning C, Xu J. A Concise Total Synthesis of (−)‐Himalensine A. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yuye Chen
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of Macau China
| | - Jingping Hu
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin Heilongjiang China
| | - Lian‐Dong Guo
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
| | - Weihe Zhong
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
| | - Chengqing Ning
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
- SUSTech Academy for Advanced Interdisciplinary Studies Shenzhen Guangdong China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
| |
Collapse
|
21
|
Deng M, Yao Y, Li X, Li N, Zhang X, Liang G. Rapid Construction of the ABCE Tetracyclic Tertiary Amine Skeleton in Daphenylline Enabled by an Amine–Borane Complexation Strategy. Org Lett 2019; 21:3290-3294. [DOI: 10.1021/acs.orglett.9b01021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Meng Deng
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanmin Yao
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaohu Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Nan Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao Zhang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guangxin Liang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Sasano Y, Sato H, Tadokoro S, Kozawa M, Iwabuchi Y. Safe and Scalable Aerobic Oxidation by 2-Azaadamantan-2-ol (AZADOL)/NOx Catalysis: Large-Scale Preparation of Shi’s Catalyst. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yusuke Sasano
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hikaru Sato
- Chemical Research Laboratory, Nissan Chemical Corporation, 2-10-1 Tsuboi-nishi, Funabashi, Chiba 274-8507, Japan
| | - Shinsuke Tadokoro
- Chemical Research Laboratory, Nissan Chemical Corporation, 2-10-1 Tsuboi-nishi, Funabashi, Chiba 274-8507, Japan
| | - Masami Kozawa
- Chemical Research Laboratory, Nissan Chemical Corporation, 2-10-1 Tsuboi-nishi, Funabashi, Chiba 274-8507, Japan
| | - Yoshiharu Iwabuchi
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
23
|
Chu MM, Qi SS, Ju WZ, Wang YF, Chen XY, Xu DQ, Xu ZY. Asymmetric organocatalytic conjugated addition of pyrazolin-5-ones to ortho-quinomethanes: construction of vicinal tertiary and all-carbon quaternary stereocenters. Org Chem Front 2019. [DOI: 10.1039/c9qo00011a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An organocatalytic conjugated addition of pyrazolin-5-ones to ortho-quinomethanes was developed to construct the vicinal tertiary and all-carbon quaternary stereocenters.
Collapse
Affiliation(s)
- Ming-Ming Chu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Suo-Suo Qi
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Wan-Zhen Ju
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Yi-Feng Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Xue-Yang Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Dan-Qian Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Zhen-Yuan Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| |
Collapse
|
24
|
Zhong J, He H, Gao S. Exploration of 1,3-dipolar cycloaddition reactions to construct the core skeleton of Calyciphylline A-type alkaloids. Org Chem Front 2019. [DOI: 10.1039/c9qo01111k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitrone induced 1,3-dipolar [3 + 2] cycloadditions were studied to construct the core structure of Calyciphylline A-type Daphniphyllum alkaloids.
Collapse
Affiliation(s)
- Jiaxin Zhong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062
- China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| |
Collapse
|