1
|
Zhang W, Yang H, Zhang X, Wang Z, Luan S. Fluorinated poly(aryl ether)/polypropylene composite patch for prevention of abdominal adhesions after hernia repairs. Biomater Sci 2025; 13:2134-2141. [PMID: 40084999 DOI: 10.1039/d4bm01704h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Hernia typically does not heal spontaneously. Large-pore patches, most notably polypropylene patches (PP patches), are the gold standard in hernia repair surgery. However, a single patch is insufficient for both anti-adhesion and tissue fusion, leading to complications such as organ adhesions. In this study, a chemically stable and biocompatible modified fluorinated poly(aryl ether) (FPAE-F) was prepared by grafting perfluoroalkyl groups onto a fluorinated poly(aryl ether) via nucleophilic aromatic substitution. A porous FPAE-F fiber film (eFPAE-F) was fabricated by electrospinning and combined with a PP patch to produce a modified fluorinated poly(aryl ether)/polypropylene (FPAE-F/PP) composite patch. The eFPAE-F layer of the composite patch, which faces the abdominal viscera, exhibits a water contact angle of 151.3 ± 1.2°. This superhydrophobic surface prevents protein adhesion, thereby inhibiting rapid fibroblast proliferation. The small pore size (3.22 ± 1.25 μm) of the eFPAE-F layer effectively impedes fibroblast infiltration while permitting the transport and metabolism of nutrients. In vivo experiments have demonstrated that the composite patch is a viable anti-adhesion material, resulting in no adhesions and low inflammation levels after 2 weeks. Due to its outstanding anti-adhesion properties, eFPAE-F/PP is expected to be applied in the field of hernia repair.
Collapse
Affiliation(s)
- Wenqing Zhang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Huawei Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Zhaoyang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Shifang Luan
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
2
|
Sethi V, Verma C, Gupta A, Mukhopadhyay S, Gupta B. Infection-Resistant Polypropylene Hernia Mesh: Vision & Innovations. ACS APPLIED BIO MATERIALS 2025; 8:1797-1819. [PMID: 39943674 DOI: 10.1021/acsabm.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
The surgical repair of hernias, a prevalent condition affecting millions worldwide, has traditionally relied on polypropylene (PP) mesh due to its favorable mechanical properties and biocompatibility. However, postoperative infections remain a significant complication, underscoring the need for the development of infection-resistant hernia meshes. This study provides a comprehensive analysis of current advancements and innovative strategies aimed at enhancing the infection resistance of PP mesh. It presents an overview of various research efforts focused on the integration of antimicrobial agents, surface modifications, and the development of bioactive coatings to prevent bacterial colonization and biofilm formation. Additionally, the synergistic effects of novel material designs and the role of nanotechnology in optimizing the anti-infective properties of PP mesh are explored. Recent clinical outcomes and in vitro studies are critically examined, highlighting challenges and potential future directions in the development of next-generation hernia meshes. Emphasis is placed on the importance of interdisciplinary approaches in advancing surgical materials with the ultimate goal of improving patient outcomes in hernia repair.
Collapse
Affiliation(s)
- Vipula Sethi
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chetna Verma
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Amlan Gupta
- Department of Histopathology and Transfusion Medicine, Jay Prabha Medanta Hospital, Patna 800020, Bihar, India
| | - Samrat Mukhopadhyay
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Bhuvanesh Gupta
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
3
|
Manikion K, Chrysanthou C, Voniatis C. The Unfulfilled Potential of Synthetic and Biological Hydrogel Membranes in the Treatment of Abdominal Hernias. Gels 2024; 10:754. [PMID: 39727512 DOI: 10.3390/gels10120754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024] Open
Abstract
Hydrogel membranes can offer a cutting-edge solution for abdominal hernia treatment. By combining favorable mechanical parameters, tissue integration, and the potential for targeted drug delivery, hydrogels are a promising alternative therapeutic option. The current review examines the application of hydrogel materials composed of synthetic and biological polymers, such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), gelatine, and silk fibroin, in the context of hernia repair. Overall, this review highlights the current issues and prospects of hydrogel membranes as viable alternatives to the conventional hernia meshes. The emphasis is placed on the applicability of these hydrogels as components of bilayer systems and standalone materials. According to our research, hydrogel membranes exhibit several advantageous features relevant to hernia repair, such as a controlled inflammatory reaction, tissue integration, anti-adhesive-, and even thermoresponsive properties. Nevertheless, despite significant advancements in material science, the potential of hydrogel membranes seems neglected. Bilayer constructs have not transitioned to clinical trials, whereas standalone membranes seem unreliable due to the lack of comprehensive mechanical characterization and long-term in vivo experiments.
Collapse
Affiliation(s)
- Kenigen Manikion
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Street 37-47, H-1094 Budapest, Hungary
| | - Christodoulos Chrysanthou
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Street 37-47, H-1094 Budapest, Hungary
| | - Constantinos Voniatis
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Street 37-47, H-1094 Budapest, Hungary
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Üllői Street 78, H-1082 Budapest, Hungary
| |
Collapse
|
4
|
Huang H, Tang F, Gan W, Li R, Hou Z, Zhou T, Ma N. GelMA/tannic acid hydrogel decorated polypropylene mesh facilitating regeneration of abdominal wall defects. Biomater Sci 2024. [PMID: 39526500 DOI: 10.1039/d4bm01066c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Polypropylene (PP) mesh is a widely used prosthetic material in hernia repair due to its excellent mechanical properties and appropriate biocompatibility. However, its application is limited due to severe adhesion between the mesh and the abdominal viscera, leading to complications such as chronic pain, intestinal obstruction, and hernia recurrence. Currently, building anti-adhesive PP mesh remains a formidable challenge. In this work, a novel anti-adhesive PP mesh (PPM/GelMA/TA) was designed with a simple and efficient in situ gel of GelMA solution on the surface of PP mesh and further crosslinking of tannic acid (TA). It was demonstrated that PPM/GelMA/TA has good biocompatibility and excellent antioxidant property and effectively activates the polarization of macrophages toward the M2 phenotype in vitro. In addition, PPM/GelMA/TA could inhibit the growth of bacteria, which is of great significance for preventing postoperative infections. Furthermore, in the repair of full-thickness abdominal wall defects in rats, PPM/GelMA/TA reduced inflammation, promoted macrophage M2 polarization, and collagen deposition and angiogenesis so that does not cause any abdominal adhesion compared with PP mesh. As a result, our PPM/GelMA/TA shows an attractive prospect in the treatment of abdominal wall defect without adhesions.
Collapse
Affiliation(s)
- Haonan Huang
- Department of General Surgery (Hernia and Abdominal Wall Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
| | - Fuxin Tang
- Department of General Surgery (Hernia and Abdominal Wall Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
| | - Wenchang Gan
- Department of General Surgery (Hernia and Abdominal Wall Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
| | - Ruibing Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
| | - Zehui Hou
- Department of General Surgery (Hernia and Abdominal Wall Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
| | - Taicheng Zhou
- Department of General Surgery (Hernia and Abdominal Wall Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
| | - Ning Ma
- Department of General Surgery (Hernia and Abdominal Wall Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
| |
Collapse
|
5
|
Shiroud Heidari B, Dodda JM, El-Khordagui LK, Focarete ML, Maroti P, Toth L, Pacilio S, El-Habashy SE, Boateng J, Catanzano O, Sahai N, Mou L, Zheng M. Emerging materials and technologies for advancing bioresorbable surgical meshes. Acta Biomater 2024; 184:1-21. [PMID: 38879102 DOI: 10.1016/j.actbio.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
Surgical meshes play a significant role in the treatment of various medical conditions, such as hernias, pelvic floor issues, guided bone regeneration, and wound healing. To date, commercial surgical meshes are typically made of non-absorbable synthetic polymers, notably polypropylene and polytetrafluoroethylene, which are associated with postoperative complications, such as infections. Biological meshes, based on native tissues, have been employed to overcome such complications, though mechanical strength has been a main disadvantage. The right balance in mechanical and biological performances has been achieved by the advent of bioresorbable meshes. Despite improvements, recurrence of clinical complications associated with surgical meshes raises significant concerns regarding the technical adequacy of current materials and designs, pointing to a crucial need for further development. To this end, current research focuses on the design of meshes capable of biomimicking native tissue and facilitating the healing process without post-operative complications. Researchers are actively investigating advanced bioresorbable materials, both synthetic polymers and natural biopolymers, while also exploring the performance of therapeutic agents, surface modification methods and advanced manufacturing technologies such as 4D printing. This review seeks to evaluate emerging biomaterials and technologies for enhancing the performance and clinical applicability of the next-generation surgical meshes. STATEMENT OF SIGNIFICANCE: In the ever-transforming landscape of regenerative medicine, the embracing of engineered bioabsorbable surgical meshes stands as a key milestone in addressing persistent challenges and complications associated with existing treatments. The urgency to move beyond conventional non-absorbable meshes, fraught with post-surgery complications, emphasises the necessity of using advanced biomaterials for engineered tissue regeneration. This review critically examines the growing field of absorbable surgical meshes, considering their potential to transform clinical practice. By strategically combining mechanical strength with bioresorbable characteristics, these innovative meshes hold the promise of mitigating complications and improving patient outcomes across diverse medical applications. As we navigate the complexities of modern medicine, this exploration of engineered absorbable meshes emerges as a promising approach, offering an overall perspective on biomaterials, technologies, and strategies adopted to redefine the future of surgical meshes.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Jagan Mohan Dodda
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| | | | - Maria Letizia Focarete
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Italy. Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| | - Peter Maroti
- University of Pecs, Medical School, 3D Printing and Visualization Centre, Hungary, University of Pecs, Medical Skills Education and Innovation Centre, Hungary
| | - Luca Toth
- University of Pecs, Medical School, Institute for Translational Medicine, Hungary, University of Pecs, Medical School, Department of Neurosurgery, Hungary
| | - Serafina Pacilio
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Italy. Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy; Department of Biomedical and Neuromotor Sciences DIBINEM, Alma Mater Studiorum-University of Bologna, Italy
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Joshua Boateng
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, UK
| | - Ovidio Catanzano
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Nitin Sahai
- University of Pecs, Medical School, 3D Printing and Visualization Centre, Hungary, University of Pecs, Medical Skills Education and Innovation Centre, Hungary; Department of Biomedical Engineering, North Eastern Hill University, Meghalaya, India
| | - Lingjun Mou
- WA Liver and Kidney Transplant Department, Sir Charles Gairdner Hospital, Western Australia, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| |
Collapse
|
6
|
Baker JJ, Rosenberg J. Coatings for Permanent Meshes Used to Enhance Healing in Abdominal Hernia Repair: A Scoping Review. Surg Innov 2024; 31:424-434. [PMID: 38803124 DOI: 10.1177/15533506241255258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Hernia meshes are used to reduce recurrence and pain rates, but the rates are still high. This could be improved with coatings of the mesh. This scoping review aimed to provide an overview of mesh coatings used to promote healing in abdominal hernia repair and to report beneficial and unbeneficial effects. METHODS We included human and animal studies with abdominal hernias that were repaired with non-commercially coated meshes. We searched Pubmed, Embase, Cochrane Central, LILACS, and CNKI without language constraints. RESULTS Of 2933 identified studies, 58 were included: six studies had a total of 408 humans and 52 studies had 2679 animals. The median follow-up was 12 months (range 1-156), and 95% of the hernias were incisional. There were 44 different coatings which included platelet-rich plasma, mesenchymal stem cells, growth factors, vitamin E, collagen-derived products, various polysaccharides, silk proteins, chitosan, gentamycin, doxycycline, nitrofurantoin, titanium, and diamond-like carbon. Mesenchymal stem cells and platelet-rich plasma were the most researched. Mesenchymal stem cells notably reduced inflammation and foreign body reactions but did not impact other healing metrics. In contrast, platelet-rich plasma positively influenced tissue ingrowth, collagen deposition, and neovascularization and had varying effects on inflammation and foreign body reactions. CONCLUSION We identified 44 different mesh coatings and they showed varying results. Mesenchymal stem cells and platelet-rich plasma were the most studied, with the latter showing considerable promise in improving biomechanical properties in hernia repair. Further investigations are needed to ascertain their definitive use in humans.
Collapse
Affiliation(s)
- Jason Joe Baker
- Center for Perioperative Optimization, Department of Surgery, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Jacob Rosenberg
- Center for Perioperative Optimization, Department of Surgery, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
7
|
Hossain MT, Shahid MA, Mahmud N, Habib A, Rana MM, Khan SA, Hossain MD. Research and application of polypropylene: a review. DISCOVER NANO 2024; 19:2. [PMID: 38168725 PMCID: PMC10761633 DOI: 10.1186/s11671-023-03952-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Polypropylene (PP) is a versatile polymer with numerous applications that has undergone substantial changes in recent years, focusing on the demand for next-generation polymers. This article provides a comprehensive review of recent research in PP and its advanced functional applications. The chronological development and fundamentals of PP are mentioned. Notably, the incorporation of nanomaterial like graphene, MXene, nano-clay, borophane, silver nanoparticles, etc., with PP for advanced applications has been tabulated with their key features and challenges. The article also conducts a detailed analysis of advancements and research gaps within three key forms of PP: fiber, membrane, and matrix. The versatile applications of PP across sectors like biomedical, automotive, aerospace, and air/water filtration are highlighted. However, challenges such as limited UV resistance, bonding issues, and flammability are noted. The study emphasizes the promising potential of PP while addressing unresolved concerns, with the goal of guiding future research and promoting innovation in polymer applications.
Collapse
Affiliation(s)
- Md Tanvir Hossain
- Department of Textile Engineering, Bangladesh University of Business and Technology (BUBT), Dhaka, 1216, Bangladesh
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| | - Md Abdus Shahid
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh.
| | - Nadim Mahmud
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| | - Ahasan Habib
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| | - Md Masud Rana
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| | - Shadman Ahmed Khan
- Department of Textile Engineering, Bangladesh University of Business and Technology (BUBT), Dhaka, 1216, Bangladesh
| | - Md Delwar Hossain
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| |
Collapse
|
8
|
Nair RS, Sobhan PK, Shenoy SJ, Prabhu MA, Kumar V, Ramachandran S, Anilkumar TV. Mitigation of Fibrosis after Myocardial Infarction in Rats by Using a Porcine Cholecyst Extracellular Matrix. Comp Med 2023; 73:312-323. [PMID: 37527924 PMCID: PMC10702285 DOI: 10.30802/aalas-cm-22-000097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/27/2022] [Accepted: 12/09/2022] [Indexed: 08/03/2023]
Abstract
Fibrosis that occurs after nonfatal myocardial infarction (MI) is an irreversible reparative cardiac tissue remodeling process characterized by progressive deposition of highly cross-linked type I collagen. No currently available therapeutic strategy prevents or reverses MI-associated fibrotic scarring of myocardium. In this study, we used an epicardial graft prepared of porcine cholecystic extracellular matrix to treat experimental nonfatal MI in rats. Graft-assisted healing was characterized by reduced fibrosis, with scanty deposition of type I collagen. Histologically, the tissue response was associated with a favorable regenerative reaction predominated by CD4-positive helper T lymphocytes, enhanced angiogenesis, and infiltration of proliferating cells. These observations indicate that porcine cholecystic extracellular matrix delayed the fibrotic reaction and support its use as a potential biomaterial for mitigating fibrosis after MI. Delaying the progression of cardiac tissue remodeling may widen the therapeutic window for management of scarring after MI.
Collapse
Affiliation(s)
- Reshma S Nair
- Division of Experimental Pathology; Department of Biochemistry and Molecular Medicine, Université de Montréal and Montreal Heart Institute, Montréal, Québec, Canada
| | | | - Sachin J Shenoy
- Division of In Vivo Models and Testing, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Mukund A Prabhu
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India; Department of Cardiology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka
| | - Vikas Kumar
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India Current affiliations; Diabetes Research Program, Department of Medicine, New York University School of Medicine, New York
| | - Surya Ramachandran
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India Current affiliations
| | | |
Collapse
|
9
|
Saiding Q, Chen Y, Wang J, Pereira CL, Sarmento B, Cui W, Chen X. Abdominal wall hernia repair: from prosthetic meshes to smart materials. Mater Today Bio 2023; 21:100691. [PMID: 37455815 PMCID: PMC10339210 DOI: 10.1016/j.mtbio.2023.100691] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 06/03/2023] [Indexed: 07/18/2023] Open
Abstract
Hernia reconstruction is one of the most frequently practiced surgical procedures worldwide. Plastic surgery plays a pivotal role in reestablishing desired abdominal wall structure and function without the drawbacks traditionally associated with general surgery as excessive tension, postoperative pain, poor repair outcomes, and frequent recurrence. Surgical meshes have been the preferential choice for abdominal wall hernia repair to achieve the physical integrity and equivalent components of musculofascial layers. Despite the relevant progress in recent years, there are still unsolved challenges in surgical mesh design and complication settlement. This review provides a systemic summary of the hernia surgical mesh development deeply related to abdominal wall hernia pathology and classification. Commercial meshes, the first-generation prosthetic materials, and the most commonly used repair materials in the clinic are described in detail, addressing constrain side effects and rational strategies to establish characteristics of ideal hernia repair meshes. The engineered prosthetics are defined as a transit to the biomimetic smart hernia repair scaffolds with specific advantages and disadvantages, including hydrogel scaffolds, electrospinning membranes, and three-dimensional patches. Lastly, this review critically outlines the future research direction for successful hernia repair solutions by combing state-of-the-art techniques and materials.
Collapse
Affiliation(s)
- Qimanguli Saiding
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yiyao Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Catarina Leite Pereira
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruno Sarmento
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IUCS – Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xinliang Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| |
Collapse
|
10
|
Nair RS, Sobhan PK, Shenoy SJ, Prabhu MA, Rema AM, Ramachandran S, C Geetha S, V Pratheesh K, Mony MP, Raj R, Anilkumar TV. A porcine cholecystic extracellular matrix conductive scaffold for cardiac tissue repair. J Biomed Mater Res B Appl Biomater 2022; 110:2039-2049. [PMID: 35305082 DOI: 10.1002/jbm.b.35058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/12/2021] [Accepted: 08/22/2021] [Indexed: 11/08/2022]
Abstract
Cardiac tissue engineering using cells, scaffolds or signaling molecules is a promising approach for replacement or repair of damaged myocardium. This study addressed the contemporary need for a conductive biomimetic nanocomposite scaffold for cardiac tissue engineering by examining the use of a gold nanoparticle-incorporated porcine cholecystic extracellular matrix for the same. The scaffold had an electrical conductivity (0.74 ± 0.03 S/m) within the range of native myocardium. It was a suitable substrate for the growth and differentiation of cardiomyoblast (H9c2) as well as rat mesenchymal stem cells to cardiomyocyte-like cells. Moreover, as an epicardial patch, the scaffold promoted neovascularisation and cell proliferation in infarcted myocardium of rats. It was concluded that the gold nanoparticle coated cholecystic extracellular matrix is a prospective biomaterial for cardiac tissue engineering.
Collapse
Affiliation(s)
- Reshma S Nair
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Praveen K Sobhan
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Sachin J Shenoy
- Division of In Vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Mukund A Prabhu
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Aswathy M Rema
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Surya Ramachandran
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Surendran C Geetha
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Kanakarajan V Pratheesh
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Manjula P Mony
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Reshmi Raj
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Thapasimuthu V Anilkumar
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India.,School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| |
Collapse
|
11
|
Xu D, Fang M, Wang Q, Qiao Y, Li Y, Wang L. Latest Trends on the Attenuation of Systemic Foreign Body Response and Infectious Complications of Synthetic Hernia Meshes. ACS APPLIED BIO MATERIALS 2022; 5:1-19. [PMID: 35014826 DOI: 10.1021/acsabm.1c00841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Throughout the past few years, hernia incidence has remained at a high level worldwide, with more than 20 million people requiring hernia surgery each year. Synthetic hernia meshes play an important role, providing a microenvironment that attracts and harbors host cells and acting as a permanent roadmap for intact abdominal wall reconstruction. Nevertheless, it is still inevitable to cause not-so-trivial complications, especially chronic pain and adhesion. In long-term studies, it was found that the complications are mainly caused by excessive fibrosis from the foreign body reaction (FBR) and infection resulting from bacterial colonization. For a thorough understanding of their complex mechanism and providing a richer background for mesh development, herein, we discuss different clinical mesh products and explore the interactions between their structure and complications. We further explored progress in reducing mesh complications to provide varied strategies that are informative and instructive for mesh modification in different research directions. We hope that this work will spur hernia mesh designers to step up their efforts to develop more practical and accessible meshes by improving the physical structure and chemical properties of meshes to combat the increasing risk of adhesions, infections, and inflammatory reactions. We conclude that further work is needed to solve this pressing problem, especially in the analysis and functionalization of mesh materials, provided of course that the initial performance of the mesh is guaranteed.
Collapse
Affiliation(s)
- Danyao Xu
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Meiqi Fang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Qian Wang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yansha Qiao
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|