1
|
Kang J, Fang Y, Yang J, Huang L, Chen Y, Li D, Sun J, Jiang R. Recent Development of Ir- and Ru-Based Electrocatalysts for Acidic Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20519-20559. [PMID: 40138357 DOI: 10.1021/acsami.4c22918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Proton exchange membrane (PEM) water electrolyzers are one type of the most promising technologies for efficient, nonpolluting and sustainable production of high-purity hydrogen. The anode catalysts account for a very large fraction of cost in PEM water electrolyzer and also determine the lifetime of the electrolyzer. To date, Ir- and Ru-based materials are types of promising catalysts for the acidic oxygen evolution reaction (OER), but they still face challenges of high cost or low stability. Hence, exploring low Ir and stable Ru-based electrocatalysts for acidic OER attracts extensive research interest in recent years. Owing to these great research efforts, significant developments have been achieved in this field. In this review, the developments in the field of Ir- and Ru-based electrocatalysts for acidic OER are comprehensively described. The possible OER mechanisms are first presented, followed by the introduction of the criteria for evaluation of the OER electrocatalysts. The development of Ir- and Ru-based OER electrocatalysts are then elucidated according to the strategies utilized to tune the catalytic performances. Lastly, possible future research in this burgeoning field is discussed.
Collapse
Affiliation(s)
- Jianghao Kang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yunpeng Fang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Yang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Luo Huang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Chen
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Deng Li
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Sun
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Ruibin Jiang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
2
|
Wang X, Hu J, Lu T, Wang H, Sun D, Tang Y, Li H, Fu G. Importing Atomic Rare-Earth Sites to Activate Lattice Oxygen of Spinel Oxides for Electrocatalytic Oxygen Evolution. Angew Chem Int Ed Engl 2025; 64:e202415306. [PMID: 39380434 PMCID: PMC11735878 DOI: 10.1002/anie.202415306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Spinel oxides have emerged as highly active catalysts for the oxygen evolution reaction (OER). Owing to covalency competition, the OER process on spinel oxides often follows an arduous adsorbate evolution mechanism (AEM) pathway. Herein, we propose a novel rare-earth sites substitution strategy to tune the lattice oxygen redox of spinel oxides and bypass the AEM scaling relationship limitation. Taking NiCo2O4 as a model, the incorporation of Ce into the octahedral site induces the formation of Ce-O-M (M=Ni, Co) bridge, which triggers charge redistribution within NiCo2O4. The developed Ce-NiCo2O4 exhibits remarkable OER activity with a low overpotential, satisfactory electrochemical stability, and good practicability in anion-exchange membrane water electrolyzer. Theoretical analyses reveal that OER on Ce-NiCo2O4 surface follows a more favorable lattice oxygen mechanism (LOM) pathway and non-concerted proton-electron transfers compared to pure NiCo2O4, as also verified by pH-dependent behavior and in situ Raman analysis. The 18O-labeled electrochemical mass spectrometry provides direct evidence that the oxygen released during the OER originates from the lattice oxygen of Ce-NiCo2O4. We discover that electron delocalization of Ce 4f states triggers charge redistribution in NiCo2O4 through the Ce-O-M bridge, favoring antibonding state occupation of Ni-O bonding in [Ce-O-Ni] unit site, thereby activating lattice oxygen redox of NiCo2O4 in OER. This work provides a new perspective for designing highly active spinel oxides for OER and offers significant insights into the rare-earth-enhanced LOM mechanism.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Key Laboratory of New Power BatteriesJiangsu Collaborative Innovation Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University210023NanjingChina
- Advanced Institute for Materials Research (WPI-AIMR)Tohoku University980-8577SendaiJapan
| | - Jinrui Hu
- Jiangsu Key Laboratory of New Power BatteriesJiangsu Collaborative Innovation Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University210023NanjingChina
| | - Tingyu Lu
- Jiangsu Key Laboratory of New Power BatteriesJiangsu Collaborative Innovation Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University210023NanjingChina
- Advanced Institute for Materials Research (WPI-AIMR)Tohoku University980-8577SendaiJapan
| | - Huiyu Wang
- Jiangsu Key Laboratory of New Power BatteriesJiangsu Collaborative Innovation Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University210023NanjingChina
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power BatteriesJiangsu Collaborative Innovation Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University210023NanjingChina
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power BatteriesJiangsu Collaborative Innovation Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University210023NanjingChina
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR)Tohoku University980-8577SendaiJapan
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power BatteriesJiangsu Collaborative Innovation Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University210023NanjingChina
| |
Collapse
|
3
|
Li D, Guo H, Wang H, Pan L, Lin J. Cerium-Doped Nickel Sulfide Nanospheres as Efficient Catalysts for Overall Water Splitting. CHEMSUSCHEM 2024; 17:e202400751. [PMID: 38752305 DOI: 10.1002/cssc.202400751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Indexed: 06/11/2024]
Abstract
The development of non-precious metal electrocatalysts with excellent activity and durability for electrochemical water splitting has always been a goal. Transition metal sulfides are attractive electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this article, we designed and constructed efficient catalysts with multiple synergistic interactions and synthesized Ce-NiS2@NF nanosphere using a solvothermal method. Ce-NiS2@NF exhibits excellent HER performance, OER performance, and overall water splitting capability in alkaline electrolytes, demonstrating good stability. The addition of Ce influences the activity of the catalysts, attributed to the synergistic interactions creating more active sites and higher intrinsic activity through the introduction of Ce heteroatoms. Additionally, the self-supported conductive substrate promotes electron transfer, enhancing the intrinsic activity and active site density of the catalyst. This study provides an in-depth investigation into structural design and performance enhancement, offering ideas for designing efficient catalysts for overall water electrolysis. This work provides an in-depth study in terms of structural design performance enhancement and provides ideas for designing efficient alkaline bifunctional catalysts. Valuable insights have been provided in elucidating the intrinsic mechanism of the catalytic activity of cerium-doped nickel sulfide nanospheres, thus providing new guidance in the field of energy conversion technology.
Collapse
Affiliation(s)
- Dongxv Li
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hui Guo
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hong Wang
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lu Pan
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jianjian Lin
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
4
|
Sadeghi E, Morgen P, Makovec D, Gyergyek S, Sharma R, Andersen SM. Scalable Solid-State Synthesis of Carbon-Supported Ir Electrocatalysts for Acidic Oxygen Evolution Reaction: Exploring the Structure-Activity Relationship. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53750-53763. [PMID: 39316097 DOI: 10.1021/acsami.4c10522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Enhancing iridium (Ir)-based electrocatalysts to achieve high activity and robust durability for the oxygen evolution reaction (OER) in acidic environments has been an ongoing mission in the commercialization of proton exchange membrane (PEM) electrolyzers. In this study, we present the synthesis of carbon-supported Ir nanoparticles (NPs) using a modified impregnation method followed by solid-state reduction, with Ir loadings of 20 and 40 wt % on carbon. Among the catalysts, the sample with an Ir loading of 20 wt % synthesized at 1000 °C with a heating rate of 300 °C/h demonstrated the highest mass-normalized OER performance of 1209 A gIr-1 and an OER current retention of 80% after 1000 cycles of cyclic voltammetry (CV). High-resolution STEM images confirmed the uniform dispersion of NPs, with diameters of 1.6 ± 0.4 nm across the support. XPS analysis revealed that the C-O and C═O peaks shifted slightly toward higher binding energies for the best-performing catalyst. In comparison, the metallic Ir state shifted toward lower binding energies compared to other samples. This suggests electron transfer from the carbon support to the Ir NPs, indicating a potential interaction between the catalyst and the support. This work underscores the strong potential of the solid-state method for the scalable synthesis of supported Ir catalysts.
Collapse
Affiliation(s)
- Ebrahim Sadeghi
- Department of Green Technology, University of Southern Denmark, Odense M 5230, Denmark
| | - Per Morgen
- Department of Green Technology, University of Southern Denmark, Odense M 5230, Denmark
| | - Darko Makovec
- Department for Materials Synthesis, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Saso Gyergyek
- Department for Materials Synthesis, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Raghunandan Sharma
- Department of Green Technology, University of Southern Denmark, Odense M 5230, Denmark
| | - Shuang Ma Andersen
- Department of Green Technology, University of Southern Denmark, Odense M 5230, Denmark
| |
Collapse
|
5
|
Wang Y, Qin Y, Wen R, Wang L, Dou M, Wang F. High-Performance Low-Iridium Catalyst for Water Oxidation: Breaking Long-Ranged Order of IrO 2 by Neodymium Doping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401964. [PMID: 39162112 DOI: 10.1002/smll.202401964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/09/2024] [Indexed: 08/21/2024]
Abstract
Exploring efficacious low-Ir electrocatalysts for oxygen evolution reaction (OER) is crucial for large-scale application of proton exchange membrane water electrolysis (PEMWE). Herein, an efficient non-precious lanthanide-metal-doped IrO2 electrocatalyst is presented for OER catalysis by doping large-ionic-radius Nd into IrO2 crystal. The doped Nd breaks the long-ranged order structure by triggering the strain effect and thus inducing an atomic rearrangement of Nd─IrO2 involving the forming of Nd─O─Ir bonds along with an increased amount of oxygen vacancies (Ov), giving rise of a long-ranged disorder but a short-ranged order structure. The formed Nd─O─Ir bonds tailor the electronic structure of Ir, leading to a lowered d-band center that weakens intermediates absorption on Ir sites. Moreover, doping Nd triggers Nd─IrO2 to catalyze OER mainly through lattice oxygen mechanism (LOM) by activating lattice oxygen owing to abundant Ov. The optimal catalyst only requires a relatively low overpotential of 263 mV@10 mA cm-2 with a high mass activity of 216.98 A gIr -1 (at 1.53 V) (eightfold of commercial IrO2), and also shows a superior durability at 50 mA cm-2 (20 h) than commercial IrO2 (3 h) due to the oxidation-suppressing effect induced by Nd doping. This work offers insights into designing high-performance low-Ir electrocatalysts for PEMWE application.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - YuFeng Qin
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Rou Wen
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Longxiang Wang
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Meiling Dou
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
6
|
Han W, Cai X, Liao J, He Y, Yu C, Zhang X. Regulating Strain and Electronic Structure of Indium Tin Oxide Supported IrO x Electrocatalysts for Highly Efficient Oxygen Evolution Reaction in Acid. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47610-47619. [PMID: 39213613 DOI: 10.1021/acsami.4c09431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The development of proton exchange membrane water electrolysis is a promising technology for hydrogen production, which has always been restricted by the slow kinetics of the oxygen evolution reaction (OER). Although IrOx is one of the benchmark acidic OER electrocatalysts, there are still challenges in designing highly active and stable Ir-based electrocatalysts for commercial application. Herein, a Ru-doped IrOx electrocatalyst with abundant twin boundaries (TB-Ru0.3Ir0.7Ox@ITO) is reported, employing indium tin oxide with high conductivity as the support material. Combing the TB-Ru0.3Ir0.7Ox nanoparticles with ITO support could expose more active sites and accelerate the electron transfer. The TB-Ru0.3Ir0.7Ox@ITO exhibits a low overpotential of 203 mV to achieve 10 mA cm-2 and a high mass activity of 854.45 A g-1noble metal at 1.53 V vs RHE toward acidic OER, which exceeds most reported Ir-based OER catalysts. Moreover, improved long-term stability could be obtained, maintaining the reaction for over 110 h at 10 mA cm-2 with negligible deactivation. DFT calculations further reveal the activity enhancement mechanism, demonstrating the synergistic effects of Ru doping and strains on the optimization of the d-band center (εd) position and the adsorption free energy of oxygen intermediates. This work provides ideas to realize the trade-off between high catalytic activity and good stability for acidic OER electrocatalysts.
Collapse
Affiliation(s)
- Weiwei Han
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Xinuo Cai
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Jiahong Liao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yi He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang Province 324000, China
| | - Chunlin Yu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang Province 324000, China
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang Province 324000, China
| |
Collapse
|
7
|
Zhang X, Tong L, Shi X, Li Z, Xiao Z, Liu Y, Zhang T, Lin S. Tailoring atomically local electric field of NiFe layered double hydroxides with Ag dopants to boost oxygen evolution kinetics. J Colloid Interface Sci 2024; 668:502-511. [PMID: 38691960 DOI: 10.1016/j.jcis.2024.04.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
The demand for clean energy sources has driven focus towards advanced electrochemical systems. However, the sluggish kinetics of the oxygen evolution reaction (OER) constrain the energy conversion efficiency of relevant devices. Herein, a one-step method is reported to grow oxygen vacancies (Vo) rich NiFeAg layered double hydroxides nanoclusters on carbon cloth (Vo-NiFeAg-LDH/CC) for serving as the self-supporting electrode to catalyze OER. The OER performance of Vo-NiFeAg-LDH/CC has been remarkably enhanced through Ag and Vo co-modification compared with pristine NiFe-LDH, achieving a low Tafel slope of 49.7 mV dec-1 in 1 m KOH solution. Additionally, the current density of Vo-NiFeAg-LDH/CC is 3.23 times higher than that of the state-of-art IrO2 at 2 V under an alkaline flow electrolyzer setup. Theoretical calculations and experimental results collectively demonstrate that Ag dopant and Vo strengthen the O* adsorption with active sites, further promoting the deprotonation step from OH* to O* and accelerating the catalytic reaction. In a word, this work clarifies the structural correlation and synergistic mechanism of Ag dopant and Vo, providing valuable insights for the rational design of catalyst for renewable energy applications.
Collapse
Affiliation(s)
- Xu Zhang
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Li Tong
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Xiahui Shi
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Zhaosheng Li
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Zhaohui Xiao
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Yipu Liu
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China.
| | - Tao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Shiwei Lin
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
8
|
Zhang N, Fan Y, Wang D, Yang H, Yu Y, Liu J, Zeng J, Bao D, Zhong H, Zhang X. Grain Boundary Defect Engineering in Rutile Iridium Oxide Boosts Efficient and Stable Acidic Water Oxidation. Chemistry 2024; 30:e202400651. [PMID: 38705845 DOI: 10.1002/chem.202400651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Proton exchange membrane water electrolysis (PEMWE) is considered a promising technology for coupling with renewable energy sources to achieve clean hydrogen production. However, constrained by the sluggish kinetics of the anodic oxygen evolution reaction (OER) and the acidic abominable environment render the grand challenges in developing the active and stable OER electrocatalyst, leading to low efficiency of PEMWE. Herein, we develop the rutile-type IrO2 nanoparticles with abundant grain boundaries and the continuous nanostructure through the joule heating and sacrificial template method. The optimal candidate (350-IrO2) demonstrates remarkable electrocatalytic activity and stability during the OER, presenting a promising advancement for efficient PEMWE. DFT calculations verified that grain boundaries can modulate the electronic structure of Ir sites and optimize the adsorption of oxygen intermediates, resulting in the accelerated kinetics. 350-IrO2 affords a rapid OER process with 20 times higher mass activity (0.61 A mgIr -1) than the commercial IrO2 at 1.50 V vs. RHE. Benefiting from the reduced overpotential and the preservation of the stable rutile structure, 350-IrO2 exhibits the stability of 200 h test at 10 mA cm-2 with only trace decay of 11.8 mV. Moreover, the assembled PEMWE with anode 350-IrO2 catalyst outputs the current density up to 2 A cm-2 with only 1.84 V applied voltage, long-term operation for 100 h without obvious performance degradation at 1 A cm-2.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yingqi Fan
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Depeng Wang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hong Yang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Yu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jianwei Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Di Bao
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Haixia Zhong
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
9
|
Ram R, Xia L, Benzidi H, Guha A, Golovanova V, Garzón Manjón A, Llorens Rauret D, Sanz Berman P, Dimitropoulos M, Mundet B, Pastor E, Celorrio V, Mesa CA, Das AM, Pinilla-Sánchez A, Giménez S, Arbiol J, López N, García de Arquer FP. Water-hydroxide trapping in cobalt tungstate for proton exchange membrane water electrolysis. Science 2024; 384:1373-1380. [PMID: 38900890 DOI: 10.1126/science.adk9849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
The oxygen evolution reaction is the bottleneck to energy-efficient water-based electrolysis for the production of hydrogen and other solar fuels. In proton exchange membrane water electrolysis (PEMWE), precious metals have generally been necessary for the stable catalysis of this reaction. In this work, we report that delamination of cobalt tungstate enables high activity and durability through the stabilization of oxide and water-hydroxide networks of the lattice defects in acid. The resulting catalysts achieve lower overpotentials, a current density of 1.8 amperes per square centimeter at 2 volts, and stable operation up to 1 ampere per square centimeter in a PEMWE system at industrial conditions (80°C) at 1.77 volts; a threefold improvement in activity; and stable operation at 1 ampere per square centimeter over the course of 600 hours.
Collapse
Affiliation(s)
- Ranit Ram
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Lu Xia
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Hind Benzidi
- ICIQ-CERCA - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Anku Guha
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Viktoria Golovanova
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Alba Garzón Manjón
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - David Llorens Rauret
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Pol Sanz Berman
- ICIQ-CERCA - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Marinos Dimitropoulos
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Bernat Mundet
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Ernest Pastor
- CNRS, Université de Rennes, IPR (Institut de Physique de Rennes) - UMR 6251, Rennes, France
- CNRS, Université de Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL2015, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Veronica Celorrio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Camilo A Mesa
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain
| | - Aparna M Das
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Adrián Pinilla-Sánchez
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Sixto Giménez
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Núria López
- ICIQ-CERCA - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - F Pelayo García de Arquer
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
10
|
Lu Z, Yang H, Qi G, Liu Q, Feng L, Zhang H, Luo J, Liu X. Efficient and Stable pH-Universal Water Electrolysis Catalyzed by N-Doped Hollow Carbon Confined RuIrO x Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308841. [PMID: 38009776 DOI: 10.1002/smll.202308841] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Indexed: 11/29/2023]
Abstract
A facile strategy is developed to fabricate 3 nm RuIrOx nanocrystals anchored onto N-doped hollow carbon for highly efficient and pH-universal overall water splitting and alkaline seawater electrolysis. The designed catalyst exhibits much lower overpotential and superior stability than most previously reported Ru- and Ir-based electrocatalysts for hydrogen/oxygen evolution reactions. It also manifests excellent overall water splitting activities and maintains ≈100% Faradic efficiency with a cell voltage of 1.53, 1.51, and 1.54 V at 10 mA cm-2 for 140, 255, and 200 h in acid, alkaline, and alkaline seawater electrolytes, respectively. The excellent electrocatalytic performance can be attributed to solid bonding between RuIrOx and the hollow carbon skeleton, and effective electronic coupling between Ru and Ir, thus inducing its remarkable electrocatalytic activities and long-lasting stability.
Collapse
Affiliation(s)
- Zhensui Lu
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Optoelectronic Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hui Yang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Optoelectronic Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Gaocan Qi
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Optoelectronic Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Hao Zhang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Optoelectronic Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua, Shenzhen, 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| |
Collapse
|
11
|
Han X, Shi L, Chen H, Zou X. Key role of subsurface doping in optimizing active sites of IrO 2 for the oxygen evolution reaction. Chem Commun (Camb) 2024; 60:3453-3456. [PMID: 38445663 DOI: 10.1039/d4cc00075g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The oxygen evolution reaction (OER) over a family of metal-doped rutile IrO2 catalysts is theoretically investigated by controlling the species and position of doped elements. The subsurface substitution doping is demonstrated to efficiently regulate the eg-filling of surface iridium sites and lower the adsorption strength of oxygen intermediates, improving the catalytic activity for the OER. Finally, based on screening, subsurface Cu- and Li-doped IrO2 models stand near the top of the volcano plot and display high levels of structural stability toward acidic OER.
Collapse
Affiliation(s)
- Xindi Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Lei Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
12
|
Kuang J, Li Z, Li W, Chen C, La M, Hao Y. Achieving High Activity and Long-Term Stability towards Oxygen Evolution in Acid by Phase Coupling between CeO 2-Ir. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7000. [PMID: 37959597 PMCID: PMC10650327 DOI: 10.3390/ma16217000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
The development of efficient and stable catalysts with high mass activity is crucial for acidic oxygen evolution reaction (OER). In this study, CeO2-Ir heterojunctions supported on carbon nanotubes (CeO2-Ir/CNTs) are synthesized using a solvothermal method based on the heterostructure strategy. CeO2-Ir/CNTs demonstrate remarkable effectiveness as catalysts for acidic OER, achieving 10.0 mA cm-2 at a low overpotential of only 262.9 mV and maintaining stability over 60.0 h. Notably, despite using an Ir dosage 15.3 times lower than that of c-IrO2, CeO2-Ir/CNTs exhibit a very high mass activity (2542.3 A gIr-1@1.53 V), which is 58.8 times higher than that of c-IrO2. When applied to acidic water electrolyzes, CeO2-Ir/CNTs display a prosperous potential for application as anodic catalysts. X-ray photoelectron spectrometer (XPS) analysis reveals that the chemical environment of Ir nanoparticles (NP) can be effectively modulated through coupling with CeO2. This modulation is believed to be the key factor contributing to the excellent OER catalytic activity and stability observed in CeO2-Ir/CNTs.
Collapse
Affiliation(s)
- Jianren Kuang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; (J.K.); (Z.L.)
| | - Zhi Li
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; (J.K.); (Z.L.)
| | - Weiqiang Li
- College of Electric and Information Engineering, Pingdingshan University, Pingdingshan 467000, China;
| | - Changdong Chen
- College of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China;
| | - Ming La
- College of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China;
| | - Yajuan Hao
- College of Electric and Information Engineering, Pingdingshan University, Pingdingshan 467000, China;
| |
Collapse
|
13
|
Liu RT, Xu ZL, Li FM, Chen FY, Yu JY, Yan Y, Chen Y, Xia BY. Recent advances in proton exchange membrane water electrolysis. Chem Soc Rev 2023; 52:5652-5683. [PMID: 37492961 DOI: 10.1039/d2cs00681b] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Proton exchange membrane water electrolyzers (PEMWEs) are an attractive technology for renewable energy conversion and storage. By using green electricity generated from renewable sources like wind or solar, high-purity hydrogen gas can be produced in PEMWE systems, which can be used in fuel cells and other industrial sectors. To date, significant advances have been achieved in improving the efficiency of PEMWEs through the design of stack components; however, challenges remain for their large-scale and long-term application due to high cost and durability issues in acidic conditions. In this review, we examine the latest developments in engineering PEMWE systems and assess the gap that still needs to be filled for their practical applications. We provide a comprehensive summary of the reaction mechanisms, the correlation among structure-composition-performance, manufacturing methods, system design strategies, and operation protocols of advanced PEMWEs. We also highlight the discrepancies between the critical parameters required for practical PEMWEs and those reported in the literature. Finally, we propose the potential solution to bridge the gap and enable the appreciable applications of PEMWEs. This review may provide valuable insights for research communities and industry practitioners working in these fields and facilitate the development of more cost-effective and durable PEMWE systems for a sustainable energy future.
Collapse
Affiliation(s)
- Rui-Ting Liu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Zheng-Long Xu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| | - Fei-Yang Chen
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Jing-Ya Yu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Ya Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| |
Collapse
|
14
|
Han N, Zhang W, Guo W, Pan H, Jiang B, Xing L, Tian H, Wang G, Zhang X, Fransaer J. Designing Oxide Catalysts for Oxygen Electrocatalysis: Insights from Mechanism to Application. NANO-MICRO LETTERS 2023; 15:185. [PMID: 37515746 PMCID: PMC10387042 DOI: 10.1007/s40820-023-01152-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/17/2023] [Indexed: 07/31/2023]
Abstract
The electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are fundamental processes in a range of energy conversion devices such as fuel cells and metal-air batteries. ORR and OER both have significant activation barriers, which severely limit the overall performance of energy conversion devices that utilize ORR/OER. Meanwhile, ORR is another very important electrochemical reaction involving oxygen that has been widely investigated. ORR occurs in aqueous solutions via two pathways: the direct 4-electron reduction or 2-electron reduction pathways from O2 to water (H2O) or from O2 to hydrogen peroxide (H2O2). Noble metal electrocatalysts are often used to catalyze OER and ORR, despite the fact that noble metal electrocatalysts have certain intrinsic limitations, such as low storage. Thus, it is urgent to develop more active and stable low-cost electrocatalysts, especially for severe environments (e.g., acidic media). Theoretically, an ideal oxygen electrocatalyst should provide adequate binding to oxygen species. Transition metals not belonging to the platinum group metal-based oxides are a low-cost substance that could give a d orbital for oxygen species binding. As a result, transition metal oxides are regarded as a substitute for typical precious metal oxygen electrocatalysts. However, the development of oxide catalysts for oxygen reduction and oxygen evolution reactions still faces significant challenges, e.g., catalytic activity, stability, cost, and reaction mechanism. We discuss the fundamental principles underlying the design of oxide catalysts, including the influence of crystal structure, and electronic structure on their performance. We also discuss the challenges associated with developing oxide catalysts and the potential strategies to overcome these challenges.
Collapse
Affiliation(s)
- Ning Han
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Wei Zhang
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Wei Guo
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Hui Pan
- Department of Physics and Astronomy, KU Leuven, 3001, Leuven, Belgium
| | - Bo Jiang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, People's Republic of China
| | - Lingbao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China.
| | - Hao Tian
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, PO Box 123, Ultimo, NSW, 2007, Australia.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, PO Box 123, Ultimo, NSW, 2007, Australia
| | - Xuan Zhang
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, People's Republic of China.
| | - Jan Fransaer
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
15
|
Zhang H, Wang Y, Song D, Wang L, Zhang Y, Wang Y. Cerium-Based Electrocatalysts for Oxygen Evolution/Reduction Reactions: Progress and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1921. [PMID: 37446437 DOI: 10.3390/nano13131921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Ce-based materials have been widely used in photocatalysis and other fields because of their rich redox pairs and oxygen vacancies, despite research on the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) remaining scare. However, most pristine cerium-based materials, such as CeO2, are non-conductive materials. Therefore, how to obtain highly conductive and stable OER/ORR electrocatalysts is currently a hot research topic. To overcome these limitations, researchers have proposed a variety of strategies to promote the development of Ce-based electrocatalysts in recent years. This progress report focuses on reviewing new strategies concerning three categories of Ce-based electrocatalysts: metal-organic framework (MOF) derivatives, structure tuning, and polymetallic doping. It also puts forward the main existing problems and future prospects. The content of cerium in the crust is about 0.0046%, which is the highest among the rare earth elements. As a low-cost rare earth material, Ce-based materials have a bright future in the field of electrocatalysis due to replacing precious metal and some transition metals.
Collapse
Affiliation(s)
- Huiyi Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yan Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Daqi Song
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Liang Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yifan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
16
|
Shi Z, Li J, Wang Y, Liu S, Zhu J, Yang J, Wang X, Ni J, Jiang Z, Zhang L, Wang Y, Liu C, Xing W, Ge J. Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers. Nat Commun 2023; 14:843. [PMID: 36792586 PMCID: PMC9932065 DOI: 10.1038/s41467-023-36380-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
The poor stability of Ru-based acidic oxygen evolution (OER) electrocatalysts has greatly hampered their application in polymer electrolyte membrane electrolyzers (PEMWEs). Traditional understanding of performance degradation centered on influence of bias fails in describing the stability trend, calling for deep dive into the essential origin of inactivation. Here we uncover the decisive role of reaction route (including catalytic mechanism and intermediates binding strength) on operational stability of Ru-based catalysts. Using MRuOx (M = Ce4+, Sn4+, Ru4+, Cr4+) solid solution as structure model, we find the reaction route, thereby stability, can be customized by controlling the Ru charge. The screened SnRuOx thus exhibits orders of magnitude lifespan extension. A scalable PEMWE single cell using SnRuOx anode conveys an ever-smallest degradation rate of 53 μV h-1 during a 1300 h operation at 1 A cm-2.
Collapse
Affiliation(s)
- Zhaoping Shi
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Ji Li
- grid.9227.e0000000119573309Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yibo Wang
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Shiwei Liu
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Jianbing Zhu
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Jiahao Yang
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Xian Wang
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Jing Ni
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Zheng Jiang
- grid.9227.e0000000119573309Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China ,grid.9227.e0000000119573309Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201204 China
| | - Lijuan Zhang
- grid.9227.e0000000119573309Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China ,grid.9227.e0000000119573309Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201204 China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Changpeng Liu
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Wei Xing
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Junjie Ge
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
17
|
Zhang Q, Xu B, Sun K, Lang J, Li J. Apparent activity and specific activity of lanthanides (La, Ce, Nd) decorated Co-MOF derivatives for electrocatalytic water splitting. NANOTECHNOLOGY 2023; 34:185701. [PMID: 36716479 DOI: 10.1088/1361-6528/acb716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Lanthanide (Ln) rare Earth (RE) elements are often used to incorporate and regulate the local coordination environment and electronic configuration of transition metal based electrocatalysts for acquiring improved electrocatalytic performance. But for a given pristine electrode, is a Ln element concentrated more on promoting the apparent activity of original electrode or on enhancing its specific activity? To address this issue, Ln (La, Ce and Nd) decorated ZIF-67 derivative electrodes (Ln/Co/NC) were fabricated following with the detailed experimental testing of apparent activity and specific activity of assembled electrodes. X-ray photoelectron spectroscopy data confirmed that Ce, Nd and La have played their own role in regulating the coordination electronic structure of the surface atoms of the derived Co/NC by forming different types of chemical bonds. Electrochemical (EC) results confirmed that Ce is concentrated more on the apparent activity of derived Co/NC electrode with the smallest overpotential at 50 mA cm-2(η50), while Nd contributes more to its reaction kinetic property with the smallest value of Tafel slope in alkaline hydrogen evolution reaction process. But for oxygen evolution reaction, all of La, Ce and Nd deteriorate the apparent activity of the pristine Co/NC electrode. Comparatively, La shows a greater ability to modulate the specific activity of Co/NC with a larger electrochemical active surface area normalized current density, while Nd exhibits the best ability to re-establish the properties of reaction centers. This work illustrates the difference influence of La, Ce and Nd on the apparent activity and specific activity of the ZIF-67 derivative Co/NC electrode. It will do some favors in engineering RE elements modified composite electrodes for EC applications.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics, Jilin Normal University, Siping 136000, People's Republic of China
| | - Bingyan Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics, Jilin Normal University, Siping 136000, People's Republic of China
| | - Kexin Sun
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics, Jilin Normal University, Siping 136000, People's Republic of China
| | - Jihui Lang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics, Jilin Normal University, Siping 136000, People's Republic of China
| | - Ji Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics, Jilin Normal University, Siping 136000, People's Republic of China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Electronic Science and Information Technology, Jilin Normal University, Siping 136000, People's Republic of China
| |
Collapse
|
18
|
Zhang Z, Tan G, Kumar A, Liu H, Yang X, Gao W, Bai L, Chang H, Kuang Y, Li Y, Sun X. First-principles study of oxygen evolution on Co3O4 with short-range ordered Ir doping. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Zhang Y, Liu D, Zhang Y, Qian Y, Li C, Qu Z, Xu R, Wei Q. Highly sensitive photoelectrochemical neuron specific enolase analysis based on cerium and silver Co-Doped Sb 2WO 6. Biosens Bioelectron 2022; 203:114047. [PMID: 35123314 DOI: 10.1016/j.bios.2022.114047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
A signal-enhanced photoelectrochemical immunoassay technique for detecting neuron specific enolase (NSE) was proposed. As a photoactive matrix, (Ce,Ag):Sb2WO6 was firstly investigated via doping Ce and Ag into Sb2WO6. It could be found that the presence of Ce and Ag not only had enormous variation on the morphology of Sb2WO6, but also showed excellent PEC behavior. In order to further improve the visible light utilization rate of (Ce,Ag):Sb2WO6, In2S3 was modified onto the surface of (Ce,Ag):Sb2WO6 to enhance visible light absorption. In addition, the CdS/PDA was served as a secondary antibody marker to further amplify signal. Especially, PDA as an electron donor could effectively remove photogenerated holes. Meanwhile, the good matching cascade band-edge levels between CdS and Sb2WO6 could promote photoelectron migration, improve the PEC response, and achieve sensitive detection of NSE. Under the selected excellent conditions, the photocurrent can linearly increase with the increase of NSE concentration in the operating range from 0.1 pg/mL to 50 ng/mL, and the limit of detection is 1.57 fg/mL. The constructed immunosensor also exhibits satisfactory stability, selectivity, and reproducibility, and it creates conditions for the detection of other biomolecules.
Collapse
Affiliation(s)
- Yong Zhang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, China; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China.
| | - Deling Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| | - Yingying Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| | - Yanrong Qian
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| | - Chenchen Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| | - Zhengfang Qu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| | - Rui Xu
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, 250022, China
| |
Collapse
|
20
|
Du Y, Zhang K, Yao R, Wu Y, Zhao Q, Li J, Liu G. Ultra-small RuO 2/NHC nanocrystal electrocatalysts with efficient water oxidation activities in acidic media. Dalton Trans 2022; 51:17361-17367. [DOI: 10.1039/d2dt02781j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RuO2/NHC3 with ultra-small and abundant electrochemically active sites requires a low overpotential of 186 mV at 10 mA cm−2 for acidic OER and maintains wonderful long-term stability within 27 h in 0.5 M H2SO4.
Collapse
Affiliation(s)
- Yujie Du
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Kaiyang Zhang
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Rui Yao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Yun Wu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Qiang Zhao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Jinping Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Guang Liu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| |
Collapse
|
21
|
He X, Liu B, Zhang S, Li H, Liu J, Sun Z, Chang H. Nickel Nitrate Hydroxide Holey Nanosheets for Efficient Oxygen Evolution Electrocatalysis in Alkaline Condition. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Zhao R, Wang Z, Xu Q, Niu X, Han Y, Qin Y, Wang Q. Self-supported amorphous iridium oxide catalysts for highly efficient and durable oxygen evolution reaction in acidic media. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Xu K, Zhu Z, Guo W, Zhang H, Yu T, Wei W, Liang W, Zhang D, He M, Yang T. Cerium oxide modified iridium nanorods for highly efficient electrochemical water splitting. Chem Commun (Camb) 2021; 57:8798-8801. [PMID: 34382624 DOI: 10.1039/d1cc02580e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Ir/CeO2 composite catalyst with Ir nanorods (NRs) on amorphous CeO2 was synthesized through a facile one-pot hydrothermal method, which shows excellent activity towards hydrogen evolution and oxygen evolution in alkaline media, even superior to the performance of commercial Pt/C, IrO2 and RuO2 catalysts. The enhanced performance could be attributed to the interfacial electron synergistic effect between Ir and CeO2.
Collapse
Affiliation(s)
- Kai Xu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|