1
|
Zhang S, Lv J, Zhou Z, Geng PX, Li D, Qian R, Ju H. A Modular Engineered DNA Nanodevice for Precise Profiling of Telomerase RNA Location and Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409344. [PMID: 39731326 PMCID: PMC11831533 DOI: 10.1002/advs.202409344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/08/2024] [Indexed: 12/29/2024]
Abstract
Increased telomerase activity has been considered as a conspicuous sign of human cancers. The catalytic cores of telomerase involve a reverse transcriptase and the human telomerase RNA (hTR). However, current detection of telomerase is largely limited to its activity at the tissue and single-cell levels. To reveal the precise distribution of subcellular hTR and telomerase activity, here a modular engineered DNA nanodevice (DNA-ND) is designed capable of imaging hTR and telomerase activity in cytoplasm and nucleus, enabling colocalization analysis. DNA-ND is a modular DNA complex comprising hTR and telomerase activity detection modules, which respectively sense intercellular hTR and telomerase activity via target-sensitive allosteric transition of DNA switches, actuating orthogonal activation of fluorescence signals to achieve in situ co-imaging of hTR and telomerase activity. By integrating DNA-ND with specific localized signals, the DNA-ND based precise profiling of colocalization of hTR and telomerase activity in different cell lines as well as their dynamic changes during pharmacological interventions is demonstrated. Notably, the results suggest that the locations of hTR and telomerase activity are not exactly overlapped, indicating the influence of intracellular environment on the binding of hTR to telomerase.
Collapse
Affiliation(s)
- Shi‐Yi Zhang
- Key Laboratory for Advanced MaterialsFeringa Nobel Prize Scientist Joint Research CenterJoint International Laboratory for Precision ChemistryFrontiers Science Center for Materiobiology & Dynamic ChemistrySchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Jian Lv
- Key Laboratory for Advanced MaterialsFeringa Nobel Prize Scientist Joint Research CenterJoint International Laboratory for Precision ChemistryFrontiers Science Center for Materiobiology & Dynamic ChemistrySchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Ze‐Rui Zhou
- Key Laboratory for Advanced MaterialsFeringa Nobel Prize Scientist Joint Research CenterJoint International Laboratory for Precision ChemistryFrontiers Science Center for Materiobiology & Dynamic ChemistrySchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Peter X. Geng
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Da‐Wei Li
- Key Laboratory for Advanced MaterialsFeringa Nobel Prize Scientist Joint Research CenterJoint International Laboratory for Precision ChemistryFrontiers Science Center for Materiobiology & Dynamic ChemistrySchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Ruo‐Can Qian
- Key Laboratory for Advanced MaterialsFeringa Nobel Prize Scientist Joint Research CenterJoint International Laboratory for Precision ChemistryFrontiers Science Center for Materiobiology & Dynamic ChemistrySchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
2
|
Chen Q, Chen S, Chen Z, Tang K, Zeng L, Sun W, Wu F, Chen J, Lan J. Nucleic acid-functionalized upconversion luminescence biosensor based on strand displacement-mediated signal amplification for the detection of trivalent chromium ions. Anal Chim Acta 2024; 1328:343161. [PMID: 39266193 DOI: 10.1016/j.aca.2024.343161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Rapid industrial development has generated serious pollution, including the presence of toxic and harmful heavy metal ions. Among them, trivalent chromium ion (Cr3+) is a very important element that poses a threat to life and health in our industrial wastewater pollution. Thus, it is important to develop efficient fluorescence methods for Cr3+ detection. In this study, an upconversion luminescence biosensor for detecting Cr3+ was constructed based on a DNAzyme, strand displacement reaction (SDR), and DNA-functionalized upconversion nanoparticles (UCNPs). RESULTS The sulfonate-rich poly (sodium 4-styrene sulfonate) (PSS) was modified onto the surface of UCNPs, forming UCNPs@PSS. Then, NH2-Capture probe DNA (NH2-Cp) was further modified onto the UCNPs@PSS surface through sulfonylation, resulting in UCNPs@PSS@NH2-Cp. The DNAzyme activated by Cr3+ triggered the release of the primer probe (Pp), which initiated the SDR system cycle, thereby releasing a tetramethylrhodamine (TAMRA)-modified signal probe (TAMRA-Sp). Finally, UCNPs@PSS@NH2-Cp bound to TAMRA-Sp through complementary base pairing, causing UCNPs and TAMRA to approach each other. Because of the luminescence resonance energy transfer (LRET) mechanism, the upconversion luminescence (UCL) signal of the UCNPs was quenched by TAMRA, enabling the detection of Cr3+ by the change of I585/I545 ratio. This biosensor has good stability, selectivity, and sensitivity, with a linear range of 0.5-75 nM and a detection limit of 0.135 nM for Cr3+. SIGNIFICANCE AND NOVELTY Firstly, based on LRET between UCNPs and TAMRA, the quantitative analysis of Cr3+ is achieved through the changes of ratio fluorescence. Secondly, the specificity of the biosensor is improved by utilizing the specific recognition of DNA enzymes. Thirdly, the signal amplification technology of the SDR cycle greatly improves the sensitivity of biosensor. This biosensor will be useful for future environmental safety monitoring and biopsy of biological fluids.
Collapse
Affiliation(s)
- Qiang Chen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Sisi Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Zhiwei Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Keren Tang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Lupeng Zeng
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Weiming Sun
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Fang Wu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Jinghua Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, China.
| | - Jianming Lan
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
3
|
Yang J, Zhang R, Liu J, Xiong R, He Y, Luo X, Yang X. Well-ordered Au@Ag NBPs/SiO 2 nanoarray for sensitive detection of chloramphenicol via DNAzyme-assisted SERS sensing. Food Chem 2024; 454:139806. [PMID: 38820635 DOI: 10.1016/j.foodchem.2024.139806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
Misuse of chloramphenicol (CAP) can lead to severe food safety issues. Therefore, the accurate and sensitive detection of CAP residues is important for public health. Herein, a convenient and reliable interfacial self-assembly technique was used to form a uniform Au@Ag nanobipyramids (NBPs) film on an ordered SiO2 nanosphere array (SiO2 NS), which served as a Raman-enhanced substrate. In conjunction with a deoxyribonucleic acid enzyme-induced signal amplification strategy, we developed a novel surface-enhanced Raman scattering (SERS) biosensor for the selective and sensitive detection of CAP. The biosensor exhibited a detection limit of 6.42 × 10-13 mol·L-1 and a detection range of 1.0 × 10-12-1.0 × 10-6 mol·L-1. The biosensor could detect CAP in spiked milk samples with a high accuracy, and its recovery rates ranged from 97.88% to 107.86%. The as-developed biosensor with the advantages of high sensitivity and high selectivity offers a new strategy for the rapid, reliable and sensitive detection of CAP, rendering it applicable to food safety control.
Collapse
Affiliation(s)
- Jia Yang
- Xihua University, Chengdu 610039, PR China
| | | | | | | | - Yi He
- Xihua University, Chengdu 610039, PR China.
| | | | - Xiao Yang
- Xihua University, Chengdu 610039, PR China
| |
Collapse
|
4
|
Sun P, Gou H, Che X, Chen G, Feng C. Recent advances in DNAzymes for bioimaging, biosensing and cancer therapy. Chem Commun (Camb) 2024; 60:10805-10821. [PMID: 39248025 DOI: 10.1039/d4cc03774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
DNAzymes, a class of single-stranded catalytic DNA with good stability, high catalytic activity, and easy synthesis, functionalization and modification properties, have garnered significant interest in the realm of biosensing and bioimaging. Their integration with fluorescent dyes or chemiluminescent moieties has led to remarkable bioimaging outcomes, while DNAzyme-based biosensors have demonstrated robust sensitivity and selectivity in detecting metal ions, nucleic acids, proteins, enzyme activities, exosomes, bacteria and microorganisms. In addition, by delivering DNAzymes into tumor cells, the mRNA therein can be cleaved to regulate the expression of corresponding proteins, which has further propelled the application of DNAzymes in cancer gene therapy and synergistic therapy. This paper reviews the strategies for screening attractive DNAzymes such as SELEX and high-throughput sequencing, and briefly describes the amplification strategies of DNAzymes, which mainly include catalytic hairpin assembly (CHA), DNA walker, hybridization chain reaction (HCR), DNA origami, CRISPR-Cas12a, rolling circle amplification (RCA), and aptamers. In addition, applications of DNAzymes in bioimaging, biosensing, and cancer therapy are also highlighted. Subsequently, the possible challenges of these DNAzymes in practical applications are further pointed out, and future research directions are suggested.
Collapse
Affiliation(s)
- Pei Sun
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Hongquan Gou
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
| | - Xinran Che
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
5
|
Feng X, Bi X, Feng J, Hu S, Wang Y, Zhao S, Zhang L. Proximity-Induced Bipedal DNA Walker for Accurately Visualizing microRNA in Living Cancer Cell. Anal Chem 2024; 96:10669-10676. [PMID: 38913536 DOI: 10.1021/acs.analchem.4c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
DNA walker, a type of dynamic DNA device that is capable of moving progressively along prescribed walking tracks, has emerged as an ideal and powerful tool for biosensing and bioimaging. However, most of the reported three-dimensional (3D) DNA walker were merely designed for the detection of a single target, and they were not capable of achieving universal applicability. Herein, we reported for the first time the development of a proximity-induced 3D bipedal DNA walker for imaging of low abundance biomolecules. As a proof of concept, miRNA-34a, a biomarker of breast cancer, is chosen as the model system to demonstrate this approach. In our design, the 3D bipedal DNA walker can be generated only by the specific recognition of two proximity probes for miRNA-34a. Meanwhile, it stochastically and autonomously traveled on 3D tracks (gold nanoparticles) via catalytic hairpin assembly (CHA), resulting in the amplified fluorescence signal. In comparison with some conventional DNA walkers that were utilized for living cell imaging, the 3D DNA walkers induced by proximity ligation assay can greatly improve and ensure the high selectivity of bioanalysis. By taking advantage of these unique features, the proximity-induced 3D bipedal DNA walker successfully realizes accurate and effective monitoring of target miRNA-34a expression levels in living cells, affording a universal, valuable, and promising platform for low-abundance cancer biomarker detection and accurate identification of cancer.
Collapse
Affiliation(s)
- Xiyuan Feng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xiaofeng Bi
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jinyue Feng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yumin Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
6
|
Hu X, Zhang D, Huang L, Zeng Z, Su Y, Chen S, Lin X, Hong S. Construction of a Functional Nucleic Acid-Based Artificial Vesicle-Encapsulated Composite Nanoparticle and Its Application in Retinoblastoma-Targeted Theranostics. ACS Biomater Sci Eng 2024; 10:1830-1842. [PMID: 38408449 DOI: 10.1021/acsbiomaterials.3c01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Retinoblastoma (RB) is an aggressive tumor of the infant retina. However, the ineffective targeting of its theranostic agents results in poor imaging and therapeutic efficacy, which makes it difficult to identify and treat RB at an early stage. In order to improve the imaging and therapeutic efficacy, we constructed an RB-targeted artificial vesicle composite nanoparticle. In this study, the MnO2 nanosponge (hMNs) was used as the core to absorb two fluorophore-modified DNAzymes to form the Dual/hMNs nanoparticle; after loaded with the artificial vesicle derived from human red blood cells, the RB-targeted DNA aptamers were modified on the surface, thus forming the Apt-EG@Dual/hMNs complex nanoparticle. The DNA aptamer endows this nanoparticle to target the nucleolin-overexpressed RB cell membrane specifically and enters cells via endocytosis. The nanoparticle could release fluorophore-modified DNAzymes and supplies Mn2+ as a DNAzyme cofactor and a magnetic resonance imaging (MRI) agent. Subsequently, the DNAzymes can target two different mRNAs, thereby realizing fluorescence/MR bimodal imaging and dual-gene therapy. This study is expected to provide a reliable and valuable basis for ocular tumor theranostics.
Collapse
Affiliation(s)
- Xueqi Hu
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Dongdong Zhang
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Linjie Huang
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Zheng Zeng
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Yina Su
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Shanshan Chen
- Department of Clinical Laboratory, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Xiahui Lin
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Shanni Hong
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| |
Collapse
|
7
|
Zhu X, Xu J, Ling G, Zhang P. Tunable metal-organic frameworks assist in catalyzing DNAzymes with amplification platforms for biomedical applications. Chem Soc Rev 2023; 52:7549-7578. [PMID: 37817667 DOI: 10.1039/d3cs00386h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Various binding modes of tunable metal organic frameworks (MOFs) and functional DNAzymes (Dzs) synergistically catalyze the emergence of abundant functional nanoplatforms. Given their serial variability in formation, structural designability, and functional controllability, Dzs@MOFs tend to be excellent building blocks for the precise "intelligent" manufacture of functional materials. To present a clear outline of this new field, this review systematically summarizes the progress of Dz integration into MOFs (MOFs@Dzs) through different methods, including various surface infiltration, pore encapsulation, covalent binding, and biomimetic mineralization methods. Atomic-level and time-resolved catalytic mechanisms for biosensing and imaging are made possible by the complex interplay of the distinct molecular structure of Dzs@MOF, conformational flexibility, and dynamic regulation of metal ions. Exploiting the precision of DNAzymes, MOFs@Dzs constructed a combined nanotherapy platform to guide intracellular drug synthesis, photodynamic therapy, catalytic therapy, and immunotherapy to enhance gene therapy in different ways, solving the problems of intracellular delivery inefficiency and insufficient supply of cofactors. MOFs@Dzs nanostructures have become excellent candidates for biosensing, bioimaging, amplification delivery, and targeted cancer gene therapy while emphasizing major advancements and seminal endeavors in the fields of biosensing (nucleic acid, protein, enzyme activity, small molecules, and cancer cells), biological imaging, and targeted cancer gene delivery and gene therapy. Overall, based on the results demonstrated to date, we discuss the challenges that the emerging MOFs@Dzs might encounter in practical future applications and briefly look forward to their bright prospects in other fields.
Collapse
Affiliation(s)
- Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Jiaqi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
8
|
Ling P, Wang L, Sun X, Xu W, Yang P, Tang C. A cell-surface-anchored DNA probe coupled with hybridization chain reaction enzyme-free dual signal amplification for sensitive electrochemical detection of the cellular microenvironment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3165-3172. [PMID: 37337716 DOI: 10.1039/d3ay00697b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The cellular microenvironment plays key roles in regulating physiological processes. However, it is still a challenge to detect it with quantification. Here, a simple, biocompatible, and universal strategy based on cell surface-anchored specific DNAzymes and hybridization chain reaction enzyme-free signal amplification for cellular microenvironment electrochemical detection is presented. In this strategy, the cell could be captured on the surface of the electrode via aptamer-target recognition. On the other hand, the DNAzyme hybridized with the substrate strand as a metal ion probe was anchored on the surface of the cell. In the presence of metal ions, the substrate strand could be cleaved into two fragments by the DNAzyme and released from the cell surface. Then, the DNA modified gold nanoparticles (AuNPs) could be captured on the electrode. Subsequently, an alternative hybridization reaction of two hairpin probes was triggered by the carried initiators forming nicked double helices. For signal readout, hemin could be inserted into the double-helix DNA long chain via electrostatic interaction, which could electro-reduce hydrogen peroxide to generate an electrochemical signal. Based on the intrinsic advantages of DNAzymes, including rapid kinetics, high sensitivity, and high selectivity, and the signal amplification strategy, this method should be able to monitor and semi-quantify target metal ions in the cellular microenvironment. Furthermore, this method shows potential for various targets by employing different DNA probes in the cellular microenvironment, providing a platform for bioanalysis.
Collapse
Affiliation(s)
- Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Linyu Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xinyu Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Wenwen Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Pei Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Chuanye Tang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
9
|
Sardaru MC, Marangoci NL, Palumbo R, Roviello GN, Rotaru A. Nucleic Acid Probes in Bio-Imaging and Diagnostics: Recent Advances in ODN-Based Fluorescent and Surface-Enhanced Raman Scattering Nanoparticle and Nanostructured Systems. Molecules 2023; 28:3561. [PMID: 37110795 PMCID: PMC10141977 DOI: 10.3390/molecules28083561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Raman nanoparticle probes are a potent class of optical labels for the interrogation of pathological and physiological processes in cells, bioassays, and tissues. Herein, we review the recent advancements in fluorescent and Raman imaging using oligodeoxyribonucleotide (ODN)-based nanoparticles and nanostructures, which show promise as effective tools for live-cell analysis. These nanodevices can be used to investigate a vast number of biological processes occurring at various levels, starting from those involving organelles, cells, tissues, and whole living organisms. ODN-based fluorescent and Raman probes have contributed to the achievement of significant advancements in the comprehension of the role played by specific analytes in pathological processes and have inaugurated new possibilities for diagnosing health conditions. The technological implications that have emerged from the studies herein described could open new avenues for innovative diagnostics aimed at identifying socially relevant diseases like cancer through the utilization of intracellular markers and/or guide surgical procedures based on fluorescent or Raman imaging. Particularly complex probe structures have been developed within the past five years, creating a versatile toolbox for live-cell analysis, with each tool possessing its own strengths and limitations for specific studies. Analyzing the literature reports in the field, we predict that the development of ODN-based fluorescent and Raman probes will continue in the near future, disclosing novel ideas on their application in therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Monica-Cornelia Sardaru
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
- The Research Institute of the University of Bucharest (ICUB), 90 Sos. Panduri, 050663 Bucharest, Romania
| | - Narcisa-Laura Marangoci
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Alexandru Rotaru
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
- Institute for Research, Innovation and Technology Transfer, UPS “Ion Creanga”, Ion Creanga Str. 1, MD2069 Chisinau, Moldova
| |
Collapse
|
10
|
Sun Y, Dong Q, Yang H, Song W, Zhou H. CuS quantum dots activated DNAzyme for ratiometric electrochemical detection of telomerase activity. Anal Chim Acta 2023; 1248:340884. [PMID: 36813453 DOI: 10.1016/j.aca.2023.340884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
Telomerase activity detection has attracted much attention concerning its importance for early cancer diagnosis. Here, we established a ratiometric electrochemical biosensor for telomerase detection based on CuS quantum dots (CuS QDs) dependent DNAzyme-regulated dual signals. The telomerase substrate probe was used as the linker to combine the DNA fabricated magnetic beads and CuS QDs. In this way, telomerase extended the substrate probe with repeated sequence to from hairpin structure, releasing CuS QDs as an input to DNAzyme modified electrode. DNAzyme was cleaved with high current of ferrocene (Fc) and low current of methylene blue (MB). On the basis of the obtained ratiometric signals, telomerase activity detection was achieved in the range of 1.0 × 10-12-1.0 × 10-6 IU/L, with the limit of detection down to 2.75 × 10-14 IU/L. Moreover, telomerase activity from HeLa extracts was also tested to verify the clinical application.
Collapse
Affiliation(s)
- Yujie Sun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qi Dong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Huan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Weiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
11
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
12
|
Wang J, Zhang X, Shi P, Cao B, Wang B. A DNA Finite-State Machine Based on the Programmable Allosteric Strategy of DNAzyme. Int J Mol Sci 2023; 24:ijms24043588. [PMID: 36834996 PMCID: PMC9963683 DOI: 10.3390/ijms24043588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Living organisms can produce corresponding functions by responding to external and internal stimuli, and this irritability plays a pivotal role in nature. Inspired by such natural temporal responses, the development and design of nanodevices with the ability to process time-related information could facilitate the development of molecular information processing systems. Here, we proposed a DNA finite-state machine that can dynamically respond to sequential stimuli signals. To build this state machine, a programmable allosteric strategy of DNAzyme was developed. This strategy performs the programmable control of DNAzyme conformation using a reconfigurable DNA hairpin. Based on this strategy, we first implemented a finite-state machine with two states. Through the modular design of the strategy, we further realized the finite-state machine with five states. The DNA finite-state machine endows molecular information systems with the ability of reversible logic control and order detection, which can be extended to more complex DNA computing and nanomachines to promote the development of dynamic nanotechnology.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ben Cao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
- Correspondence: ; Tel.: +86-0411-87402106
| |
Collapse
|
13
|
Wang B, Wang M, Peng F, Fu X, Wen M, Shi Y, Chen M, Ke G, Zhang XB. Construction and Application of DNAzyme-based Nanodevices. Chem Res Chin Univ 2023; 39:42-60. [PMID: 36687211 PMCID: PMC9841151 DOI: 10.1007/s40242-023-2334-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
The development of stimuli-responsive nanodevices with high efficiency and specificity is very important in biosensing, drug delivery, and so on. DNAzymes are a class of DNA molecules with the specific catalytic activity. Owing to their unique catalytic activity and easy design and synthesis, the construction and application of DNAzymes-based nanodevices have attracted much attention in recent years. In this review, the classification and properties of DNAzyme are first introduced. The construction of several common kinds of DNAzyme-based nanodevices, such as DNA motors, signal amplifiers, and logic gates, is then systematically summarized. We also introduce the application of DNAzyme-based nanodevices in sensing and therapeutic fields. In addition, current limitations and future directions are discussed.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Menghui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Fangqi Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Xiaoyi Fu
- Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, 310022 P. R. China
| | - Mei Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Yuyan Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Mei Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| |
Collapse
|
14
|
DNA walker for signal amplification in living cells. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Wang Q, Wang Z, He Y, Xiong B, Li Y, Wang F. Chemical and structural modification of RNA-cleaving DNAzymes for efficient biosensing and biomedical applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Liu Y, Zhu P, Huang J, He H, Ma C, Wang K. Integrating DNA nanostructures with DNAzymes for biosensing, bioimaging and cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Ren X, Hu K, Qin L, Wu D, Guo Z, Wang S, Hu Y. Development of ZnO nanoflowers-assisted DNAzyme-based electrochemical platform for invertase and glucose oxidase-dominated biosensing. Anal Chim Acta 2022; 1232:340438. [DOI: 10.1016/j.aca.2022.340438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
|
18
|
Li XQ, Luo D, Song J, Jia YL, Song J, Chen HY, Xu JJ. Near-infrared photothermally activated DNA nanotweezers for imaging ATP in living cells. Chem Commun (Camb) 2022; 58:8210-8213. [PMID: 35789233 DOI: 10.1039/d2cc02791g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By assembling nanotweezers with ATP-splitting aptamers on gold nanorods (AuT123L), we constructed a near-infrared-activated ATP sensing device that could time-controllably image ATP levels in living cells. By replacing the aptamers on the nanotweezers, the nanoplatform can be applied to other important biomolecules, opening up more possibilities for the study of time controllable nanodevices.
Collapse
Affiliation(s)
- Xiao-Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Dan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Juan Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Yi-Lei Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Juan Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
19
|
Zhang Q, Liang Y, Xing H. Caging-Decaging Strategies to Realize Spatiotemporal Control of DNAzyme Activity for Biosensing and Bioimaging. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Wang S, He B, Ren W, Suo Z, Xu Y, Wei M, Jin H. Triple-Helix Molecular Switch Triggered Cleavage Effect of DNAzyme for Ultrasensitive Electrochemical Detection of Chloramphenicol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24681-24689. [PMID: 35579490 DOI: 10.1021/acsami.2c03234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The abuse of chloramphenicol (CAP) in animal-derived products leads to serious food safety problems, so the sensitive and accurate determination of CAP residues has great noteworthiness for public health. Herein, we present a novel electrochemical aptasensor that incorporates a poly(diallyldimethylammonium chloride) functionalized graphene/Ag@Au nanosheets (PDDA-Gr/Ag@Au NSs) composite modified electrode and a DNAzyme signal amplification effect triggered by a triple-helix molecular switch (THMS) for detecting CAP. The PDDA-Gr/Ag@Au NSs composite has the advantages of high surface area, great conductivity, and dispersibility and has successfully improved the electrochemical performance of the electrode. Specific interaction with CAP will cause the signal transduction probe (STP) to be released from the THMS. After that, the DNAzyme will be activated with the help of Pb2+ and remove the immobilized signal probe on the electrode surface. The signal change was recorded by square wave voltammetry (SWV) and led to an accurate quantification of CAP. With all these features, the proposed sensing strategy yielded a satisfactory analytical performance with linearity between 1 pM and 1 μM and a limit of detection of 18.6 fM. Furthermore, the aptasensor shows excellent specificity for CAP in the presence of other antibiotics and resists interference with other common metal ions. Importantly, the performance is not diminished when the constructed aptasensor is applied to measuring CAP in milk powder. This THMS-based method is easy to design, and alteration to different targets can be achieved by simply replacing the aptamer sequence in the THMS. Therefore, this method shows significant prospects as a flexible platform for accurate monitoring of antibiotic residues in foodstuffs.
Collapse
Affiliation(s)
- Senyao Wang
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| |
Collapse
|
21
|
Sun Y, Fang L, Han Y, Feng A, Liu S, Zhang K, Xu JJ. Reversible Ratiometric Electrochemiluminescence Biosensor Based on DNAzyme Regulated Resonance Energy Transfer for Myocardial miRNA Detection. Anal Chem 2022; 94:7035-7040. [PMID: 35467832 DOI: 10.1021/acs.analchem.2c00195] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Myocardial miRNAs in peripheral blood are closely related to the pathogenic process of myocardial infarction. Rapid identification and accurate quantification of myocardial miRNAs are of great significance to clinical interventions for treating cardiovascular lesions. Therefore, a ratiometric electrochemiluminescence (ECL) biosensor integrating DNAzyme with a resonance energy transfer (RET) system was designed to detect myocardial miRNA. The dual-signal system was composed of rA marked substrate strand functionalized CdTe quantum dots (QDs) as reductive-oxidative (R-O) emitters and Cy5-labeled strand-functionalized Ru(bpy)32+-filled silica nanoparticles (RuSi NPs) as oxidative-reductive (O-R) emitters. In the presence of target miRNA, DNAzyme was activated to cut substrate strands on the CdTe QDs and release triggers for opening hairpin probes. Then, the Cy5 molecule-labeled hairpin DNA on the RuSi NPs was opened to introduce Cy5 molecules and RuSi NPs into the system. The R-O ECL was quenched by ECL-RET between CdTe QDs and Cy5 molecules and the O-R ECL was introduced by the RuSi NPs. In this way, based on the simultaneous changing of the ECL signal, the dual-potential dynamic signal ratiometric ECL sensing platform was developed. By measuring the ratio of O-R ECL signal to R-O ECL signal, the concentration of miRNA-499 was accurately quantified in the range of 10 fM to 10 nM, and the detection limit was as low as 2.44 fM (S/N = 3). This DNAzyme guided dual-potential ratiometric ECL method provides a sensitive and reliable method for myocardial miRNA detection, and it has great potential in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yudie Sun
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, People's Republic of China
| | - La Fang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, People's Republic of China
| | - Yunxiang Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, People's Republic of China
| | - Aobo Feng
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, People's Republic of China
| | - Shengjun Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, People's Republic of China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, People's Republic of China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
22
|
Xu W, Zhang Y, Chen H, Dong J, Khan R, Shen J, Liu H. DNAzyme signal amplification based on Au@Ag core-shell nanorods for highly sensitive SERS sensing miRNA-21. Anal Bioanal Chem 2022; 414:4079-4088. [PMID: 35419693 DOI: 10.1007/s00216-022-04053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Here, we developed a surface-enhanced Raman scattering (SERS) sensor based on functionalized Au@Ag core-shell nanorods (Au@Ag NRs) and cascade DNAzyme amplifier (CSA) for sensitive and accurate determination of microRNA-21 (miRNA-21). The as-prepared SERS nanoprobes were composed of a thiol-modification hairpin probe (HP2)-functionalized Au@Ag NRs and hairpin DNAzyme (HP1-Dz). Compared with original gold nanorods, the silver shell caused an enhancement of plasmonic properties, resulting in a significant enhancement of Raman signals. In the presence of target miRNAs, the hairpin construction of HP1-Dz changed due to DNA/RNA hybridization; subsequently, the DNAzyme-catalyzed cleaving process changed, and the Raman signals of the SERS nanoprobes gradually "turned off" with time elapse because of the dissociation of the Raman reporter from the surface of Au@Ag NRs. Hence, based on this principle, the proposed SERS sensor exhibited good linearity in the range 0.5 fM to 10 nM for miRNA-21 detection with a detection limit (LOD) of 0.5 fM. The proposed SERS platform has potential application in quantitative and precise detection of miRNA-21 in human serum.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China.
| | - Yu Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hao Chen
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Jinhua Dong
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Ranjha Khan
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China
| | - Jianjun Shen
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China
| | - Honglin Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
23
|
Huang Z, Wang X, Wu Z, Jiang JH. Recent Advances on DNAzyme-Based Sensing. Chem Asian J 2022; 17:e202101414. [PMID: 35156764 DOI: 10.1002/asia.202101414] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/09/2022] [Indexed: 11/08/2022]
Abstract
DNAzymes are functional nucleic acid with catalytic activity. Owing to the high sensitivity, excellent programmability, and flexible obtainment through in vitro selection, RNA-cleaving DNAzymes have attracted increasing interest in developing DNAzyme-based sensors. In this review, we summarize the recent advances on DNAzyme-based sensing applications. We initially conclude two general strategies to expand the library of DNAzymes, in vitro selection to discover new DNAzymes towards different targets of interest and chemical modifications to endue the existing DNAzymes with new function or properties. We then discuss the recent applications of DNAzyme-based sensors for the detection of a variety of important biomolecules both in vitro and in vivo . Finally, perspectives on the challenges and future directions in the development of DNAzyme-based sensors are provided.
Collapse
Affiliation(s)
- Zhimei Huang
- Hunan University, College of Chemistry and Chemical Engineering, CHINA
| | - Xiangnan Wang
- Hunan University of Technology and Business, College of Science, CHINA
| | - Zhenkun Wu
- Hunan University, State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics and College of Chemistry and Chemical Engineering, South of Lushan Road, 410082, Changsha, CHINA
| | - Jian-Hui Jiang
- Hunan University, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics; College of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
24
|
Jouha J, Xiong H. DNAzyme-Functionalized Nanomaterials: Recent Preparation, Current Applications, and Future Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105439. [PMID: 34802181 DOI: 10.1002/smll.202105439] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
DNAzyme-nanomaterial bioconjugates are a popular hybrid and have received major attention for diverse biomedical applications, such as bioimaging, biosensor development, cancer therapy, and drug delivery. Therefore, significant efforts are made to develop different strategies for the preparation of inorganic and organic nanoparticles (NPs) with specific morphologies and properties. DNAzymes functionalized with metal-organic frameworks (MOFs), gold nanoparticles (AuNPs), graphene oxide (GO), and molybdenum disulfide (MoS2 ) are introduced and summarized in detail in this review. Moreover, the focus is on representative examples of applications of DNAzyme-nanomaterials over recent years, especially in bioimaging, biosensing, phototherapy, and stimulation response delivery in living systems, with their several advantages and drawbacks. Finally, the perspective regarding the future directions of research addressing these challenges is also discussed and highlighted.
Collapse
Affiliation(s)
- Jabrane Jouha
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
25
|
Hong C, Wang Q, Chen Y, Gao Y, Shang J, Weng X, Liu X, Wang F. Intelligent demethylase-driven DNAzyme sensor for highly reliable metal-ion imaging in living cells. Chem Sci 2021; 12:15339-15346. [PMID: 34976354 PMCID: PMC8635203 DOI: 10.1039/d1sc05370a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022] Open
Abstract
The accurate intracellular imaging of metal ions requires an exquisite site-specific activation of metal-ion sensors, for which the pervasive epigenetic regulation strategy can serve as an ideal alternative thanks to its orthogonal control feature and endogenous cell/tissue-specific expression pattern. Herein, a simple yet versatile demethylation strategy was proposed for on-site repairing-to-activating the metal-ion-targeting DNAzyme and for achieving the accurate site-specific imaging of metal ions in live cells. This endogenous epigenetic demethylation-regulating DNAzyme system was prepared by modifying the DNAzyme with an m6A methylation group that incapacitates the DNAzyme probe, thus eliminating possible off-site signal leakage, while the cell-specific demethylase-mediated removal of methylation modification could efficiently restore the initial catalytic DNAzyme for sensing metal ions, thus allowing a high-contrast bioimaging in live cells. This epigenetic repair-to-activate DNAzyme strategy may facilitate the robust visualization of disease-specific biomarkers for in-depth exploration of their biological functions.
Collapse
Affiliation(s)
- Chen Hong
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Qing Wang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yuhui Gao
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China .,Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China .,Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| |
Collapse
|
26
|
Xu S, Liu Y, Zhou S, Zhang Q, Kasabov NK. DNA Matrix Operation Based on the Mechanism of the DNAzyme Binding to Auxiliary Strands to Cleave the Substrate. Biomolecules 2021; 11:1797. [PMID: 34944442 PMCID: PMC8698824 DOI: 10.3390/biom11121797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/21/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
Numerical computation is a focus of DNA computing, and matrix operations are among the most basic and frequently used operations in numerical computation. As an important computing tool, matrix operations are often used to deal with intensive computing tasks. During calculation, the speed and accuracy of matrix operations directly affect the performance of the entire computing system. Therefore, it is important to find a way to perform matrix calculations that can ensure the speed of calculations and improve the accuracy. This paper proposes a DNA matrix operation method based on the mechanism of the DNAzyme binding to auxiliary strands to cleave the substrate. In this mechanism, the DNAzyme binding substrate requires the connection of two auxiliary strands. Without any of the two auxiliary strands, the DNAzyme does not cleave the substrate. Based on this mechanism, the multiplication operation of two matrices is realized; the two types of auxiliary strands are used as elements of the two matrices, to participate in the operation, and then are combined with the DNAzyme to cut the substrate and output the result of the matrix operation. This research provides a new method of matrix operations and provides ideas for more complex computing systems.
Collapse
Affiliation(s)
- Shaoxia Xu
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China;
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China;
| | - Shihua Zhou
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China;
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China;
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China;
| | - Nikola K. Kasabov
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland 1010, New Zealand;
- Intelligent Systems Research Center, Ulster University, Londonderry BT52 1SA, UK
| |
Collapse
|
27
|
Li XQ, Liu XN, Jia YL, Luo XL, Chen HY, Xu JJ. Dual Recognition DNA Triangular Prism Nanoprobe: Toward the Relationship between K + and pH in Lysosomes. Anal Chem 2021; 93:14892-14899. [PMID: 34709789 DOI: 10.1021/acs.analchem.1c04056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysosomal acidification is essential for its degradative function, and the flux of H+ correlated with that of K+ in lysosomes. However, there is little research on their correlation due to the lack of probes that can simultaneously image these two ions. To deeply understand the role of K+ in lysosomal acidification, here, we designed and fabricated a nanodevice using a K+-aptamer and two pH-triggered nanoswitches incorporated into a DNA triangular prism (DTP) as a dual signal response platform to simultaneously visualize K+ and pH in lysosomes by a fluorescence method. This strategy could conveniently integrate two signal recognition modules into one probe, so as to achieve the goal of sensitive detection of two kinds of signals in the same time and space, which is suitable for the detection of various signals with the correlation of concentration. By co-imaging both K+ and H+ in lysosomes, we found that the efflux of K+ was accompanied by a decrease of pH, which is of great value in understanding lysosomal acidification. Moreover, this strategy also has broad prospects as a versatile optical sensing platform for multiplexed analysis of other biomolecules in living cells.
Collapse
Affiliation(s)
- Xiao-Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiang-Nan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Lei Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xi-Liang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
28
|
Yao Y, Xue M, Mao W, Li Y, Zhu A, Chen T, Shen W, Liu C, Chen L, Tang S. Ni/Fe layered double hydroxide nanosheet/G-quadruplex as a new complex DNAzyme with highly enhanced peroxidase-mimic activity. Analyst 2021; 146:6470-6473. [PMID: 34609387 DOI: 10.1039/d1an01405f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel and low-cost DNAzyme, Ni/Fe layered double hydroxide (LDH) nanosheet/G-quadruplex (without hemin) with enhanced peroxidase-mimic activity was designed. The catalytic mechanism was investigated. The detection of Cu(II) in actual serum samples could be realized sensitively via this efficient DNAzyme-based method.
Collapse
Affiliation(s)
- Yao Yao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Mingliang Xue
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Wei Mao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Yana Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Anni Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Lizhuang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| |
Collapse
|
29
|
DNAzyme-based colorimetric assay and its application for lipopolysaccharide analysis assisted by oxime chemistry. Biosens Bioelectron 2021; 189:113379. [PMID: 34091284 DOI: 10.1016/j.bios.2021.113379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022]
Abstract
Herein, for the first time, we propose that the cleavage activity of DNAzyme is accompanied by the release of hydroxyl ions, which can be used for colorimetric assay. Subsequently, we further construct a colorimetric strategy for lipopolysaccharide (LPS) analysis by using this property. Detailly, DNAzyme is split into two fragments separately modified with aldehyde group and hydroxylamine group, which can be linked together through oxime chemistry and the presence of LPS can prevent the formation of oxime bond. The formed whole DNAzyme can mediate the release of hydroxyl ions serving for colorimetric signal output. Taking LPS as model targets, DNAzyme-based colorimetric assay has been successfully constructed. This work not only provides a colorimetric strategy to analyze DNAzyme activity, but also gives a new insight to enrich the versatility of DNAzymes and to enhance their multifunctionality.
Collapse
|
30
|
Abstract
This article provides a comprehensive review of biosensing with DNAzymes, providing an overview of different sensing applications while highlighting major progress and seminal contributions to the field of portable biosensor devices and point-of-care diagnostics. Specifically, the field of functional nucleic acids is introduced, with a specific focus on DNAzymes. The incorporation of DNAzymes into bioassays is then described, followed by a detailed overview of recent advances in the development of in vivo sensing platforms and portable sensors incorporating DNAzymes for molecular recognition. Finally, a critical perspective on the field, and a summary of where DNAzyme-based devices may make the biggest impact are provided.
Collapse
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | | | | | |
Collapse
|
31
|
Li X, Yang F, Gan C, Yuan R, Xiang Y. 3D DNA Scaffold-Assisted Dual Intramolecular Amplifications for Multiplexed and Sensitive MicroRNA Imaging in Living Cells. Anal Chem 2021; 93:9912-9919. [PMID: 34232629 DOI: 10.1021/acs.analchem.1c02124] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The simultaneous live-cell imaging of multiple intracellular and disease-related microRNAs (miRNAs) with low abundances is highly important to enhance specificity and accuracy for disease diagnosis. On the basis of the improved cell internalization and accelerated reaction kinetics, we develop a three-dimensional (3D) DNA nanoprobe that integrates intramolecular DNAzyme (intra-Dz) and catalytic hairpin assembly (intra-CHA) amplifications to simultaneously monitor multiple miRNAs in living cells. The sensing components are loaded on a DNA scaffold via the sticky-end hybridization of the DNA sequences to increase the local concentrations of the signal probes. The miRNA-21 and miRNA-155 target sequences can trigger intra-Dz and -CHA amplifications on the nanoprobes to show significantly amplified and distinct fluorescence at different wavelengths for simultaneously monitoring low levels of miRNAs. Real-time fluorescence microscopy reveals that such a 3D DNA nanoprobe design with the intra-Dz and -CHA amplifications can accelerate the reaction rate compared to that of the conventional free Dz and CHA because of the increased local concentrations of the sensing components. Importantly, the 3D DNA nanoprobe has desirable stability and biocompatibility and can be readily delivered into living cells to achieve multiplexed and highly sensitive sensing of intracellular miRNA-155 and miRNA-21 sequences. With the demonstration of its intracellular application, the developed 3D DNA nanoprobe thus holds promising potential for biological studies and accurate disease diagnosis.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
32
|
Cui MR, Gao F, Shu ZY, Ren SK, Zhu D, Chao J. Nucleic Acids-based Functional Nanomaterials for Bioimaging. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00169-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Chen C, Wu R, Wang B. Development of a neuron model based on DNAzyme regulation. RSC Adv 2021; 11:9985-9994. [PMID: 35423534 PMCID: PMC8695483 DOI: 10.1039/d0ra10515e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/02/2021] [Indexed: 12/25/2022] Open
Abstract
Neural networks based on DNA molecular circuits play an important role in molecular information processing and artificial intelligence systems. In fact, some DNA molecular systems can become dynamic units with the assistance of DNAzymes. The complex DNA circuits can spontaneously induce corresponding feedback behaviors when their inputs changed. However, most of the reported DNA neural networks have been implemented by the toehold-mediated strand displacement (TMSD) method. Therefore, it was important to develop a method to build a neural network utilizing the TMSD mechanism and adding a mechanism to account for modulation by DNAzymes. In this study, we designed a model of a DNA neuron controlled by DNAzymes. We proposed an approach based on the DNAzyme modulation of neuronal function, combing two reaction mechanisms: DNAzyme digestion and TMSD. Using the DNAzyme adjustment, each component simulating the characteristics of neurons was constructed. By altering the input and weight of the neuron model, we verified the correctness of the computational function of the neurons. Furthermore, in order to verify the application potential of the neurons in specific functions, a voting machine was successfully implemented. The proposed neuron model regulated by DNAzymes was simple to construct and possesses strong scalability, having great potential for use in the construction of large neural networks.
Collapse
Affiliation(s)
- Cong Chen
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| | - Ranfeng Wu
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| |
Collapse
|
34
|
Wu W, Fan Y, Tan B, Zhao H. Environmental and intercellular Pb 2+ ions determination based on encapsulated DNAzyme in nanoscale metal-organic frameworks. Mikrochim Acta 2020; 187:608. [PMID: 33058059 DOI: 10.1007/s00604-020-04586-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
With the merits of low cost, simple synthesis procedure, and high affinity for metal ions, deoxyribozyme (DNAzyme) have played important roles in metal ions detection. However, the intracellular applications of DNAzyme are limited because of enzymatic degradation and inefficient cellular uptake. To address these problems, GR-5 as model DNAzyme was encapsulated into zeolitic imidazolate frameworks-8 (ZIF-8) nanoparticles by biomimetic mineralization. The positively charged ZIF-8 with high DNAzyme loading capacity retained their ability to enter cells. Compared with free DNAzyme, the biomimetic mineralization synthesis method has greatly improved the stability of pristine DNAzyme. The as-synthesized DNAzyme@ZIF-8 composite exhibited good stability resisting DNase I, and was used as a sensitive fluorescent nanoprobe for Pb2+ determination and successfully achieved selective and sensitive determination for Pb2+ at λex/λem = 494/522 nm in real samples. The linear range for the determination of Pb2+ is 50 to 500 nM. Moreover, the highly active DNAzyme delivered by ZIF-8 allows noninvasive imaging of Pb2+ measurement in living cells. This strategy will extend the suitability of functional nucleic acids for in vitro and in vivo bioanalysis and bioimaging. Graphical abstract.
Collapse
Affiliation(s)
- Weihao Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yaofang Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Bing Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.,School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|