1
|
Ke L, Yang T, Liang C, Guan X, Li T, Jiao Y, Tang D, Huang D, Li S, Zhang S, He X, Xu H. Electroactive, Antibacterial, and Biodegradable Poly(lactic acid) Nanofibrous Air Filters for Healthcare. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37378641 DOI: 10.1021/acsami.3c05834] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Poly(lactic acid) (PLA)-based nanofibrous membranes (NFMs) hold great potential in the field of biodegradable filters for air purification but are largely limited by the relatively low electret properties and high susceptibility to bacteria. Herein, we disclosed a facile approach to the fabrication of electroactive and antibacterial PLA NFMs impregnated with a highly dielectric photocatalyst. In particular, the microwave-assisted doping (MAD) protocol was employed to yield Zn-doped titanium dioxide (Zn-TIO), featuring the well-defined anatase phase, a uniform size of ∼65 nm, and decreased band gap (3.0 eV). The incorporation of Zn-TIO (2, 6, and 10 wt %) into PLA gave rise to a significant refinement of the electrospun nanofibers, decreasing from the highest diameter of 581 nm for pure PLA to the lowest value of 264 nm. More importantly, dramatical improvements in the dielectric constants, surface potential, and electret properties were simultaneously achieved for the composite NFMs, as exemplified by a nearly 94% increase in surface potential for 3-day-aged PLA/Zn-TIO (90/10) compared with that of pure PLA. The well regulation of morphological features and promotion of electroactivity contributed to a distinct increase in the air filtration performance, as demonstrated by 98.7% filtration of PM0.3 with the highest quality factor of 0.032 Pa-1 at the airflow velocity of 32 L/min for PLA/Zn-TIO (94/6), largely surpassing pure PLA (89.4%, 0.011 Pa-1). Benefiting from the effective generation of reactive radicals and gradual release of Zn2+ by Zn-TIO, the electroactive PLA NFMs were ready to profoundly inactivate Escherichia coli and Staphylococcus epidermidis. The exceptional combination of remarkable electret properties and excellent antibacterial performance makes the PLA membrane filters promising for healthcare.
Collapse
Affiliation(s)
- Lv Ke
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Ting Yang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Chenyu Liang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xin Guan
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Tian Li
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yang Jiao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Daoyuan Tang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Donghui Huang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Shihang Li
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| |
Collapse
|
2
|
Improved design of metal fiber filter materials: Experiment and theory. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
3
|
Chen P, Zhou Q, Chen G, Wang Y, Lv J. Numerical simulation and experimental research of electrospun polyacrylonitrile Taylor cone based on multiphysics coupling. E-POLYMERS 2023. [DOI: 10.1515/epoly-2022-8106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Abstract
In the electrospinning process, the Taylor cone, as the jet source, directly affects the jet movement and the quality of the fiber membrane. Therefore, to understand the formation mechanism of the Taylor cone intuitively, a multiphysics coupling model that comprehensively considers the gravitational field, electrostatic field, and fluid field is established, and numerical simulations are conducted in this study. First, we construct a level-set function and analyze the force of the droplet. The gravity, surface tension, and electric field force are coupled to the incompressible Navier–Stokes equation as volume forces, and the nonconservation of the droplet area is solved by approximating the Dirac function with a smooth function. Subsequently, the deformation of the electrospun polyacrylonitrile (PAN) Taylor cone under different process parameters is simulated. Finally, data obtained from the numerical simulation and the average diameter of the electrospun PAN fiber membrane are analyzed via gray relational analysis. The results show that the volume force is the key factor affecting the average diameter of the fiber membrane (the correlation is 0.934). This article provides an effective reference and basis for the analysis and control of the electrospinning process.
Collapse
Affiliation(s)
- Peng Chen
- College of Mechanical Engineering, Donghua University , 2999 North Renmin Road, Songjiang , Shanghai 201620 , China
| | - Qihong Zhou
- College of Mechanical Engineering, Donghua University , 2999 North Renmin Road, Songjiang , Shanghai 201620 , China
- Donghua University, Engineering Research Center of Advanced Textile Machinery, Ministry of Education , Shanghai 201620 , China
| | - Ge Chen
- College of Mechanical Engineering, Donghua University , 2999 North Renmin Road, Songjiang , Shanghai 201620 , China
| | - Yuntao Wang
- College of Mechanical Engineering, Donghua University , 2999 North Renmin Road, Songjiang , Shanghai 201620 , China
| | - Jinghu Lv
- College of Mechanical Engineering, Donghua University , 2999 North Renmin Road, Songjiang , Shanghai 201620 , China
| |
Collapse
|
4
|
Kim JT, Lee CW, Jung HJ, Choi HJ, Salman A, Padmajan Sasikala S, Kim SO. Application of 2D Materials for Adsorptive Removal of Air Pollutants. ACS NANO 2022; 16:17687-17707. [PMID: 36354742 DOI: 10.1021/acsnano.2c07937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Air pollution is on the priority list of global safety issues, with the concern of fatal environmental and public health deterioration. 2D materials are potential adsorbent materials for environmental decontamination, owing to their high surface area, manageable interlayer binding, large surface-to-volume ratio, specific binding capability, and chemical, thermal, and mechanistic stability. Specifically, graphene oxide and reduced graphene oxide have been attracting attention, taking advantage of their low cost synthesis, excessive oxygen containing surface functionalities, and intrinsic aqueous dispersibility, making them desirable for the development of cost-effective, high performance air filters. Many different material designs have been proposed to expand their filtration capability, including the functionalization and integration with other metals and metal oxides, which act not only as binding agents to the target pollutants but also as antimicrobial agents. This review highlights the advantages and drawbacks of 2D materials for air filtration and summarizes the interrelationships among various strategies and the resultant filtration performance in terms of structural engineering, morphology control, and material compositions. Finally, potential future directions are suggested toward the idealized designs of 2D material based air filters.
Collapse
Affiliation(s)
- Jun Tae Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chan Woo Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hong Ju Jung
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee Jae Choi
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ali Salman
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Suchithra Padmajan Sasikala
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Bian Y, Zhang C, Wang H, Cao Q. Degradable Nanofiber for Eco-friendly Air Filtration: Progress and Perspectives. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Wu W, Ma L, Chen X, Liu L, Dong S, Zou H, Hao J. Polyelectrolyte aerogels with regeneration capacity for efficient removal of particulate matters. J Colloid Interface Sci 2022; 625:446-456. [PMID: 35738042 DOI: 10.1016/j.jcis.2022.06.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 10/31/2022]
Abstract
HYPOTHESIS With the rapid development of economy and global industrialization, the problem of air pollution has become a worldwide topic. The efficient filtration of airborne particulate matters (PMs) is critical for human health and environmental sustainability. EXPERIMENTS Herein, self-supporting bio-based polyelectrolyte aerogels were prepared and acted as the advanced filters for efficient removal of PMs. The natural choline cation (Ch+) or the organic cation, 1-butyl-3-methylimidazolium (Bmim+), are introduced into alginate (Alg-) to form the polyelectrolytes of ChAlg or BmimAlg due to the electrostatic interaction. By the directional freeze-drying in liquid N2, hierarchically porous aerogels with mechanical robustness, flexibility and thermo-stability were prepared. This specific structure may permit the polluted air to pass adequately through the aerogel channels, which are conducive to intercept various PMs with different diameters. FINDINGS As an example, the removal efficiency of ChAlg aerogels for PM10, PM2.5 and PM0.3 are respectively up to (99.24 ± 0.03)%, (99.22 ± 0.02)%, and (93.41 ± 0.22)% within 15 h durability test. One outstanding character lies in ensuring high removal efficiency, while achieving a good balance with the low pressure drop (10 Pa), which is driven by synergistic effect of passive trapping and electrostatic capture. Moreover, the polyelectrolyte aerogels exhibit excellent antimicrobial activity and regenerated capacity. These properties endow the aerogels of polyelectrolyte ChAlg or BmimAlg with remarkable potential as new advanced filters for masks and other personal protective equipment.
Collapse
Affiliation(s)
- Wenna Wu
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Lin Ma
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Xiaoli Chen
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Li Liu
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Huiling Zou
- Shandong Institute for Product Quality Inspection, Jinan 250100, PR China.
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
7
|
Su Q, Wei Z, Zhu C, Wang X, Zeng W, Wang S, Long S, Yang J. Multilevel structured PASS nanofiber filter with outstanding thermal stability and excellent mechanical property for high-efficiency particulate matter removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128514. [PMID: 35217345 DOI: 10.1016/j.jhazmat.2022.128514] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 05/25/2023]
Abstract
Particulate matter (PM) pollution from industrialization poses a great threat to people's health. Although fiber-based filters are used effectively to capture PM, the traditional filters with large diameter suffer from low filtration efficiency, high pressure drop and low temperature resistance. In this study, multilayer poly arylene sulfide sulfone (M-PASS) composite filter was designed and fabricated via electrospinning technology. The M-PASS composite filter is sandwich-structure. Due to the unique structure and composition, the M-PASS filter exhibited outstanding removal efficiency of 99.97 ± 0.0050%, extremely low air resistance of 44.3 ± 0.7 Pa, excellent quality factor (QF) of 0.19 ± 0.0019 Pa-1, and desirable mechanical strength of 7.0 ± 0.2 MPa. Furthermore, the as-prepared M-PASS filter can remain outstanding filtration performance at 200.0 ℃ due to the high thermal stability of PASS and the removal efficiency was still above 95.2 ± 0.4% after long-term filtration test. These results demonstrate that the structure of filter is the important one for air filtration and the M-PASS nanofiber filters have great potential in PM removal, especially under high temperature conditions.
Collapse
Affiliation(s)
- Qing Su
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China; College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhimei Wei
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering (Sichuan University), Chengdu 610065, China.
| | - Chuanren Zhu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Xiaojun Wang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Wei Zeng
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shaoyu Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengru Long
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Jie Yang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering (Sichuan University), Chengdu 610065, China
| |
Collapse
|
8
|
Chen K, Wu J, Yarin A. Electrospun membranes filtering 100 nm particles from air flow by means of the van der Waals and Coulomb forces. J Memb Sci 2022; 644:120138. [PMID: 36567692 PMCID: PMC9759630 DOI: 10.1016/j.memsci.2021.120138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022]
Abstract
Nonwoven fibrous filter membranes are widely used in filtration because of their low cost. They are less effective in intercepting airborne particles of the order of 100 nm, which is of the SARS-CoV-2 (COVID-19) virus's size. Many diseases, including COVID-19, predominantly spread by droplets released by breathing, coughing, sneezing, or medical procedures. It was shown that the smallest droplets can evaporate in air before settling, thus, making viruses airborne and easily penetrating even the best masks and filters. As a result, air-filtering membranes, which are capable of effective interception of ∼100 nm nanoparticles are highly desirable. A traditional way to improve filtration efficiency by overlapping several layers of nonwoven fabrics increases the required pressure drop, and thus, should be avoided as much as possible. Here, we propose and demonstrate an innovative approach to enhance performance of filtration membranes based on (i) a dramatic reduction in the fiber size, and (ii) metal coating of the fibers. The first component of this approach allows one to incorporate a novel physical mechanism of filtration, the short-range van der Waals forces, whereas the second one adds the long-range electric Coulomb forces if the oncoming nanoparticles are pre-charged and the metal-plated membrane grounded. In the present work, the ∼100 nm aluminum nanoparticles are filtered as a model of commensurate airborne single COVID-19 viruses, and Platinum is used as the sputter-coated material for the fiber coating. The resulting filtration efficiency enhanced by the electric Coulomb forces alone is increased by the factor of 1.77, while the filtration efficiency additionally facilitated by the van der Waals forces increased by the factor of 2.44. In comparison to the filter membranes with ∼500 nm fibers without the electric forces involved, the van-der-Waals-electric filter membrane with fibers ∼90 nm is 2.24 × 1.77 = 3.96 times more effective. The quality factor of a membrane which combines the van der Waals and Coulomb forces is 10.6 psi-1, which is almost three times that of a comparable membrane without the electric Coulomb force (with only van der Waals forces being used).
Collapse
Affiliation(s)
- Kailin Chen
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Chicago, IL, 60607-7022, USA
| | - Jingwei Wu
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Chicago, IL, 60607-7022, USA
| | - A.L. Yarin
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Chicago, IL, 60607-7022, USA,School of Mechanical Engineering, Korea University, Seoul 136-713, Republic of Korea,Corresponding author. School of Mechanical Engineering, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
9
|
Kim YI, Kim MW, An S, Yarin AL, Yoon SS. Reusable Filters Augmented with Heating Microfibers for Antibacterial and Antiviral Sterilization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:857-867. [PMID: 33355436 DOI: 10.1021/acsami.0c16471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Numerous threats to human health and ecosystems on earth exist due to air pollution and the spread of fatal diseases. Airborne pollutants and particulate matter (PM) pose serious public health risks. In addition, the emergence and spread of bacterial and viral diseases constantly threaten public health and safety. Although various approaches have been implemented thus far to protect humans from air pollution and exposure to diseases, several challenges remain to be addressed. In this study, we developed a hybrid air filter consisting of filtration, heating, and thermal insulation layers. The air filtration layer can effectively capture airborne PM1 particles (less than 1.0 μm in diameter). Furthermore, the heating layer enables the hybrid air filter to generate temperatures above 100 °C, and the insulation layer prevents the heat from being transferred to the other side (e.g., the human skin, if the hybrid air filter is used in a facemask). Since several bacteria and viruses are incapacitated under high temperatures, this hybrid air filter holds great promise for antibacterial and antiviral protection.
Collapse
Affiliation(s)
- Yong-Il Kim
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min-Woo Kim
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkhwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seongpil An
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkhwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkhwan University (SKKU), Suwon 16419, Republic of Korea
| | - Alexander L Yarin
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, Illinois 60607-7022, United States
| | - Sam S Yoon
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Xie F, Wang Y, Zhuo L, Jia F, Ning D, Lu Z. Electrospun Wrinkled Porous Polyimide Nanofiber-Based Filter via Thermally Induced Phase Separation for Efficient High-Temperature PMs Capture. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56499-56508. [PMID: 33275401 DOI: 10.1021/acsami.0c18143] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Benefiting from its superior thermal stability, polyimide (PI) fiber-based composites have attracted wide attention in the field of high-temperature filtration and separation. However, the trade-off between filtration efficiency and pressure drop of traditional PI filters with single morphology and structure still remains challenging. Herein, the electrospun PI high-temperature-resistant air filter was fabricated via thermal-induced phase separation (TIPS), employing polyacrylonitrile (PAN) as a template. The PI nanofibers exhibited special wrinkled porous structure, and the filter possessed a high specific surface area of 304.77 m2/g. The removal of PAN changed the chemical composition of the fiber and induced PI molecules to form complex folds on the surface of the fiber, thus forming the wrinkled porous structure. Additionally, the wrinkled porous PI nanofiber filter displayed a high PM0.3 removal efficiency of 99.99% with a low pressure drop of 43.35 Pa at room temperature, and the filtration efficiency was still over 97% after being used for long time. Moreover, the efficiency of the filter could even reach 95.55% at a high temperature of 280 °C. The excellent filtration performance was attributed to the special wrinkled porous surface, which could limit the Brownian motion of PMs and reinforce the mechanical interception effect to capture the particulate matters (PMs) on the surface of the filter. Therefore, this work provided a novel strategy for the fabrication of filters with special morphology to cope with increasingly serious air pollution in the industrial field.
Collapse
Affiliation(s)
- Fan Xie
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yafang Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Longhai Zhuo
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fengfeng Jia
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Doudou Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|