1
|
Coetzee D, Rojviroon T, Niamlang S, Militký J, Wiener J, Večerník J, Melicheríková J, Müllerová J. Effects of expanded graphite's structural and elemental characteristics on its oil and heavy metal sorption properties. Sci Rep 2024; 14:13716. [PMID: 38877151 PMCID: PMC11178900 DOI: 10.1038/s41598-024-64695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024] Open
Abstract
Expanded graphite has promising potential environmental applications due to its porous structure and oleophilic nature, which allow it to absorb large quantities of oil. The material is produced by intercalating graphite and applying heat to convert the intercalant into gas to cause expansion between the layers in the graphite. Using different intercalants and temperature conditions results in varying properties of expanded graphite. This work has proven that the sorption properties of commercial expanded graphite differ significantly due to the material's structural and elemental characteristics, which can be attributed to the intercalation method. This resulted in various degrees of exfoliation of the graphite and possible functionalisation of the graphene sheets within the structure. This affected the material's sorption capacity and its affinity for heavy metal sorption by incorporating selectivity towards the sorption of certain metals. It was found that sample EG3, which underwent a less harsh expansion, exhibited lower porosity than EG1, and thus, the sample absorbed less oil at 37.29 g/g compared to the more expanded samples EG1 and EG2 with 55.16 g/g and 48.82 g/g, respectively. However, it was able to entrap a wider variety of metal particles compared to EG1 and EG2, possibly due to its smaller cavities allowing for a capillary effect between the graphene sheets and greater Van der Waals forces. A second possibility is that ionic or coordination complexes could form with certain metals due to the possible functionalisation of the expanded graphite during the intercalation process. This would be in addition to coordination between the metals and expanded graphite carbon atoms. The findings suggest that there is evidence of functionalisation as determined by XRD and elemental analyses. However, further investigation is necessary to confirm this hypothesis. The findings in this work suggest that the first mechanism of sorption was more likely to be related to the degree of expansion of the expanded graphite. Various metals are present in used oil, and their removal can be challenging. Some metals in oil are not considered heavy since they have a relatively low density but can be associated with heavy metals in terms of toxicity.
Collapse
Affiliation(s)
- Divan Coetzee
- Department of Materials Engineering, Faculty of Textile Engineering, Technická Univerzita v Liberci, 460 01, Liberec, Czech Republic.
| | - Thammasak Rojviroon
- Department of Civil Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Thanyaburi, Pathum Thani, 12120, Thailand
| | - Sumonman Niamlang
- Department of Materials and Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Thanyaburi, Pathum Thani, 12120, Thailand
| | - Jiři Militký
- Department of Materials Engineering, Faculty of Textile Engineering, Technická Univerzita v Liberci, 460 01, Liberec, Czech Republic
| | - Jakub Wiener
- Department of Materials Engineering, Faculty of Textile Engineering, Technická Univerzita v Liberci, 460 01, Liberec, Czech Republic
| | - Josef Večerník
- Department of Materials Engineering (Laboratory Alšovice), Faculty of Textile Engineering, Technická Univerzita v Liberci, 460 01, Liberec, Czech Republic
| | - Jana Melicheríková
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec, 460 01, Czech Republic
| | - Jana Müllerová
- Department of Chemistry, Faculty of Science, Humanities and Pedagogy, Technická Univerzita v Liberci, 460 01, Liberec, Czech Republic
| |
Collapse
|
2
|
Han S, Ji Y, Zhang Q, Wu H, Guo S, Qiu J, Zhang F. Tetris-Style Stacking Process to Tailor the Orientation of Carbon Fiber Scaffolds for Efficient Heat Dissipation. NANO-MICRO LETTERS 2023; 15:146. [PMID: 37286799 PMCID: PMC10247643 DOI: 10.1007/s40820-023-01119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/24/2023] [Indexed: 06/09/2023]
Abstract
As the miniaturization of electronic devices and complication of electronic packaging, there are growing demands for thermal interfacial materials with enhanced thermal conductivity and the capability to direct the heat toward heat sink for highly efficient heat dissipation. Pitch-based carbon fiber (CF) with ultrahigh axial thermal conductivity and aspect ratios exhibits great potential for developing thermally conductive composites as TIMs. However, it is still hard to fabricate composites with aligned carbon fiber in a general approach to fully utilize its excellent axial thermal conductivity in specific direction. Here, three types of CF scaffolds with different oriented structure were developed via magnetic field-assisted Tetris-style stacking and carbonization process. By regulating the magnetic field direction and initial stacking density, the self-supporting CF scaffolds with horizontally aligned (HCS), diagonally aligned and vertically aligned (VCS) fibers were constructed. After embedding the polydimethylsiloxane (PDMS), the three composites exhibited unique heat transfer properties, and the HCS/PDMS and VCS/PDMS composites presented a high thermal conductivity of 42.18 and 45.01 W m-1 K-1 in fiber alignment direction, respectively, which were about 209 and 224 times higher than that of PDMS. The excellent thermal conductivity is mainly ascribed that the oriented CF scaffolds construct effective phonon transport pathway in the matrix. In addition, fishbone-shaped CF scaffold was also produced by multiple stacking and carbonization process, and the prepared composites exhibited a controlled heat transfer path, which can allow more versatility in the design of thermal management system.
Collapse
Affiliation(s)
- Shida Han
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yuan Ji
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, People's Republic of China
| | - Qi Zhang
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, People's Republic of China
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Jianhui Qiu
- Department of Mechanical Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, 015-0055, Akita, Japan
| | - Fengshun Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, People's Republic of China
| |
Collapse
|
3
|
Cao M, Li Z, Lu J, Wang B, Lai H, Li Z, Gao Y, Ming X, Luo S, Peng L, Xu Z, Liu S, Liu Y, Gao C. Vertical Array of Graphite Oxide Liquid Crystal by Microwire Shearing for Highly Thermally Conductive Composites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300077. [PMID: 36930178 DOI: 10.1002/adma.202300077] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/05/2023] [Indexed: 06/02/2023]
Abstract
Excellent through-plane thermally conductive composites are highly demanded for efficient heat dissipation. Giant sheets have large crystalline domain and significantly reduce interface phonon scattering, making them promising to build highly thermally conductive composites. However, realizing vertical orientation of giant sheets remains challenging due to their enormous mass and huge hydrodynamic drag force. Here, we achieve highly vertically ordered liquid crystals of giant graphite oxide (more than 100 µm in lateral dimension) by microwire shearing, which endows the composite with a recorded through-plane thermal conductivity of 94 W m-1 K-1 . Microscale shearing fields induced by vertical motion of microwires conquer huge hydrodynamic energy barrier and vertically reorient giant sheets. The resulting liquid crystals exhibit extremely retarded relaxation and impart large-scale vertical array with bidirectional ordering degree as high as 0.82. The graphite array-based composites demonstrate an ultrahigh thermal enhancement efficiency of over 35 times per unit volume. Furthermore, the composites improve cooling efficiency by 93% for thermal management tests compared to commercial thermal interface materials. This work offers a novel methodology to precisely manipulate the orientation of giant particles and promote large-scale fabrication of vertical array with advanced functionalities.
Collapse
Affiliation(s)
- Min Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Zheng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, P. R. China
| | - Jiahao Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Bo Wang
- Hangzhou Gaoxi Technol Co. Ltd., Hangzhou, 310027, P. R. China
| | - Haiwen Lai
- Hangzhou Gaoxi Technol Co. Ltd., Hangzhou, 310027, P. R. China
| | - Zeshen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Yue Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Xin Ming
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Shiyu Luo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Li Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Senping Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024, P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| |
Collapse
|
4
|
Zhang Y, Luo J, Zhang H, Li T, Xu H, Sun Y, Gu X, Hu X, Gao B. Synthesis and adsorption performance of three-dimensional gels assembled by carbon nanomaterials for heavy metal removal from water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158201. [PMID: 36028029 DOI: 10.1016/j.scitotenv.2022.158201] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
This review focuses on the removal of heavy metals from water by three-dimensional gels with carbon nanomaterials as the main building units. It highlights the fundamental knowledge, most recent advances, and future prospects of carbon nanomaterial-assembled gels (CNAGs) as effective adsorbents for heavy metals in water. Various synthesis methods of CNAGs including template-assisted, self-assembly and other methods are systematically summarized and evaluated. Adsorption performances of CNAGs to typical cationic and anionic heavy metals, especially lead, cadmium, mercury, chromium, and arsenic, are thoroughly examined and discussed in detail. These analyses bring out that composite CNAGs constructed from carbon nanomaterials with polymers or other engineered nanoparticles are the most promising adsorbents for heavy metal removal from water. Current challenges and future research directions that are critical to the applications of CNAGs in the removal of heavy metals from contaminated water are outlined at the end of the review.
Collapse
Affiliation(s)
- Yuxuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China..
| | - Hanshuo Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Tianxiao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, PR China
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, PR China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Centre of Materials Analysis and School of Chemistry & Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210023, PR China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Liu X, Pang K, Qin H, Liu Y, Liu Y, Gao C, Xu Z. Hyperbolic Graphene Framework with Optimum Efficiency for Conductive Composites. ACS NANO 2022; 16:14703-14712. [PMID: 36001475 DOI: 10.1021/acsnano.2c05414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Constructing conductive filler networks with high efficiency is essential to fabricating functional polymer composites. Although two-dimensional (2D) sheets have prevailed in nanocomposites, their efficiency in enhancing conductive functions seems to reach a limit, as if merely addressing the dispersion homogeneity. Here, we exploit the unrecognized geometric curvature of 2D sheets to break the efficiency limit of filler systems. We introduce the hyperbolic curvature concept to mediate the incompatibility between 2D planar topology and 3D filler space and hold the efficient conductive path through face-to-face contact. The hyperbolic graphene framework exhibits a record efficiency in enhancing electrically and thermally conductive functions of nanocomposites. At a volume loading of only 1.6%, the thermal and electrical conductivities reach 31.6 W/(mK) and 13 911 S/m, respectively. We demonstrate that the conductive nanocomposites with a hyperbolic graphene aerogel framework are useful for thermal management, sensing, and electromagnetic shielding. Our work provides a solution to reconcile the incompatibility between the 2D planar structure of sheets and the highly expected 3D conductive path, presenting a geometrically optimal filler system to break the efficiency limit of multifunctional nanocomposites and broaden the structural design space of 2D sheets by curvature modulation to meet more applications.
Collapse
Affiliation(s)
- Xiaoting Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University 38 Zheda Road, Hangzhou 310027, China
| | - Kai Pang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University 38 Zheda Road, Hangzhou 310027, China
| | - Huasong Qin
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yilun Liu
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University 38 Zheda Road, Hangzhou 310027, China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University 38 Zheda Road, Hangzhou 310027, China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University 38 Zheda Road, Hangzhou 310027, China
| |
Collapse
|
6
|
Highly Porous Expanded Graphite: Thermal Shock vs. Programmable Heating. MATERIALS 2021; 14:ma14247687. [PMID: 34947281 PMCID: PMC8708924 DOI: 10.3390/ma14247687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022]
Abstract
Highly porous expanded graphite was synthesized by the programmable heating technique using heating with a constant rate (20 °C/min) from room temperature to 400–700 °C. The samples obtained were analyzed by scanning electron microscopy, energy-dispersive spectroscopy, low-temperature nitrogen adsorption, X-ray photoelectron spectroscopy, Raman spectroscopy, thermogravimetry, and differential scanning calorimetry. A comparison between programmable heating and thermal shock as methods of producing expanded graphite showed efficiency of the first one at a temperature 400 °C, and the surface area reached 699 and 184 m2/g, respectively. The proposed technique made it possible to obtain a relatively higher yield of expanded graphite (78–90%) from intercalated graphite. The experiments showed the advantages of programmable heating in terms of its flexibility and the possibility to manage the textural properties, yield, disorder degree, and bulk density of expanded graphite.
Collapse
|
7
|
Wang D, Zhang Y, Zhang M, Wang Y, Li T, Liu T, Chen M, Dong W. Wood-Derived Composites with High Performance for Thermal Management Applications. Biomacromolecules 2021; 22:4228-4236. [PMID: 34499468 DOI: 10.1021/acs.biomac.1c00786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fabricating advanced polymer composites with remarkable mechanical and thermal conductivity performances is desirable for developing advanced devices and equipment. In this study, a novel strategy to prepare anisotropic wood-based scaffolds with a naturally aligned microchannel structure from balsa wood is demonstrated. The wood microchannels were coated with polydopamine-surface-modified small graphene oxide (PGO) nanosheets via assembly. The highly aligned porous microstructures, with thin wood cell walls and large voids along the cellulose microchannels, allow polymers to enter, resulting in the fabrication of the wood-polymer nanocomposite. The tensile stiffness and strength of the resulting nanocomposite reach 8.10 GPa and 90.3 MPa with a toughness of 5.0 MJ m-3. The thermal conductivity of the nanocomposite is improved significantly by coating a PGO layer onto the wood scaffolds. The nanocomposite exhibits not only ultrahigh thermal conductivity (in-plane about 5.5 W m-1 K-1 and through-plane about 2.1 W m-1 K-1) but also satisfactory electrical insulation (volume resistivity of about 1015 Ω·cm). Therefore, the results provide a strategy to fabricate thermal management materials with excellent mechanical properties.
Collapse
Affiliation(s)
- Dong Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yu Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mengfei Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mingqing Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
8
|
Gong S, Li X, Sheng M, Liu S, Zheng Y, Wu H, Lu X, Qu J. High Thermal Conductivity and Mechanical Strength Phase Change Composite with Double Supporting Skeletons for Industrial Waste Heat Recovery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47174-47184. [PMID: 34558896 DOI: 10.1021/acsami.1c15670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The "solid-liquid" leakage and low thermal conductivity of organic phase change materials limit their wide range of applications. In this paper, a novel carbon fiber/boron nitride (CF/BN)-based nested structure was constructed, and then, a series of poly(ethylene glycol) (PEG)-based phase change composites (PCCs) with high thermal conductivity and mechanical strength were prepared via the simple vacuum adsorption technology by employing the CF/BN nested structure as the heat conduction path and supporting material and the in situ obtained cross-linking epoxy resin as another supporting material. The thermal conductivity of the obtained PCC is as high as 0.81 W/m K, which is 7.4 times higher than that sample without the CF/BN nested structure. The support of the double skeletons confers the obtained PCCs with excellent mechanical strength. Surprisingly, there is not any deformation for PCCs under the pressure of 128.5 times its own weight during the phase change process. In addition, the phase change enthalpy of the obtained PCC is as high as 107.9 J/g. All the results indicate that the obtained PEG-based PCCs possess huge application potential in the field of industrial waste heat recovery.
Collapse
Affiliation(s)
- Shang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Xiaolong Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Mengjie Sheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Shuang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Yongfeng Zheng
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hao Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Xiang Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
9
|
Zhang H, Shi T, Ma A. Recent Advances in Design and Preparation of Polymer-Based Thermal Management Material. Polymers (Basel) 2021; 13:2797. [PMID: 34451339 PMCID: PMC8400957 DOI: 10.3390/polym13162797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
The boosting of consumer electronics and 5G technology cause the continuous increment of the power density of electronic devices and lead to inevitable overheating problems, which reduces the operation efficiency and shortens the service life of electronic devices. Therefore, it is the primary task and a prerequisite to explore innovative material for meeting the requirement of high heat dissipation performance. In comparison with traditional thermal management material (e.g., ceramics and metals), the polymer-based thermal management material exhibit excellent mechanical, electrical insulation, chemical resistance and processing properties, and therefore is considered to be the most promising candidate to solve the heat dissipation problem. In this review, we summarized the recent advances of two typical polymer-based thermal management material including thermal-conduction thermal management material and thermal-storage thermal management material. Furtherly, the structural design, processing strategies and typical applications for two polymer-based thermal management materials were discussed. Finally, we proposed the challenges and prospects of the polymer-based thermal management material. This work presents new perspectives to develop advanced processing approaches and construction high-performance polymer-based thermal management material.
Collapse
Affiliation(s)
| | | | - Aijie Ma
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China; (H.Z.); (T.S.)
| |
Collapse
|
10
|
Hong Y, Goh M. Advances in Liquid Crystalline Epoxy Resins for High Thermal Conductivity. Polymers (Basel) 2021; 13:polym13081302. [PMID: 33921153 PMCID: PMC8071481 DOI: 10.3390/polym13081302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/17/2023] Open
Abstract
Epoxy resin (EP) is one of the most famous thermoset materials. In general, because EP has a three-dimensional random network, it possesses thermal properties similar to those of a typical heat insulator. Recently, there has been substantial interest in controlling the network structure of EP to create new functionalities. Indeed, the modified EP, represented as liquid crystalline epoxy (LCE), is considered promising for producing novel functionalities, which cannot be obtained from conventional EPs, by replacing the random network structure with an oriented one. In this paper, we review the current progress in the field of LCEs and their application to highly thermally conductive composite materials.
Collapse
|
11
|
Lewis JS, Perrier T, Barani Z, Kargar F, Balandin AA. Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications. NANOTECHNOLOGY 2021; 32:142003. [PMID: 33049724 DOI: 10.1088/1361-6528/abc0c6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We review the current state-of-the-art graphene-enhanced thermal interface materials for the management of heat in the next generation of electronics. Increased integration densities, speed and power of electronic and optoelectronic devices require thermal interface materials with substantially higher thermal conductivity, improved reliability, and lower cost. Graphene has emerged as a promising filler material that can meet the demands of future high-speed and high-powered electronics. This review describes the use of graphene as a filler in curing and non-curing polymer matrices. Special attention is given to strategies for achieving the thermal percolation threshold with its corresponding characteristic increase in the overall thermal conductivity. Many applications require high thermal conductivity of composites, while simultaneously preserving electrical insulation. A hybrid filler approach, using graphene and boron nitride, is presented as a possible technology providing for the independent control of electrical and thermal conduction. The reliability and lifespan performance of thermal interface materials is an important consideration towards the determination of appropriate practical applications. The present review addresses these issues in detail, demonstrating the promise of graphene-enhanced thermal interface materials compared to alternative technologies.
Collapse
Affiliation(s)
- Jacob S Lewis
- Phonon Optimized Engineered Materials (POEM) Center, University of California, Riverside, CA 92521, United States of America
- Materials Science and Engineering Program, Bourns College of Engineering, University of California, Riverside, CA 92521, United States of America
| | - Timothy Perrier
- Phonon Optimized Engineered Materials (POEM) Center, University of California, Riverside, CA 92521, United States of America
- Department of Electrical and Computer Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, United States of America
| | - Zahra Barani
- Phonon Optimized Engineered Materials (POEM) Center, University of California, Riverside, CA 92521, United States of America
- Department of Electrical and Computer Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, United States of America
| | - Fariborz Kargar
- Phonon Optimized Engineered Materials (POEM) Center, University of California, Riverside, CA 92521, United States of America
- Department of Electrical and Computer Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, United States of America
| | - Alexander A Balandin
- Phonon Optimized Engineered Materials (POEM) Center, University of California, Riverside, CA 92521, United States of America
- Materials Science and Engineering Program, Bourns College of Engineering, University of California, Riverside, CA 92521, United States of America
- Department of Electrical and Computer Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, United States of America
| |
Collapse
|
12
|
Wang Y, Zhang Z, Li T, Ma P, Zhang X, Xia B, Chen M, Du M, Liu T, Dong W. Artificial Nacre Epoxy Nanomaterials Based on Janus Graphene Oxide for Thermal Management Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44273-44280. [PMID: 32869629 DOI: 10.1021/acsami.0c11062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Owing to the development of microelectronics, demands for excellent thermal dissipation materials have substantially increased. Learning from natural nacre, thermally conductive epoxy nanocomposites were prepared based on asymmetrically polydopamine-functionalized Janus graphene oxide (JPGO) scaffolds. The required highly oriented JPGO scaffolds were prepared via the bidirectional freeze-casting method. With the addition of epoxy resin, the resulting nanocomposite reveals anisotropic thermal properties. With the total content of the JPGO scaffold being 0.93 wt %, almost 35 times enhancement of in-plane thermal conductivity (perpendicular to the lamellar structure) (∼5.6 W m-1 K-1) has been obtained. The single-side-functionalized JPGO scaffolds play an important role in forming thermal conductive networks for the epoxy nanocomposites. Importantly, the nanocomposites present electrically insulating properties (>1014 Ω cm). Such high-performance nanocomposites have promising applications for thermal management in electronic devices.
Collapse
Affiliation(s)
- Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zheng Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Bihua Xia
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mingqing Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mingliang Du
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|