1
|
Halim N, Nallusamy N, Lakshminarayanan R, Ramakrishna S, Vigneswari S. Electrospinning in Drug Delivery: Progress and Future Outlook. Macromol Rapid Commun 2025:e2400903. [PMID: 39973618 DOI: 10.1002/marc.202400903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/30/2025] [Indexed: 02/21/2025]
Abstract
There is intense research during the past few decades to design and fabricate drug delivery systems using the electrospinning system. Electrospinning is an efficient technique to produce nanofiber materials with different dimensions and morphologies by adjusting the processing parameters. Electrospinning is becoming an innovative technology that promotes the pursuit and maintenance of human health. Herein, the review discusses the contribution of electrospinning technology in drug delivery systems, summarising the modification of the various electrospinning system configurations and the effects of the process parameters on fibers, their application in drug delivery including carrier materials, loaded drugs and their release mechanisms and illustrates their various medical applications. Finally, this review discusses the challenges, bottlenecks, and development prospects of electrospinning technology in the field of drug delivery in terms of scaling up for clinical use and exploring potential solutions to pave the way to establish electrospinning for future drug delivery systems.
Collapse
Affiliation(s)
- Nurfitrah Halim
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - Nithiskanna Nallusamy
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - Rajamani Lakshminarayanan
- Ocular Infections and Antimicrobials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore, 169856, Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore, 119260, Singapore
| | - Sevakumaran Vigneswari
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
- Ocular Infections and Antimicrobials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore, 169856, Singapore
| |
Collapse
|
2
|
Zheng J, Chen R, Hao J, Yang Y, Xu S, Zhang F, Zhang F, Yao Y. Design and preparation of hydrogel microspheres for spinal cord injury repair. J Biomed Mater Res A 2024; 112:2358-2371. [PMID: 39169748 DOI: 10.1002/jbm.a.37788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
A severe disorder known as spinal cord damage causes both motor and sensory impairment in the limbs, significantly reducing the patients' quality of life. After a spinal cord injury, functional recovery and therapy have emerged as critical concerns. Hydrogel microspheres have garnered a lot of interest lately because of their enormous promise in the field of spinal cord injury rehabilitation. The material classification of hydrogel microspheres (natural and synthetic macromolecule polymers) and their synthesis methods are examined in this work. This work also covers the introduction of several kinds of hydrogel microspheres and their use as carriers in the realm of treating spinal cord injuries. Lastly, the study reviews the future prospects for hydrogel microspheres and highlights their limitations and problems. This paper can offer feasible ideas for researchers to advance the application of hydrogel microspheres in the field of spinal cord injury.
Collapse
Affiliation(s)
- Jian Zheng
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ruilin Chen
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jie Hao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yang Yang
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shaohu Xu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Feiyu Zhang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Feng Zhang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yu Yao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
3
|
Hao Q, Schossig J, Towolawi A, Xu K, Bayiha E, Mohanakanthan M, Savastano D, Jayaraman D, Zhang C, Lu P. High-Speed Electrospinning of Ethyl Cellulose Nanofibers via Taylor Cone Optimization. ACS APPLIED ENGINEERING MATERIALS 2024; 2:2454-2467. [PMID: 39479565 PMCID: PMC11519837 DOI: 10.1021/acsaenm.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
Ethyl cellulose (EC) is one of the most widely used cellulose derivatives. Nevertheless, challenges such as the formation of beaded fibers, low yield, and nonporous internal structure persist in electrospinning, limiting functional improvements and industrial applications. This study invented a groundbreaking high-speed electrospinning technique through sheath liquid assistance to optimize the Taylor cone, dramatically enhancing the yield, morphology, and formation of porous structures of EC nanofibers beyond what has been seen in the literature to date. Our study emphasizes the crucial role of the sheath liquid's physical and chemical properties in controlling the morphology and diameter of EC nanofibers. It was discovered that highly polar and viscous sheath liquids led to the formation of beaded structures. Most importantly, the sheath liquid-assisted method substantially increased the ejection rate of the EC solution tens and hundreds of times compared to the current low-speed electrospinning method (0.1-1 mL/h) by refining the shape of the Taylor cone and resolving low productivity challenges in conventional nanofiber production. Meanwhile, increasing the flow rate of the EC or the sheath liquid accelerated the phase separation of EC solutions, thereby promoting the formation of porous structures in EC nanofibers. A pronounced porous structure was observed when the core EC flow rate reached 25 mL/h or the sheath chloroform flow rate reached 20 mL/h. Furthermore, our sheath liquid-assisted high-speed electrospinning technique demonstrated universal applicability to ECs with varying molecular weights. This study comprehensively addressed challenges in controlling the yield, morphology, and internal structure of EC nanofibers through sheath-solution-assisted high-speed electrospinning technology. These findings provide an innovative approach to developing next-generation electrospinning technologies to enhance the yield and properties of natural polymers for sustainability.
Collapse
Affiliation(s)
- Qiangjun Hao
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - John Schossig
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Adedayo Towolawi
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Kai Xu
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Erwan Bayiha
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Mayooran Mohanakanthan
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Derek Savastano
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Dhanya Jayaraman
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Cheng Zhang
- Chemistry
Department, Long Island University (Post), Brookville, New York 11548, United States
| | - Ping Lu
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
4
|
Fan Z, Chen Y, Yang Z, Niu Y, Liang K, Zhang Y, Zeng J, Feng Y, Zhang Y, Liu Y, Lv C, Zhao P, Zhou L, Kong W, Li W, Chen H, Han D, Du Y. Superimposed Electric Field Enhanced Electrospray for High-Throughput and Consistent Cell Encapsulation. Adv Healthc Mater 2024:e2400780. [PMID: 38850154 DOI: 10.1002/adhm.202400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Cell encapsulation technology, crucial for advanced biomedical applications, faces challenges in existing microfluidic and electrospray methods. Microfluidic techniques, while precise, can damage vulnerable cells, and conventional electrospray methods often encounter instability and capsule breakage during high-throughput encapsulation. Inspired by the transformation of the working state from unstable dripping to stable jetting triggered by local electric potential, this study introduces a superimposed electric field (SEF)-enhanced electrospray method for cell encapsulation, with improved stability and biocompatibility. Utilizing stiffness theory, the stability of the electrospray, whose stiffness is five times stronger under conical confinement, is quantitatively analyzed. The SEF technique enables rapid, continuous production of ≈300 core-shell capsules per second in an aqueous environment, significantly improving cell encapsulation efficiency. This method demonstrates remarkable potential as exemplified in two key applications: (1) a 92-fold increase in human-derived induced pluripotent stem cells (iPSCs) expansion over 10 d, outperforming traditional 2D cultures in both growth rate and pluripotency maintenance, and (2) the development of liver capsules for steatosis modeling, exhibiting normal function and biomimetic lipid accumulation. The SEF-enhanced electrospray method presents a significant advancement in cell encapsulation technology. It offers a more efficient, stable, and biocompatible approach for clinical transplantation, drug screening, and cell therapy.
Collapse
Affiliation(s)
- Zejun Fan
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yihan Chen
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhen Yang
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Yudi Niu
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yan Zhang
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianan Zeng
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yiting Feng
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuying Zhang
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye Liu
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, China
| | - Cheng Lv
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Peng Zhao
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lv Zhou
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenyu Kong
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenjing Li
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haoke Chen
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dongbo Han
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- National Key Laboratory of Kidney Diseases, Beijing, 100000, China
| |
Collapse
|
5
|
Li W, Yin Y, Zhou H, Fan Y, Yang Y, Gao Q, Li P, Gao G, Li J. Recent Advances in Electrospinning Techniques for Precise Medicine. CYBORG AND BIONIC SYSTEMS 2024; 5:0101. [PMID: 38778878 PMCID: PMC11109596 DOI: 10.34133/cbsystems.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/03/2024] [Indexed: 05/25/2024] Open
Abstract
In the realm of precise medicine, the advancement of manufacturing technologies is vital for enhancing the capabilities of medical devices such as nano/microrobots, wearable/implantable biosensors, and organ-on-chip systems, which serve to accurately acquire and analyze patients' physiopathological information and to perform patient-specific therapy. Electrospinning holds great promise in engineering materials and components for advanced medical devices, due to the demonstrated ability to advance the development of nanomaterial science. Nevertheless, challenges such as limited composition variety, uncontrollable fiber orientation, difficulties in incorporating fragile molecules and cells, and low production effectiveness hindered its further application. To overcome these challenges, advanced electrospinning techniques have been explored to manufacture functional composites, orchestrated structures, living constructs, and scale-up fabrication. This review delves into the recent advances of electrospinning techniques and underscores their potential in revolutionizing the field of precise medicine, upon introducing the fundamental information of conventional electrospinning techniques, as well as discussing the current challenges and future perspectives.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Yue Yin
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| | - Huaijuan Zhou
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
- Advanced Research Institute of Multidisciplinary Sciences,
Beijing Institute of Technology, Beijing 100081, China
| | - Yingwei Fan
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Yingting Yang
- Advanced Research Institute of Multidisciplinary Sciences,
Beijing Institute of Technology, Beijing 100081, China
| | - Qiqi Gao
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Pei Li
- Center for Advanced Biotechnology and Medicine,
Rutgers University, Piscataway, NJ, USA
| | - Ge Gao
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| | - Jinhua Li
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| |
Collapse
|
6
|
Lagerwall JPF. The good, the bad and the ugly faces of cyanobiphenyl mesogens in selected tracks of fundamental and applied liquid crystal research. LIQUID CRYSTALS 2023; 51:1296-1310. [PMID: 39563695 PMCID: PMC11575653 DOI: 10.1080/02678292.2023.2292621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 11/21/2024]
Abstract
Liquid crystal-forming cyanobiphenyls are truly extraordinary molecules that have had an enormous impact on liquid crystal research and applications since they were first synthesised. This impact is, on the one hand, due to the exceptionally convenient physical properties of the main characters, 5CB and 8CB, allowing easy experiments at room temperature, as well as their commercial availability at reasonable cost. On the other hand, the cyanobiphenyl chemical structure leads to some quite peculiar characteristics in terms of organisation at the molecular scale, which are sometimes well recognised and even utilised, but often the awareness of these peculiarities is not strong. This perspective article reviews the use of cyanobiphenyls in making liquid crystal shells and liquid crystal core fibres, in sensing, as a medium for simultaneously aligning and dispersing carbon nanotubes, and as highly useful solvents for reactive mesogens that can be polymerised into anisotropic networks. This choice is very much motivated by how cyanobiphenyls have impacted our group's research throughout the years, which is the basis for the examples I provide. Nevertheless, I believe they serve well to illustrate the immense usefulness of cyanobiphenyls in innovating research and applications related to liquid crystals.
Collapse
Affiliation(s)
- Jan P F Lagerwall
- Experimental Soft Matter Physics group, Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
7
|
Geng Y, Lagerwall JP. Multiresponsive Cylindrically Symmetric Cholesteric Liquid Crystal Elastomer Fibers Templated by Tubular Confinement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301414. [PMID: 37186075 PMCID: PMC10323659 DOI: 10.1002/advs.202301414] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/02/2023] [Indexed: 05/17/2023]
Abstract
Cylindrically symmetric cholesteric liquid crystal elastomer (CLCE) fibers templated by tubular confinement are reported, displaying mechanochromic, thermochromic, and thermomechanical responses. The synthesis inside a sacrificial tube secures radial orientation of the cholesteric helix, and the ground state retroreflection wavelength is easily tuned throughout the visible spectrum or into the near-infrared by varying the concentration of a chiral dopant. The fibers display continuous, repeatable, and quantitatively predictable mechanochromic response, reaching a blue shift of more than -220 nm for 180% elongation. The cylindrical symmetry renders the response identical in all directions perpendicular to the fiber axis, making them exceptionally useful for monitoring complex strains, as demonstrated in revealing local strain during tying of different knots. The CLCE reflection color can be revealed with high contrast against any background by taking advantage of the circularly polarized reflection. Upon heating, the fibers respond-fully reversibly-with red shift and radial expansion/axial contraction. However, there is no transition to an isotropic state, confirming a largely forgotten theoretical prediction by de Gennes. These fibers and the easy way of making them may open new windows for large-scale application in advanced wearable technology and beyond.
Collapse
Affiliation(s)
- Yong Geng
- Experimental Soft Matter Physics groupDepartment of Physics and Materials ScienceUniversity of LuxembourgL‐1511LuxembourgLuxembourg
| | - Jan P.F. Lagerwall
- Experimental Soft Matter Physics groupDepartment of Physics and Materials ScienceUniversity of LuxembourgL‐1511LuxembourgLuxembourg
| |
Collapse
|
8
|
Mahmood R, Mananquil T, Scenna R, Dennis ES, Castillo-Rodriguez J, Koivisto BD. Light-Driven Energy and Charge Transfer Processes between Additives within Electrospun Nanofibres. Molecules 2023; 28:4857. [PMID: 37375412 DOI: 10.3390/molecules28124857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Electrospinning is a cost-effective and efficient method of producing polymeric nanofibre films. The resulting nanofibres can be produced in a variety of structures, including monoaxial, coaxial (core@shell), and Janus (side-by-side). The resulting fibres can also act as a matrix for various light-harvesting components such as dye molecules, nanoparticles, and quantum dots. The addition of these light-harvesting materials allows for various photo-driven processes to occur within the films. This review discusses the process of electrospinning as well as the effect of spinning parameters on resulting fibres. Building on this, we discuss energy transfer processes that have been explored in nanofibre films, such as Förster resonance energy transfer (FRET), metal-enhanced fluorescence (MEF), and upconversion. A charge transfer process, photoinduced electron transfer (PET), is also discussed. This review highlights various candidate molecules that have been used for photo-responsive processes in electrospun films.
Collapse
Affiliation(s)
- Reeda Mahmood
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Tristan Mananquil
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Rebecca Scenna
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Emma S Dennis
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Judith Castillo-Rodriguez
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Bryan D Koivisto
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| |
Collapse
|
9
|
Bourdon L, Attik N, Belkessam L, Chevalier C, Bousige C, Brioude A, Salles V. Direct-Writing Electrospun Functionalized Scaffolds for Periodontal Regeneration: In Vitro Studies. J Funct Biomater 2023; 14:jfb14050263. [PMID: 37233373 DOI: 10.3390/jfb14050263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Multiphasic scaffolds that combine different architectural, physical, and biological properties are the best option for the regeneration of complex tissues such as the periodontium. Current developed scaffolds generally lack architectural accuracy and rely on multistep manufacturing, which is difficult to implement for clinical applications. In this context, direct-writing electrospinning (DWE) represents a promising and rapid technique for developing thin 3D scaffolds with controlled architecture. The current study aimed to elaborate a biphasic scaffold using DWE based on two polycaprolactone solutions with interesting properties for bone and cement regeneration. One of the two scaffold parts contained hydroxyapatite nanoparticles (HAP) and the other contained the cementum protein 1 (CEMP1). After morphological characterizations, the elaborated scaffolds were assessed regarding periodontal ligament (PDL) cells in terms of cell proliferation, colonization, and mineralization ability. The results demonstrated that both HAP- and CEMP1-functionalized scaffolds were colonized by PDL cells and enhanced mineralization ability compared to unfunctionalized scaffolds, as revealed by alizarin red staining and OPN protein fluorescent expression. Taken together, the current data highlighted the potential of functional and organized scaffolds to stimulate bone and cementum regeneration. Moreover, DWE could be used to develop smart scaffolds with the ability to spatially control cellular orientation with suitable cellular activity at the micrometer scale, thereby enhancing periodontal and other complex tissue regeneration.
Collapse
Affiliation(s)
- Laura Bourdon
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
| | - Nina Attik
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
- Faculté d'Odontologie, Université Lyon 1, 11 Rue Guillaume Paradin, 69008 Lyon, France
| | - Liza Belkessam
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
- Faculté d'Odontologie, Université Lyon 1, 11 Rue Guillaume Paradin, 69008 Lyon, France
| | - Charlène Chevalier
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
- Faculté d'Odontologie, Université Lyon 1, 11 Rue Guillaume Paradin, 69008 Lyon, France
| | - Colin Bousige
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
| | - Arnaud Brioude
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
| | - Vincent Salles
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
- LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| |
Collapse
|
10
|
Yang C, Zhang Z, Gan L, Zhang L, Yang L, Wu P. Application of Biomedical Microspheres in Wound Healing. Int J Mol Sci 2023; 24:7319. [PMID: 37108482 PMCID: PMC10138683 DOI: 10.3390/ijms24087319] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Tissue injury, one of the most common traumatic injuries in daily life, easily leads to secondary wound infections. To promote wound healing and reduce scarring, various kinds of wound dressings, such as gauze, bandages, sponges, patches, and microspheres, have been developed for wound healing. Among them, microsphere-based tissue dressings have attracted increasing attention due to the advantage of easy to fabricate, excellent physicochemical performance and superior drug release ability. In this review, we first introduced the common methods for microspheres preparation, such as emulsification-solvent method, electrospray method, microfluidic technology as well as phase separation methods. Next, we summarized the common biomaterials for the fabrication of the microspheres including natural polymers and synthetic polymers. Then, we presented the application of the various microspheres from different processing methods in wound healing and other applications. Finally, we analyzed the limitations and discussed the future development direction of microspheres in the future.
Collapse
Affiliation(s)
- Caihong Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lexiang Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Lei Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
11
|
Zhang L, Zheng Q, Ge X, Chan H, Zhang G, Fang K, Liang Y. Preparation of Nylon-6 micro-nanofiber composite membranes with 3D uniform gradient structure for high-efficiency air filtration of ultrafine particles. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
da Mata GC, Morais MS, de Oliveira WP, Aguiar ML. Composition Effects on the Morphology of PVA/Chitosan Electrospun Nanofibers. Polymers (Basel) 2022; 14:polym14224856. [PMID: 36432987 PMCID: PMC9698655 DOI: 10.3390/polym14224856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Since the SARS-CoV-2 pandemic, the interest in applying nanofibers t air filtration and personal protective equipment has grown significantly. Due to their morphological and structural properties, nanofibers have potential applications for air filtration in masks and air filters. However, most nanofiber membrane materials used for these purposes are generally non-degradable materials, which can contribute to the disposal of plastic waste into the environment. Hence, this work aims to produce polyvinyl alcohol (PVA) and chitosan (CS) biodegradable nanofibers with controlled morphology and structure via electrospinning. An experimental design was used to investigate the effects of the PVA|CS ratio and concentration on the properties of the electrospinning compositions and electrospun nanofiber mat. The electrospinning parameters were constant for all experiments: Voltage of 20 kV, a feed rate of 0.5 mL·h−1, and a distance of 10 cm between the needle and a drum collector. CS proved to be an efficient adjuvant to the PVA’s electrospinning, obtaining a wide range of nanofiber diameters. Furthermore, 6.0% PVA and 1% CS were the best compositions after optimization with the response surface methodology, with a mean fiber diameter of 204 nm. The addition of biocide agents using the optimized condition was also investigated, using surfactants, citric acid, and pure and encapsulated essential oils of Lippia sidoides. Pure oil improved the material without enlarging the nanofiber sizes compared to the other additives. The nanofiber membranes produced have the potential to be used in air filtration or wound-dressing applications where biocidal activity is needed.
Collapse
Affiliation(s)
- Gustavo Cardoso da Mata
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz, km 235, SP310, São Carlos 13565-905, SP, Brazil
| | - Maria Sirlene Morais
- Faculty of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, Av. do Café s/no, Bairro Monte Alegre, Ribeirão Preto 14040-903, SP, Brazil
| | - Wanderley Pereira de Oliveira
- Faculty of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, Av. do Café s/no, Bairro Monte Alegre, Ribeirão Preto 14040-903, SP, Brazil
| | - Mônica Lopes Aguiar
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz, km 235, SP310, São Carlos 13565-905, SP, Brazil
- Correspondence:
| |
Collapse
|
13
|
Hu S, Zheng Z, Tian Y, Zhang H, Wang M, Yu Z, Zhang X. Preparation and Characterization of Electrospun PAN-CuCl2 Composite Nanofiber Membranes with a Special Net Structure for High-Performance Air Filters. Polymers (Basel) 2022; 14:polym14204387. [PMID: 36297966 PMCID: PMC9611402 DOI: 10.3390/polym14204387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
The growing issue of particulate matter (PM) air pollution has given rise to extensive research into the development of high-performance air filters recently. As the core of air filters, various types of electrospun nanofiber membranes have been fabricated and developed. With the novel poly(acrylonitrile) (PAN)-CuCl2 composite nanofiber membranes as the filter membranes, we demonstrate the high PM removal efficiency exceeding 99% and can last a long service time. The nanoscale morphological characteristics of nanofiber membranes were investigated by scanning electron microscopy, transmission electron microscopy, and mercury intrusion porosimeter. It is found that they appear to have a special net structure at specific CuCl2 concentrations, which substantially improves PM removal efficiency. We anticipate the PAN-CuCl2 composite nanofiber membranes will be expected to effectively solve some pressing problems in air filtration.
Collapse
Affiliation(s)
- Shiqian Hu
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Zida Zheng
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Ye Tian
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Huihong Zhang
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
- Correspondence: (H.Z.); (X.Z.)
| | - Mao Wang
- Nantong Hongda Petrochemical Equipment Manufacturing Co., Ltd., Nantong 226010, China
| | - Zhongwei Yu
- Nantong Hongda Petrochemical Equipment Manufacturing Co., Ltd., Nantong 226010, China
| | - Xiaowei Zhang
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
- National Laboratory of Solid State Microstructures, Department of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- Correspondence: (H.Z.); (X.Z.)
| |
Collapse
|
14
|
Electrospinning and its potential in fabricating pharmaceutical dosage form. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Alvear-Jiménez A, Zabala Gutierrez I, Shen Y, Villaverde G, Lozano-Chamizo L, Guardia P, Tinoco M, Garcia-Pinel B, Prados J, Melguizo C, López-Romero M, Jaque D, Filice M, Contreras-Cáceres R. Electrospraying as a Technique for the Controlled Synthesis of Biocompatible PLGA@Ag 2S and PLGA@Ag 2S@SPION Nanocarriers with Drug Release Capability. Pharmaceutics 2022; 14:214. [PMID: 35057109 PMCID: PMC8781675 DOI: 10.3390/pharmaceutics14010214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Ag2S nanoparticles are near-infrared (NIR) probes providing emission in a specific spectral range (~1200 nm), and superparamagnetic iron oxide nanoparticles (SPION) are colloidal systems able to respond to an external magnetic field. A disadvantage of Ag2S NPs is the attenuated luminescent properties are reduced in aqueous media and human fluids. Concerning SPION, the main drawback is the generation of undesirable clusters that reduce particle stability. Here, we fabricate biocompatible hybrid nanosystems combining Ag2S NPs and SPION by the electrospraying technique for drug delivery purposes. These nanostructures are composed of poly(lactic-co-glycolic acid) (PLGA) as the polymeric matrix in connection with both Ag2S NPs and SPIONs. Initially, we fabricate a hybrid colloidal nanosystem composed of Ag2S NPs in connection with PLGA (PLGA@Ag2S) by three different routes, showing good photoluminescent (PL) properties with relatively high average decay times. Then, we incorporate SPIONs, obtaining a PLGA polymeric matrix containing both Ag2S NPs and SPION (PLGA@Ag2S@SPION). Interestingly, in this hybrid system, the location of Ag2S NPs and SPIONs depends on the synthesis route performed during electrospraying. After a detailed characterization, we demonstrate the encapsulation and release capabilities, obtaining the kinetic release using a model chemotherapeutic drug (maslinic acid). Finally, we perform in vitro cytotoxicity assays using drug-loaded hybrid systems against several tumor cell lines.
Collapse
Affiliation(s)
- Alexis Alvear-Jiménez
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.A.-J.); (I.Z.G.); (G.V.)
| | - Irene Zabala Gutierrez
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.A.-J.); (I.Z.G.); (G.V.)
| | - Yingli Shen
- Fluorescence Imaging Group, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (Y.S.); (D.J.)
| | - Gonzalo Villaverde
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.A.-J.); (I.Z.G.); (G.V.)
| | - Laura Lozano-Chamizo
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (L.L.-C.); (M.F.)
- Atrys Health, 28001 Madrid, Spain
| | - Pablo Guardia
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain;
| | - Miguel Tinoco
- ICTS—Centro Nacional de Microscopía Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Beatriz Garcia-Pinel
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; (B.G.-P.); (J.P.); (C.M.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - José Prados
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; (B.G.-P.); (J.P.); (C.M.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Consolación Melguizo
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; (B.G.-P.); (J.P.); (C.M.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Manuel López-Romero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Malaga, Spain;
| | - Daniel Jaque
- Fluorescence Imaging Group, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (Y.S.); (D.J.)
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (L.L.-C.); (M.F.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC F.S.P.), Calle Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Rafael Contreras-Cáceres
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.A.-J.); (I.Z.G.); (G.V.)
| |
Collapse
|
16
|
Schelski K, Reyes CG, Pschyklenk L, Kaul PM, Lagerwall JP. Quantitative volatile organic compound sensing with liquid crystal core fibers. CELL REPORTS. PHYSICAL SCIENCE 2021; 2:100661. [PMID: 35028624 PMCID: PMC8724680 DOI: 10.1016/j.xcrp.2021.100661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/01/2021] [Accepted: 11/03/2021] [Indexed: 05/28/2023]
Abstract
Polymer fibers with liquid crystals (LCs) in the core have potential as autonomous sensors of airborne volatile organic compounds (VOCs), with a high surface-to-volume ratio enabling fast and sensitive response and an attractive non-woven textile form factor. We demonstrate their ability to continuously and quantitatively measure the concentration of toluene, cyclohexane, and isopropanol as representative VOCs, via the impact of each VOC on the LC birefringence. The response is fully reversible and repeatable over several cycles, the response time can be as low as seconds, and high sensitivity is achieved when the operating temperature is near the LC-isotropic transition temperature. We propose that a broad operating temperature range can be realized by combining fibers with different LC mixtures, yielding autonomous VOC sensors suitable for integration in apparel or in furniture that can compete with existing consumer-grade electronic VOC sensors in terms of sensitivity and response speed.
Collapse
Affiliation(s)
- Katrin Schelski
- Department of Physics and Materials Science, University of Luxembourg, 162a Avenue de la Faiencerie, 1511 Luxembourg, Luxembourg
- Institute of Safety and Security Research, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Straße 20, 53359 Rheinbach, Germany
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Catherine G. Reyes
- Department of Physics and Materials Science, University of Luxembourg, 162a Avenue de la Faiencerie, 1511 Luxembourg, Luxembourg
- Institute of Safety and Security Research, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Straße 20, 53359 Rheinbach, Germany
| | - Lukas Pschyklenk
- Institute of Safety and Security Research, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Straße 20, 53359 Rheinbach, Germany
| | - Peter-Michael Kaul
- Institute of Safety and Security Research, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Straße 20, 53359 Rheinbach, Germany
| | - Jan P.F. Lagerwall
- Department of Physics and Materials Science, University of Luxembourg, 162a Avenue de la Faiencerie, 1511 Luxembourg, Luxembourg
| |
Collapse
|
17
|
Vats S, Anyfantakis M, Honaker LW, Basoli F, Lagerwall JPF. Stable Electrospinning of Core-Functionalized Coaxial Fibers Enabled by the Minimum-Energy Interface Given by Partial Core-Sheath Miscibility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13265-13277. [PMID: 34735163 PMCID: PMC8600680 DOI: 10.1021/acs.langmuir.1c01824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/20/2021] [Indexed: 05/28/2023]
Abstract
Core-sheath electrospinning is a powerful tool for producing composite fibers with one or multiple encapsulated functional materials, but many material combinations are difficult or even impossible to spin together. We show that the key to success is to ensure a well-defined core-sheath interface while also maintaining a constant and minimal interfacial energy across this interface. Using a thermotropic liquid crystal as a model functional core and polyacrylic acid or styrene-butadiene-styrene block copolymer as a sheath polymer, we study the effects of using water, ethanol, or tetrahydrofuran as polymer solvent. We find that the ideal core and sheath materials are partially miscible, with their phase diagram exhibiting an inner miscibility gap. Complete immiscibility yields a relatively high interfacial tension that causes core breakup, even preventing the core from entering the fiber-producing jet, whereas the lack of a well-defined interface in the case of complete miscibility eliminates the core-sheath morphology, and it turns the core into a coagulation bath for the sheath solution, causing premature gelation in the Taylor cone. Moreover, to minimize Marangoni flows in the Taylor cone due to local interfacial tension variations, a small amount of the sheath solvent should be added to the core prior to spinning. Our findings resolve a long-standing confusion regarding guidelines for selecting core and sheath fluids in core-sheath electrospinning. These discoveries can be applied to many other material combinations than those studied here, enabling new functional composites of large interest and application potential.
Collapse
Affiliation(s)
- Shameek Vats
- Experimental
Soft Matter Physics Group, University of
Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Manos Anyfantakis
- Experimental
Soft Matter Physics Group, University of
Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Lawrence W. Honaker
- Experimental
Soft Matter Physics Group, University of
Luxembourg, L-1511 Luxembourg, Luxembourg
- Laboratory
of Physical Chemistry and Soft Matter, Wageningen
University & Research, 6703 DE Wageningen, The Netherlands
| | - Francesco Basoli
- Department
of Engineering, Università Campus
Bio-Medico di Roma, 00128 Rome, Italy
| | - Jan P. F. Lagerwall
- Experimental
Soft Matter Physics Group, University of
Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
18
|
Gupta D, Kula P, Bhattacharjee A. Investigation of a partially fluorinated chiral antiferroelectric liquid crystalline material with large negative dielectric anisotropy. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Cheng XQ, Jiao Y, Sun Z, Yang X, Cheng Z, Bai Q, Zhang Y, Wang K, Shao L. Constructing Scalable Superhydrophobic Membranes for Ultrafast Water-Oil Separation. ACS NANO 2021; 15:3500-3508. [PMID: 33569948 DOI: 10.1021/acsnano.1c00158] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Superhydrophobic membranes are desirable for separation of water-in-oil emulsions, membrane distillation, and membrane condensation. However, the lack of large-scale manufacture methods of superhydrophobic membranes hampers their widespread applications. Here, a facile method of coaxial electrospinning is provided to manufacture superhydrophobic membranes for the ultrafast separation of water-in-oil emulsions. Under the high-voltage electric field, the polydimethylsiloxane (PDMS)-coated polyvinylidene fluoride (PVDF) nanofibers and PDMS microspheres with PVDF nanobulges were integrated together during the electrospinning process. Moreover, asymmetric composite membranes with selective layers are designed to reduce the resistance of the mass transfer. Consequently, the as-prepared asymmetric composite membrane exhibits an ultrafast permeance and excellent separation efficiency of about 99.6%, outperforming most of the state-of-the-art membranes reported previously. Most importantly, the membrane could be as large as 770 cm2, could be manufactured continuously, and could be easily enlarged further via tailoring the roller receptor, showing strong promise in the separation of water-in-oil emulsions.
Collapse
Affiliation(s)
- Xi Quan Cheng
- School of Marine Science and Technology, Sino-European Membrane Technology Research Institute, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Yang Jiao
- School of Marine Science and Technology, Sino-European Membrane Technology Research Institute, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Zekun Sun
- School of Marine Science and Technology, Sino-European Membrane Technology Research Institute, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Xiaobin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Zhongjun Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Qing Bai
- School of Marine Science and Technology, Sino-European Membrane Technology Research Institute, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Yingjie Zhang
- School of Marine Science and Technology, Sino-European Membrane Technology Research Institute, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Kai Wang
- School of Marine Science and Technology, Sino-European Membrane Technology Research Institute, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P.R. China
| |
Collapse
|
20
|
Coupling between voltage and tip-to-collector distance in polymer electrospinning: Insights from analysis of regimes, transitions and cone/jet features. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Shoueir KR, El-Desouky N, Rashad MM, Ahmed MK, Janowska I, El-Kemary M. Chitosan based-nanoparticles and nanocapsules: Overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting. Int J Biol Macromol 2021; 167:1176-1197. [PMID: 33197477 DOI: 10.1016/j.ijbiomac.2020.11.072] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
Recent advancements in the synthesis, properties, and applications of chitosan as the second after cellulose available biopolymer in nature were discussed in this review. A general overview of processing and production procedures from A to Z was highlighted. Chitosan exists in three polymorphic forms which differ in degree of crystallinity (α, β, and γ). Thus, the degree of deacetylation, crystallinity, surface area, and molecular mass significantly affect most applications. Otherwise, the synthesis of chitosan nanofibers is suffering from many drawbacks that were recently treated by co-electrospun with other polymers such as polyvinyl alcohol (PVA), polyethylene oxide (PEO), and polycaprolactone (PCL). Ultimately, this review focuses on the area of new trend utilization of chitosan nanoparticles as nanospheres and nanocapsules, in cartilage and bone regenerative medicine. Owing to its biocompatibility, bioavailability, biodegradability, and costless synthesis, chitosan is a promising biopolymeric structure for water remediation, drug delivery, antimicrobials, and tissue engineering.
Collapse
Affiliation(s)
- Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt; Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS UMR 7515-Université de Strasbourg, 25 rue Becquerel 67087 Strasbourg, France.
| | - Nagwa El-Desouky
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Moataz M Rashad
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - M K Ahmed
- Department of Physics, Faculty of Science, Suez University, Suez, 43518, Egypt
| | - Izabela Janowska
- Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS UMR 7515-Université de Strasbourg, 25 rue Becquerel 67087 Strasbourg, France
| | - Maged El-Kemary
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt; Pharos University, Alexandria, Egypt.
| |
Collapse
|
22
|
Suresh S, Becker A, Glasmacher B. Impact of Apparatus Orientation and Gravity in Electrospinning-A Review of Empirical Evidence. Polymers (Basel) 2020; 12:polym12112448. [PMID: 33105879 PMCID: PMC7690589 DOI: 10.3390/polym12112448] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/29/2022] Open
Abstract
Electrospinning is a versatile fibre fabrication method with applications from textile to tissue engineering. Despite the appearance that the influencing parameters of electrospinning are fully understood, the effect of setup orientation has not been thoroughly investigated. With current burgeoning interest in modified and specialised electrospinning apparatus, it is timely to review the impact of this seldom-considered parameter. Apparatus configuration plays a major role in the morphology of the final product. The primary difference between spinning setups is the degree to which the electrical force and gravitational force contribute. Since gravity is much lower in magnitude when compared with the electrostatic force, it is thought to have no significant effect on the spinning process. But the shape of the Taylor cone, jet trajectory, fibre diameter, fibre diameter distribution, and overall spinning efficiency are all influenced by it. In this review paper, we discuss all these developments and more. Furthermore, because many research groups build their own electrospinning apparatus, it would be prudent to consider this aspect as particular orientations are more suitable for certain applications.
Collapse
Affiliation(s)
- Sinduja Suresh
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, 30823 Garbsen, Hannover, Germany;
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- Hannover Medical School (MHH), 30625 Hannover, Germany
- Correspondence: (S.S.); (A.B.)
| | - Alexander Becker
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, 30823 Garbsen, Hannover, Germany;
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- Correspondence: (S.S.); (A.B.)
| | - Birgit Glasmacher
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, 30823 Garbsen, Hannover, Germany;
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| |
Collapse
|