1
|
Jin X, Yue Y, Hu H, Lv S. Traditional Chinese Medicine-Loaded Hydrogels: An Emerging Strategy for the Treatment of Bone Infections. Pharmaceutics 2025; 17:514. [PMID: 40284509 PMCID: PMC12030446 DOI: 10.3390/pharmaceutics17040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Bone infection is a disease that seriously affects patients' quality of life and physical health. Traditional treatment methods have many drawbacks. Hydrogels loaded with Traditional Chinese Medicine (TCM), as an emerging treatment strategy, combine the advantages of good biocompatibility of hydrogels, adjustable drug release performance, and multi-target synergistic treatment of TCM, showing great application potential. This article elaborates in detail on the research progress of hydrogels loaded with TCM for the treatment of bone infections, including the classification and characteristics of hydrogels, the mechanism of action of TCM in the treatment of bone infections, the preparation methods of hydrogels loaded with TCM, application examples, advantages, and the challenges and prospects faced. The aim is to provide new ideas and references for the clinical treatment of bone infections.
Collapse
Affiliation(s)
| | | | - Huaanzi Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.J.); (Y.Y.)
| | - Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.J.); (Y.Y.)
| |
Collapse
|
2
|
Zhang T, Zhang R, Zhang Y, Kannan PR, Li Y, Lv Y, Zhao R, Kong X. Silk-based biomaterials for tissue engineering. Adv Colloid Interface Sci 2025; 338:103413. [PMID: 39879886 DOI: 10.1016/j.cis.2025.103413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/23/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025]
Abstract
Tissue engineering (TE) involves repairing, replacing, regeneration, or improving the function of tissues and organs by combining cells, growth factors and scaffold materials. Among these, scaffold materials play a crucial role. Silk fibroin (SF), a natural biopolymer, has been widely used in the TE field due to its good biodegradability, biocompatibility, and mechanical properties attributed to its chemical composition and structure. This paper reviews the structure, extraction, and modification methods of SF. In addition, it discusses SF's regulation of cell behavior and its various processing modes. Finally, the applications of SF in TE and perspectives on future developments are presented. This review provides comprehensive and alternative rational insights for further biomedical translation in SF medical device design, further revealing the great potential of SF biomaterials.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Rui Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yunyang Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Perumal Ramesh Kannan
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yao Li
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yudie Lv
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
3
|
Wu H, Feng E, Yin H, Zhang Y, Chen G, Zhu B, Yue X, Zhang H, Liu Q, Xiong L. Biomaterials for neuroengineering: applications and challenges. Regen Biomater 2025; 12:rbae137. [PMID: 40007617 PMCID: PMC11855295 DOI: 10.1093/rb/rbae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/19/2024] [Accepted: 11/03/2024] [Indexed: 02/27/2025] Open
Abstract
Neurological injuries and diseases are a leading cause of disability worldwide, underscoring the urgent need for effective therapies. Neural regaining and enhancement therapies are seen as the most promising strategies for restoring neural function, offering hope for individuals affected by these conditions. Despite their promise, the path from animal research to clinical application is fraught with challenges. Neuroengineering, particularly through the use of biomaterials, has emerged as a key field that is paving the way for innovative solutions to these challenges. It seeks to understand and treat neurological disorders, unravel the nature of consciousness, and explore the mechanisms of memory and the brain's relationship with behavior, offering solutions for neural tissue engineering, neural interfaces and targeted drug delivery systems. These biomaterials, including both natural and synthetic types, are designed to replicate the cellular environment of the brain, thereby facilitating neural repair. This review aims to provide a comprehensive overview for biomaterials in neuroengineering, highlighting their application in neural functional regaining and enhancement across both basic research and clinical practice. It covers recent developments in biomaterial-based products, including 2D to 3D bioprinted scaffolds for cell and organoid culture, brain-on-a-chip systems, biomimetic electrodes and brain-computer interfaces. It also explores artificial synapses and neural networks, discussing their applications in modeling neural microenvironments for repair and regeneration, neural modulation and manipulation and the integration of traditional Chinese medicine. This review serves as a comprehensive guide to the role of biomaterials in advancing neuroengineering solutions, providing insights into the ongoing efforts to bridge the gap between innovation and clinical application.
Collapse
Affiliation(s)
- Huanghui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Enduo Feng
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Huanxin Yin
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yuxin Zhang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Guozhong Chen
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Beier Zhu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xuezheng Yue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai 200444, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China
| | - Qiong Liu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
4
|
Ji X, Li Y, Wang J, Wang G, Ma B, Shi J, Cui C, Wang R. Silk Protein Gene Engineering and Its Applications: Recent Advances in Biomedicine Driven by Molecular Biotechnology. Drug Des Devel Ther 2025; 19:599-626. [PMID: 39881670 PMCID: PMC11776523 DOI: 10.2147/dddt.s504783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025] Open
Abstract
Silk protein, as a natural polymer material with unique structures and properties, exhibits tremendous potential in the biomedical field. Given the limited production and restricted properties of natural silk proteins, molecular biotechnology has been extensively applied in silk protein genetic engineering to produce novel silk proteins with specific properties. This review outlines the roles of major model organisms, such as silkworms and spiders, in silk protein production, and provides a detailed introduction to the applications of gene editing technologies (eg, CRISPR-Cas9), transgenic expression technologies, and synthetic biology techniques in silk protein genetic engineering. By analyzing the genetic factors influencing silk protein expression, this review further elaborates on the innovative applications of silk proteins in drug delivery systems, tissue engineering and regenerative medicine (eg, skin, bone, cartilage, and vascular repair), as well as antibacterial immune strategies. Notably, modified silk proteins expressed by transgenic silkworms demonstrate significant advantages in enhancing drug bioavailability and promoting cell proliferation and differentiation. In conclusion, silk protein gene engineering, through continuous innovations in molecular biotechnology, has provided an effective pathway for the production of high-performance silk protein materials. The extensive applications of these modified silk proteins in the biomedical field have not only expanded the functionality of silk proteins but also offered new approaches to address medical challenges. In the future, the development of silk protein gene engineering will further rely on interdisciplinary integration to promote in-depth research and the expansion of industrial applications of silk proteins.
Collapse
Affiliation(s)
- Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, People’s Republic of China
| | - Yanyan Li
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, People’s Republic of China
| | - Jingsheng Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, People’s Republic of China
| | - Gang Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, People’s Republic of China
| | - Bin Ma
- Department of Cardiovascular Medicine, Taian City Taishan District People’s Hospital, Taian, Shandong, 271000, People’s Republic of China
| | - Jingfei Shi
- Department of Clinical and Basic Medicine, Shandong First Medical University, Jinan, Shandong, 250000, People’s Republic of China
| | - Chao Cui
- Scientific Research Department, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, 253000, People’s Republic of China
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, People’s Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, People’s Republic of China
| |
Collapse
|
5
|
Lai Y, Xiao X, Huang Z, Duan H, Yang L, Yang Y, Li C, Feng L. Photocrosslinkable Biomaterials for 3D Bioprinting: Mechanisms, Recent Advances, and Future Prospects. Int J Mol Sci 2024; 25:12567. [PMID: 39684279 DOI: 10.3390/ijms252312567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Constructing scaffolds with the desired structures and functions is one of the main goals of tissue engineering. Three-dimensional (3D) bioprinting is a promising technology that enables the personalized fabrication of devices with regulated biological and mechanical characteristics similar to natural tissues/organs. To date, 3D bioprinting has been widely explored for biomedical applications like tissue engineering, drug delivery, drug screening, and in vitro disease model construction. Among different bioinks, photocrosslinkable bioinks have emerged as a powerful choice for the advanced fabrication of 3D devices, with fast crosslinking speed, high resolution, and great print fidelity. The photocrosslinkable biomaterials used for light-based 3D printing play a pivotal role in the fabrication of functional constructs. Herein, this review outlines the general 3D bioprinting approaches related to photocrosslinkable biomaterials, including extrusion-based printing, inkjet printing, stereolithography printing, and laser-assisted printing. Further, the mechanisms, advantages, and limitations of photopolymerization and photoinitiators are discussed. Next, recent advances in natural and synthetic photocrosslinkable biomaterials used for 3D bioprinting are highlighted. Finally, the challenges and future perspectives of photocrosslinkable bioinks and bioprinting approaches are envisaged.
Collapse
Affiliation(s)
- Yushang Lai
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiong Xiao
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziwei Huang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongying Duan
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liping Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchu Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenxi Li
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Feng
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Wang Y, Duan H, Zhang Z, Chen L, Li J. Research Progress on the Application of Natural Medicines in Biomaterial Coatings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5607. [PMID: 39597430 PMCID: PMC11595593 DOI: 10.3390/ma17225607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
With the continuous progress of biomedical technology, biomaterial coatings play an important role in improving the performance of medical devices and promoting tissue repair and regeneration. The application of natural medicine to biological materials has become a hot topic due to its diverse biological activity, low toxicity, and wide range of sources. This article introduces the definition and classification of natural medicines, lists some common natural medicines, such as curcumin, allicin, chitosan, tea polyphenols, etc., and lists some biological activities of some common natural medicines, such as antibacterial, antioxidant, antitumor, and other properties. According to the different characteristics of natural medicines, physical adsorption, chemical grafting, layer-by-layer self-assembly, sol-gel and other methods are combined with biomaterials, which can be used for orthopedic implants, cardiovascular and cerebrovascular stents, wound dressings, drug delivery systems, etc., to exert their biological activity. For example, improving antibacterial properties, promoting tissue regeneration, and improving biocompatibility promote the development of medical health. Although the development of biomaterials has been greatly expanded, it still faces some major challenges, such as whether the combination between the coating and the substrate is firm, whether the drug load is released sustainably, whether the dynamic balance will be disrupted, and so on; a series of problems affects the application of natural drugs in biomaterial coatings. In view of these problems, this paper summarizes some suggestions by evaluating the literature, such as optimizing the binding method and release system; carrying out more clinical application research; carrying out multidisciplinary cooperation; broadening the application of natural medicine in biomaterial coatings; and developing safer, more effective and multi-functional natural medicine coatings through continuous research and innovation, so as to contribute to the development of the biomedical field.
Collapse
Affiliation(s)
| | | | | | - Lan Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (H.D.); (Z.Z.)
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (H.D.); (Z.Z.)
| |
Collapse
|
7
|
Huang L, Li H, Wen S, Xia P, Zeng F, Peng C, Yang J, Tan Y, Liu J, Jiang L, Wang J. Control nucleation for strong and tough crystalline hydrogels with high water content. Nat Commun 2024; 15:7777. [PMID: 39237555 PMCID: PMC11377714 DOI: 10.1038/s41467-024-52264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Hydrogels, provided that they integrate strength and toughness at desired high content of water, promise in load-bearing tissues such as articular cartilage, ligaments, tendons. Many developed strategies impart hydrogels with some mechanical properties akin to natural tissues, but compromise water content. Herein, a strategy deprotonation-complexation-reprotonation is proposed to prepare polyvinyl alcohol hydrogels with water content as high as ~80% and favorable mechanical properties, including tensile strength of 7.4 MPa, elongation of around 1350%, and fracture toughness of 12.4 kJ m-2. The key to water holding yet improved mechanical properties lies in controllable nucleation for refinement of crystalline morphology. With nearly constant water content, mechanical properties of as-prepared hydrogels are successfully tailored by tuning crystal nuclei density via deprotonation degree and their distribution uniformity via complexation temperature. This work provides a nucleation concept to design robust hydrogels with desired water content, holding implications for practical application in tissue engineering.
Collapse
Affiliation(s)
- Limei Huang
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Hao Li
- Institute of Laser Manufacturing, Henan Academy of Sciences, Zhengzhou, China
| | - Shunxi Wen
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Penghui Xia
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Fanzhan Zeng
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Chaoyi Peng
- Zhuzhou Times New Material Technology CO., LTD., Zhuzhou, China
| | - Jun Yang
- Zhuzhou Times New Material Technology CO., LTD., Zhuzhou, China
| | - Yun Tan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry Chinese, Academy of Sciences, Beijing, China
| | - Jianfeng Wang
- College of Materials Science and Engineering, Hunan University, Changsha, China.
| |
Collapse
|
8
|
Li Z, Tan G, Xie H, Lu S. The Application of Regenerated Silk Fibroin in Tissue Repair. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3924. [PMID: 39203101 PMCID: PMC11355482 DOI: 10.3390/ma17163924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
Silk fibroin (SF) extracted from silk is non-toxic and has excellent biocompatibility and biodegradability, making it an excellent biomedical material. SF-based soft materials, including porous scaffolds and hydrogels, play an important role in accurately delivering drugs to wounds, creating microenvironments for the adhesion and proliferation of support cells, and in tissue remodeling, repair, and wound healing. This article focuses on the study of SF protein-based soft materials, summarizing their preparation methods and basic applications, as well as their regenerative effects, such as drug delivery carriers in various aspects of tissue engineering such as bone, blood vessels, nerves, and skin in recent years, as well as their promoting effects on wound healing and repair processes. The authors expect SF soft materials to play an important role in the field of tissue repair.
Collapse
Affiliation(s)
| | | | | | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (Z.L.); (G.T.); (H.X.)
| |
Collapse
|
9
|
Chen X, Zhou Z, Yang M, Zhu S, Zhu W, Sun J, Yu M, He J, Zuo Y, Wang W, He N, Han X, Liu H. A biocompatible pea protein isolate-derived bioink for 3D bioprinting and tissue engineering. J Mater Chem B 2024; 12:6716-6723. [PMID: 38899871 DOI: 10.1039/d4tb00781f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Three-dimensional bioprinting is a potent biofabrication technique in tissue engineering but is limited by inadequate bioink availability. Plant-derived proteins are increasingly recognized as highly promising yet underutilized materials for biomedical product development and hold potential for use in bioink formulations. Herein, we report the development of a biocompatible plant protein bioink from pea protein isolate. Through pH shifting, ethanol precipitation, and lyophilization, the pea protein isolate (PPI) transformed from an insoluble to a soluble form. Next, it was modified with glycidyl methacrylate to obtain methacrylate-modified PPI (PPIGMA), which is photocurable and was used as the precursor of bioink. The mechanical and microstructural studies of the hydrogel containing 16% PPIGMA revealed a suitable compress modulus and a porous network with a pore size over 100 μm, which can facilitate nutrient and waste transportation. The PPIGMA bioink exhibited good 3D bioprinting performance in creating complex patterns and good biocompatibility as plenty of viable cells were observed in the printed samples after 3 days of incubation in the cell culture medium. No immunogenicity of the PPIGMA bioink was identified as no inflammation was observed for 4 weeks after implantation in Sprague Dawley rats. Compared with methacrylate-modified gelatin, the PPIGMA bioink significantly enhanced cartilage regeneration in vitro and in vivo, suggesting that it can be used in tissue engineering applications. In summary, the PPIGMA bioink can be potentially used for tissue engineering applications.
Collapse
Affiliation(s)
- Xin Chen
- College of Material Science and Engineering, Hunan University, Changsha 410082, China.
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha 410082, China.
| | - Mengni Yang
- College of Material Science and Engineering, Hunan University, Changsha 410082, China.
| | - Shuai Zhu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China.
| | - Wenxiang Zhu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China.
| | - Jingjing Sun
- College of Biology, Hunan University, Changsha 410082, China.
| | - Mengyi Yu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China.
| | - Jiaqian He
- College of Biology, Hunan University, Changsha 410082, China.
| | - You Zuo
- College of Biology, Hunan University, Changsha 410082, China.
| | - Wenxin Wang
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Ning He
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Xiaoxiao Han
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Hairong Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
10
|
Ma L, Dong W, Lai E, Wang J. Silk fibroin-based scaffolds for tissue engineering. Front Bioeng Biotechnol 2024; 12:1381838. [PMID: 38737541 PMCID: PMC11084674 DOI: 10.3389/fbioe.2024.1381838] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Silk fibroin is an important natural fibrous protein with excellent prospects for tissue engineering applications. With profound studies in recent years, its potential in tissue repair has been developed. A growing body of literature has investigated various fabricating methods of silk fibroin and their application in tissue repair. The purpose of this paper is to trace the latest developments of SF-based scaffolds for tissue engineering. In this review, we first presented the primary and secondary structures of silk fibroin. The processing methods of SF scaffolds were then summarized. Lastly, we examined the contribution of new studies applying SF as scaffolds in tissue regeneration applications. Overall, this review showed the latest progress in the fabrication and utilization of silk fibroin-based scaffolds.
Collapse
Affiliation(s)
- Li Ma
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Wenyuan Dong
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Enping Lai
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Jiamian Wang
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| |
Collapse
|
11
|
Chen X, Yang M, Zhou Z, Sun J, Meng X, Huang Y, Zhu W, Zhu S, He N, Zhu X, Han X, Liu H. An Anti-Oxidative Bioink for Cartilage Tissue Engineering Applications. J Funct Biomater 2024; 15:37. [PMID: 38391890 PMCID: PMC10889144 DOI: 10.3390/jfb15020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Since chondrocytes are highly vulnerable to oxidative stress, an anti-oxidative bioink combined with 3D bioprinting may facilitate its applications in cartilage tissue engineering. We developed an anti-oxidative bioink with methacrylate-modified rutin (RTMA) as an additional bioactive component and glycidyl methacrylate silk fibroin as a biomaterial component. Bioink containing 0% RTMA was used as the control sample. Compared with hydrogel samples produced with the control bioink, solidified anti-oxidative bioinks displayed a similar porous microstructure, which is suitable for cell adhesion and migration, and the transportation of nutrients and wastes. Among photo-cured samples prepared with anti-oxidative bioinks and the control bioink, the sample containing 1 mg/mL of RTMA (RTMA-1) showed good degradation, promising mechanical properties, and the best cytocompatibility, and it was selected for further investigation. Based on the results of 3D bioprinting tests, the RTMA-1 bioink exhibited good printability and high shape fidelity. The results demonstrated that RTMA-1 reduced intracellular oxidative stress in encapsulated chondrocytes under H2O2 stimulation, which results from upregulation of COLII and AGG and downregulation of MMP13 and MMP1. By using in vitro and in vivo tests, our data suggest that the RTMA-1 bioink significantly enhanced the regeneration and maturation of cartilage tissue compared to the control bioink, indicating that this anti-oxidative bioink can be used for 3D bioprinting and cartilage tissue engineering applications in the future.
Collapse
Affiliation(s)
- Xin Chen
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Mengni Yang
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha 410082, China
| | - Jingjing Sun
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiaolin Meng
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Yuting Huang
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Wenxiang Zhu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Shuai Zhu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Ning He
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Xiaolong Zhu
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Xiaoxiao Han
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Hairong Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
12
|
Zhou Z, Wang J, Jiang C, Xu K, Xu T, Yu X, Fang J, Yang Y, Dai X. Advances in Hydrogels for Meniscus Tissue Engineering: A Focus on Biomaterials, Crosslinking, Therapeutic Additives. Gels 2024; 10:114. [PMID: 38391445 PMCID: PMC10887778 DOI: 10.3390/gels10020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Meniscus tissue engineering (MTE) has emerged as a promising strategy for meniscus repair and regeneration. As versatile platforms, hydrogels have gained significant attention in this field, as they possess tunable properties that allow them to mimic native extracellular matrices and provide a suitable microenvironment. Additionally, hydrogels can be minimally invasively injected and can be adjusted to match the shape of the implant site. They can conveniently and effectively deliver bioactive additives and demonstrate good compatibility with other functional materials. These inherent qualities have made hydrogel a promising candidate for therapeutic approaches in meniscus repair and regeneration. This article provides a comprehensive review of the advancements made in the research on hydrogel application for meniscus tissue engineering. Firstly, the biomaterials and crosslinking strategies used in the formation of hydrogels are summarized and analyzed. Subsequently, the role of therapeutic additives, including cells, growth factors, and other active products, in facilitating meniscus repair and regeneration is thoroughly discussed. Furthermore, we summarize the key issues for designing hydrogels used in MTE. Finally, we conclude with the current challenges encountered by hydrogel applications and suggest potential solutions for addressing these challenges in the field of MTE. We hope this review provides a resource for researchers and practitioners interested in this field, thereby facilitating the exploration of new design possibilities.
Collapse
Affiliation(s)
- Zhuxing Zhou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Jiajie Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Chaoqian Jiang
- School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Tengjing Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Xinning Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Jinghua Fang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| | - Yanyu Yang
- School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xuesong Dai
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310000, China
| |
Collapse
|
13
|
Yu GT, Zhu WX, Zhao YY, Cui H, Chen H, Chen Y, Ning TT, Rong MD, Rao L, Ma DD. 3D-printed bioink loading with stem cells and cellular vesicles for periodontitis-derived bone defect repair. Biofabrication 2024; 16:025007. [PMID: 38241709 DOI: 10.1088/1758-5090/ad2081] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
The suitable microenvironment of bone regeneration is critically important for periodontitis-derived bone defect repair. Three major challenges in achieving a robust osteogenic reaction are the exist of oral inflammation, pathogenic bacteria invasion and unaffluent seed cells. Herein, a customizable and multifunctional 3D-printing module was designed with glycidyl methacrylate (GMA) modified epsilon-poly-L-lysine (EPLGMA) loading periodontal ligament stem cells (PDLSCs) and myeloid-derived suppressive cells membrane vesicles (MDSCs-MV) bioink (EPLGMA/PDLSCs/MDSCs-MVs, abbreviated as EPM) for periodontitis-derived bone defect repair. The EPM showed excellent mechanical properties and physicochemical characteristics, providing a suitable microenvironment for bone regeneration.In vitro, EPMs presented effectively kill the periodontopathic bacteria depend on the natural antibacterial properties of the EPL. Meanwhile, MDSCs-MV was confirmed to inhibit T cells through CD73/CD39/adenosine signal pathway, exerting an anti-inflammatory role. Additionally, seed cells of PDLSCs provide an adequate supply for osteoblasts. Moreover, MDSCs-MV could significantly enhance the mineralizing capacity of PDLSCs-derived osteoblast. In the periodontal bone defect rat model, the results of micro-CT and histological staining demonstrated that the EPM scaffold similarly had an excellent anti-inflammatory and bone regeneration efficacyin vivo. This biomimetic and multifunctional 3D-printing bioink opens new avenues for periodontitis-derived bone defect repair and future clinical application.
Collapse
Affiliation(s)
- Guang-Tao Yu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Wen-Xiang Zhu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, People's Republic of China
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Yu-Yue Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Hao Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Hao Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Yan Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Ting-Ting Ning
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Ming-Deng Rong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, People's Republic of China
| | - Dan-Dan Ma
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People's Republic of China
| |
Collapse
|
14
|
Sun J, Chen W, Zhou Z, Chen X, Zuo Y, He J, Liu H. Tanshinone IIA Facilitates Efficient Cartilage Regeneration under Inflammatory Factors Caused Stress via Upregulating LncRNA NEAT1_2. Biomedicines 2023; 11:3291. [PMID: 38137512 PMCID: PMC10741062 DOI: 10.3390/biomedicines11123291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Osteoarthritis (OA) is a crippling condition characterized by chondrocyte dedifferentiation, cartilage degradation, and subsequent cartilage defects. Unfortunately, there is a lack of effective medicines to facilitate the repair of cartilage defects in OA patients. In this study, we investigated the role of lncRNA NEAT1_2 in maintaining the chondrocyte phenotype and identified tanshinone IIA(TAN) as a natural medicine that enhances NEAT1_2 levels, resulting in efficient cartilage regeneration under inflammatory cytokines. (2) Methods: The transcriptional levels of NEAT1_2 and cartilage phenotype-related genes were identified by RT-qPCR. The siRNA interference approach was utilized to silence NEAT1_2; the Alamar Blue assay was performed to determine chondrocyte viability under inflammatory conditions. To evaluate the concentrations of collagen type II and glycosaminoglycans distributed by chondrocytes in vitro and in vivo, immunohistochemical staining and Safranin O staining were used. (3) Results: IL-1β suppresses NEAT1_2 and genes related to the chondrocytic phenotype, whereas TAN effectively upregulates them in a NEAT1_2-dependent manner. Consistently, TAN alleviated chondrocyte oxidative stress inhibited cartilage degradation by modulating the relevant genes and promoted efficient cartilage regeneration in vitro and in vivo when chondrocytes are exposed to inflammatory cytokines. (4) Conclusions: TAN enhances the expression of NEAT1_2 inhibited by IL-1β and affects the transcription of chondrocytic phenotype-related genes, which promotes cartilage regeneration in an inflammatory environment.
Collapse
Affiliation(s)
- Jingjing Sun
- College of Biology, Hunan University, Changsha 410082, China; (J.S.); (Y.Z.); (J.H.)
| | - Wei Chen
- College of Material Science and Engineering, Hunan University, Changsha 410082, China; (W.C.); (X.C.)
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha 410082, China; (J.S.); (Y.Z.); (J.H.)
| | - Xin Chen
- College of Material Science and Engineering, Hunan University, Changsha 410082, China; (W.C.); (X.C.)
| | - You Zuo
- College of Biology, Hunan University, Changsha 410082, China; (J.S.); (Y.Z.); (J.H.)
| | - Jiaqian He
- College of Biology, Hunan University, Changsha 410082, China; (J.S.); (Y.Z.); (J.H.)
| | - Hairong Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China; (W.C.); (X.C.)
| |
Collapse
|
15
|
Ding Q, Zhang S, Liu X, Zhao Y, Yang J, Chai G, Wang N, Ma S, Liu W, Ding C. Hydrogel Tissue Bioengineered Scaffolds in Bone Repair: A Review. Molecules 2023; 28:7039. [PMID: 37894518 PMCID: PMC10609504 DOI: 10.3390/molecules28207039] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Large bone defects due to trauma, infections, and tumors are difficult to heal spontaneously by the body's repair mechanisms and have become a major hindrance to people's daily lives and economic development. However, autologous and allogeneic bone grafts, with their lack of donors, more invasive surgery, immune rejection, and potential viral transmission, hinder the development of bone repair. Hydrogel tissue bioengineered scaffolds have gained widespread attention in the field of bone repair due to their good biocompatibility and three-dimensional network structure that facilitates cell adhesion and proliferation. In addition, loading natural products with nanoparticles and incorporating them into hydrogel tissue bioengineered scaffolds is one of the most effective strategies to promote bone repair due to the good bioactivity and limitations of natural products. Therefore, this paper presents a brief review of the application of hydrogels with different gel-forming properties, hydrogels with different matrices, and nanoparticle-loaded natural products loaded and incorporated into hydrogels for bone defect repair in recent years.
Collapse
Affiliation(s)
- Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China;
| | - Yingchun Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China;
| | - Jiali Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Guodong Chai
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; (G.C.); (N.W.)
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; (G.C.); (N.W.)
| | - Shuang Ma
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China;
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| |
Collapse
|
16
|
Su X, Wei L, Xu Z, Qin L, Yang J, Zou Y, Zhao C, Chen L, Hu N. Evaluation and Application of Silk Fibroin Based Biomaterials to Promote Cartilage Regeneration in Osteoarthritis Therapy. Biomedicines 2023; 11:2244. [PMID: 37626740 PMCID: PMC10452428 DOI: 10.3390/biomedicines11082244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by cartilage damage and degeneration. Traditional treatments such as NSAIDs and joint replacement surgery only relieve pain and do not achieve complete cartilage regeneration. Silk fibroin (SF) biomaterials are novel materials that have been widely studied and applied to cartilage regeneration. By mimicking the fibrous structure and biological activity of collagen, SF biomaterials can promote the proliferation and differentiation of chondrocytes and contribute to the formation of new cartilage tissue. In addition, SF biomaterials have good biocompatibility and biodegradability and can be gradually absorbed and metabolized by the human body. Studies in recent years have shown that SF biomaterials have great potential in treating OA and show good clinical efficacy. Therefore, SF biomaterials are expected to be an effective treatment option for promoting cartilage regeneration and repair in patients with OA. This article provides an overview of the biological characteristics of SF, its role in bone and cartilage injuries, and its prospects in clinical applications to provide new perspectives and references for the field of bone and cartilage repair.
Collapse
Affiliation(s)
- Xudong Su
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Wei
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Jianye Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Yinshuang Zou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
17
|
Xu L, Yang Y, Zhong W, Li W, Liu C, Guo Z, Yu X. Comparative efficacy of five most common traditional Chinese medicine monomers for promoting recovery of motor function in rats with blunt spinal cord injury: a network meta-analysis. Front Neurol 2023; 14:1165076. [PMID: 37465765 PMCID: PMC10351986 DOI: 10.3389/fneur.2023.1165076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Objective This research employed a network meta-analysis (NMA) to examine the effectiveness of five traditional Chinese medicine (TCM) monomers for promoting motor function recovery in rats with blunt spinal cord injury (SCI). Methods Wangfang, China National Knowledge Infrastructure, Web of Science, Embase, Chinese Scientific Journal Database, PubMed, and the Chinese Biomedical Literature Databases were searched for retrieving relevant articles published from their inception to December 2022. Two reviewers performed screening of search results, data extraction, and literature quality assessment independently. Results For this meta-analysis, 59 publications were included. Based on the recovery of motor function at weeks 1, 2, 3, and 4 in NMA, almost all TCM groups had significantly increased positive effects than the negative control animals. In terms of cumulative probability, the tanshinone IIA (TIIA) group ranked first in restoring motor function in the first week after blunt SCI, and the resveratrol (RSV) group ranked first during the last 3 weeks. Conclusion The NMA revealed that TCM monomers could effectively restore motor function in the rat model of blunt SCI. In rats with blunt SCI, TIIA may be the most effective TCM monomer during the first week, whereas RSV may be the most effective TCM monomer during the last 3 weeks in promoting motor function recovery. For better evidence reliability in preclinical investigations and safer extrapolation of those findings into clinical settings, further research standardizing the implementation and reporting of animal experiments is required. Systematic Review Registration https://inplasy.com/, identifier INPLASY202310070.
Collapse
|
18
|
Liang J, Liu P, Yang X, Liu L, Zhang Y, Wang Q, Zhao H. Biomaterial-based scaffolds in promotion of cartilage regeneration: Recent advances and emerging applications. J Orthop Translat 2023; 41:54-62. [PMID: 37691640 PMCID: PMC10485599 DOI: 10.1016/j.jot.2023.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 08/05/2023] [Indexed: 09/12/2023] Open
Abstract
Osteoarthritis (OA) poses a significant burden for countless individuals, inflicting relentless pain and impairing their quality of life. Although traditional treatments for OA focus on pain management and surgical interventions, they often fall short of addressing the underlying cause of the disease. Fortunately, emerging biomaterial-based scaffolds offer hope for OA therapy, providing immense promise for cartilage regeneration in OA. These innovative scaffolds are ingeniously designed to provide support and mimic the intricate structure of the natural extracellular matrix, thus stimulating the regeneration of damaged cartilage. In this comprehensive review, we summarize and discuss current landscape of biomaterial-based scaffolds for cartilage regeneration in OA. Furthermore, we delve into the diverse range of biomaterials employed in their construction and explore the cutting-edge techniques utilized in their fabrication. By examining both preclinical and clinical studies, we aim to illuminate the remarkable versatility and untapped potential of biomaterial-based scaffolds in the context of OA. Thetranslational potential of this article By thoroughly examining the current state of research and clinical studies, this review provides valuable insights that bridge the gap between scientific knowledge and practical application. This knowledge is crucial for clinicians and researchers who strive to develop innovative treatments that go beyond symptom management and directly target the underlying cause of OA. Through the comprehensive analysis and multidisciplinary approach, the review paves the way for the translation of scientific knowledge into practical applications, ultimately improving the lives of individuals suffering from OA and shaping the future of orthopedic medicine.
Collapse
Affiliation(s)
| | | | - Xinquan Yang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Liu
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiong Wang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Li M, Yin H, Chen M, Deng H, Tian G, Guo W, Yi G, Guo Q, Chen Z, Liu S. STS loaded PCL-MECM based hydrogel hybrid scaffolds promote meniscal regeneration via modulating macrophage phenotype polarization. Biomater Sci 2023; 11:2759-2774. [PMID: 36810435 DOI: 10.1039/d2bm00526c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Meniscus injury has a limited ability to heal itself and often results in the progression to osteoarthritis. After a meniscus injury, there is an obvious acute or chronic inflammatory response in the articular cavity, which is not conducive to tissue regeneration. M2 macrophages are involved in tissue repair and remodeling. Regenerative medicine strategies for tissue regeneration by enhancing the phenotypic ratio of M2 : M1 macrophages have been demonstrated in a variety of tissues. However, there are no relevant reports in the field of meniscus tissue regeneration. In this study, we confirmed that sodium tanshinone IIA sulfonate (STS) could transform macrophages from M1 to M2 polarization. STS protects meniscal fibrochondrocytes (MFCs) against the effects of macrophage conditioned medium (CM). Moreover, STS attenuates interleukin (IL)-1β-induced inflammation, oxidative stress, apoptosis, and extracellular matrix (ECM) degradation in MFCs, possibly by inhibiting the interleukin-1 receptor-associated kinase 4 (IRAK4)/TNFR-associated factor 6 (TRAF6)/nuclear factor-kappaB (NF-κB) signaling pathway. An STS loaded polycaprolactone (PCL)-meniscus extracellular matrix (MECM) based hydrogel hybrid scaffold was fabricated. PCL provides mechanical support, the MECM based hydrogel provides a microenvironment conducive to cell proliferation and differentiation, and STS is used to drive M2 polarization and protect MFCs against the effects of inflammatory stimuli, thus providing an immune microenvironment conducive to regeneration. The results of subcutaneous implantation in vivo showed that hybrid scaffolds could induce M2 polarization in the early stage. In addition, the hybrid scaffolds seeded with MFCs could achieve good meniscus regeneration and chondroprotective effects in rabbits.
Collapse
Affiliation(s)
- Muzhe Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China. .,Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang 421000, Hunan Province, China.
| | - Han Yin
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.
| | - Mingxue Chen
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Beijing 100035, China
| | - Haotian Deng
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.
| | - Guangzhao Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.
| | - Weimin Guo
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Second Road, Yuexiu District, Guangzhou 510080, Guangdong, China
| | - Guoliang Yi
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang 421000, Hunan Province, China.
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.
| | - Zhiwei Chen
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang 421000, Hunan Province, China.
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.
| |
Collapse
|
20
|
Rajendran AK, Hwang NS. Silk and silk fibroin in tissue engineering. NATURAL BIOPOLYMERS IN DRUG DELIVERY AND TISSUE ENGINEERING 2023:627-661. [DOI: 10.1016/b978-0-323-98827-8.00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Chen C, Huang S, Chen Z, Liu Q, Cai Y, Mei Y, Xu Y, Guo R, Yan C. Kartogenin (KGN)/synthetic melanin nanoparticles (SMNP) loaded theranostic hydrogel scaffold system for multiparametric magnetic resonance imaging guided cartilage regeneration. Bioeng Transl Med 2023; 8:e10364. [PMID: 36684070 PMCID: PMC9842022 DOI: 10.1002/btm2.10364] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023] Open
Abstract
Cartilage regeneration after injury is still a great challenge in clinics, which suffers from its avascularity and poor proliferative ability. Herein we designed a novel biocompatible cellulose nanocrystal/GelMA (gelatin-methacrylate anhydride)/HAMA (hyaluronic acid-methacrylate anhydride)-blended hydrogel scaffold system, loaded with synthetic melanin nanoparticles (SMNP) and a bioactive drug kartogenin (KGN) for theranostic purpose. We found that the SMNP-KGN/Gel showed favorable mechanical property, thermal stability, and distinct magnetic resonance imaging (MRI) contrast enhancement. Meanwhile, the sustained release of KGN could recruit bone-derived mesenchymal stem cells to proliferate and differentiate into chondrocytes, which promoted cartilage regeneration in vitro and in vivo. The hydrogel degradation and cartilage restoration were simultaneously monitored by multiparametric MRI for 12 weeks, and further confirmed by histological analysis. Together, these results validated the multifunctional hydrogel as a promising tissue engineering platform for noninvasive imaging-guided precision therapy in cartilage regenerative medicine.
Collapse
Affiliation(s)
- Chuyao Chen
- Department of Medical Imaging Center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shaoshan Huang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Zelong Chen
- Department of Medical Imaging Center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Qin Liu
- Department of Medical Imaging Center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yu Cai
- Clinical Research CenterZhujiang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
- Center of Orthopedics, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yingjie Mei
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouChina
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
22
|
Nie K, Zhou S, Li H, Tian J, Shen W, Huang W. Advanced silk materials for musculoskeletal tissue regeneration. Front Bioeng Biotechnol 2023; 11:1199507. [PMID: 37200844 PMCID: PMC10185897 DOI: 10.3389/fbioe.2023.1199507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Musculoskeletal diseases are the leading causes of chronic pain and physical disability, affecting millions of individuals worldwide. Over the past two decades, significant progress has been made in the field of bone and cartilage tissue engineering to combat the limitations of conventional treatments. Among various materials used in musculoskeletal tissue regeneration, silk biomaterials exhibit unique mechanical robustness, versatility, favorable biocompatibility, and tunable biodegradation rate. As silk is an easy-to-process biopolymer, silks have been reformed into various materials formats using advanced bio-fabrication technology for the design of cell niches. Silk proteins also offer active sites for chemical modifications to facilitate musculoskeletal system regeneration. With the emergence of genetic engineering techniques, silk proteins have been further optimized from the molecular level with other functional motifs to introduce new advantageous biological properties. In this review, we highlight the frontiers in engineering natural and recombinant silk biomaterials, as well as recent progress in the applications of these new silks in the field of bone and cartilage regeneration. The future potentials and challenges of silk biomaterials in musculoskeletal tissue engineering are also discussed. This review brings together perspectives from different fields and provides insight into improved musculoskeletal engineering.
Collapse
Affiliation(s)
- Kexin Nie
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Sicheng Zhou
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hu Li
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingyi Tian
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiliang Shen
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenwen Huang
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Wenwen Huang,
| |
Collapse
|
23
|
The application of elastin-like peptides in cancer, tissue engineering and ocular disease. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Zhou Z, Huang Y, Liu H, Zhao G. 3D bioprinting of modified mannan bioink for tissue engineering. STAR Protoc 2022; 3:101585. [PMID: 35880129 PMCID: PMC9307568 DOI: 10.1016/j.xpro.2022.101585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This protocol details the steps for preparation of a recently developed bioink, named YM-MA, which is based on methacrylate anhydride-modified yeast mannan. A light-assisted 3D bioprinting is performed to analyze the printability of YM-MA bioink. We describe how cell experiments, animal models of subcutaneous implantation in a Sprague Dawley rat model, and nude mice are used to evaluate the cytocompatibility, histocompatibility, and chondrogenesis of YM-MA bioink. This protocol provides a versatile strategy to develop bioinks of polysaccharides with chemical modification sites such as hydroxyl group. For complete details on the use and execution of this protocol, please refer to Huang et al. (2021). Preparation of a modified water-soluble polysaccharide polymer YM-MA bioink Optimized parameters for 3D printing of YM-MA bioink YM-MA bioink has good cytocompatibility and histocompatibility
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
25
|
Zheng D, Chen T, Han L, Lv S, Yin J, Yang K, Wang Y, Xu N. Synergetic integrations of bone marrow stem cells and transforming growth factor-β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue. Int Wound J 2022; 19:1023-1038. [PMID: 35266304 PMCID: PMC9284642 DOI: 10.1111/iwj.13699] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 01/22/2023] Open
Abstract
The cartilage repair and regeneration show inadequate self-healing capability and have some complications, which are inordinate challenges in clinical therapy. Biopolymeric injectable hydrogels, a prominent type of cell-carrier as well tissue engineering scaffolding materials, establish promising therapeutic potential of stem cell-based cartilage-regeneration treatment. In addition, injectable scaffolding biomaterial should have rapid gelation properties with adequate rheological and mechanical properties. In the present investigation, we developed and fabricated the macromolecular silk fibroin blended with polylysine modified chitosan polymer (SF/PCS) using thermal-sensitive glycerophosphate (GP), which contains effective gelation ability, morphology, porosity and also has enhanced mechanical properties to induce physical applicability, cell proliferation and nutrient exchange in the cell-based treatment. The developed and optimised injectable hydrogel group has good biocompatibility with human fibroblast (L929) cells and bone marrow-derived mesenchymal stem cells (BMSCs). Additionally, it was found that SF/PCS hydrogel group could sustainably release TGF-β1 and efficiently regulate cartilage-specific and inflammatory-related gene expressions. Finally, the cartilage-regeneration potential of the hydrogel groups embedded with and without BMSCs were evaluated in SD rat models under histopathological analysis, which showed promising cartilage repair. Overall, we conclude that the TGF-β1-SF/PCS injectable hydrogel demonstrates enhanced in vitro and in vivo tissue regeneration properties, which lead to efficacious therapeutic potential in cartilage regeneration.
Collapse
Affiliation(s)
- Dong Zheng
- Department of OrthopedicsThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Tong Chen
- Department of Sports Medicine and Joint SurgeryNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Long Han
- Department of OrthopedicsThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Songwei Lv
- School of Pharmacy, Changzhou UniversityChangzhouChina
| | - Jianjian Yin
- Department of OrthopedicsThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Kaiyuan Yang
- Department of OrthopedicsThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Yuji Wang
- Department of OrthopedicsThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Nanwei Xu
- Department of OrthopedicsThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| |
Collapse
|
26
|
涂 鹏, 马 勇, 潘 娅, 汪 志, 孙 杰, 陈 凯, 杨 光, 王 礼, 刘 孟, 郭 杨. [Effect of silk fibroin microcarrier loaded with clematis total saponins and chondrocytes on promoting rabbit knee articular cartilage defects repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:343-351. [PMID: 35293177 PMCID: PMC8923927 DOI: 10.7507/1002-1892.202107061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Objective To prepare the silk fibroin microcarrier loaded with clematis total saponins (CTS) (CTS-silk fibroin microcarrier), and to investigate the effect of microcarrier combined with chondrocytes on promoting rabbit knee articular cartilage defects repair. Methods CTS-silk fibroin microcarrier was prepared by high voltage electrostatic combined with freeze drying method using the mixture of 5% silk fibroin solution, 10 mg/mL CTS solution, and glycerin. The samples were characterized by scanning electron microscope and the cumulative release amount of CTS was detected. Meanwhile, unloaded silk fibroin microcarrier was also prepared. Chondrocytes were isolated from knee cartilage of 4-week-old New Zealand rabbits and cultured. The 3rd generation of chondrocytes were co-cultured with the two microcarriers respectively for 7 days in microgravity environment. During this period, the adhesion of chondrocytes to microcarriers was observed by inverted phase contrast microscope and scanning electron microscope, and the proliferation activity of cells was detected by cell counting kit 8 (CCK-8), and compared with normal cells. Thirty 3-month-old New Zealand rabbits were selected to make bilateral knee cartilage defects models and randomly divided into 3 groups ( n=20). Knee cartilage defects in group A were not treated, and in groups B and C were filled with the unloaded silk fibroin microcarrier-chondrocyte complexes and CTS-silk fibroin microcarrier-chondrocyte complexes, respectively. At 12 weeks after operation, the levels of matrix metalloproteinase 9 (MMP-9), MMP-13, and tissue inhibitor of MMP 1 (TIMP-1) in articular fluid were detected by ELISA. The cartilage defects were collected for gross observation and histological observation (HE staining and toluidine blue staining). Western blot was used to detect the expressions of collagen type Ⅱ and proteoglycan. The inflammatory of joint synovium was observed by histological staining and inducible nitric oxide synthase (iNOS) immunohistochemical staining. Results The CTS-silk fibroin microcarrier was spherical, with a diameter between 300 and 500 μm, a porous surface, and a porosity of 35.63%±3.51%. CTS could be released slowly in microcarrier for a long time. Under microgravity, the chondrocytes attached to the surface of the two microcarriers increased gradually with the extension of culture time, and the proliferation activity of chondrocytes at 24 hours after co-culture was significantly higher than that of normal chondrocytes ( P<0.05). There was no significant difference in proliferation activity of chondrocytes between the two microcarriers ( P>0.05). In vivo experiment in animals showed that the levels of MMP-9 and MMP-13 in group C were significantly lower than those in groups A and B ( P<0.05), and the level of TIMP-1 in group C was significantly higher ( P<0.05). Compared with group A, the cartilage defects in groups B and C were filled with repaired tissue, and the repaired surface of group C was more complete and better combined with the surrounding cartilage. Histological observation and Western blot analysis showed that the International Cartilage Repair Scoring (ICRS) and the relative expression levels of collagen type Ⅱ and proteoglycan in groups B and C were significantly better than those in group A, and group C was significantly better than group B ( P<0.05). The histological observation showed that the infiltration of synovial inflammatory cells and hyperplasia of small vessels significantly reduced in group C compared with groups A and B. iNOS immunohistochemical staining showed that the expression of iNOS in group C was significantly lower than that in groups A and B ( P<0.05). Conclusion CTS-silk fibroin microcarrier has good CTS sustained release effect and biocompatibility, and can promote the repair of rabbit cartilage defect by carrying chondrocyte proliferation in microgravity environment.
Collapse
Affiliation(s)
- 鹏程 涂
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 勇 马
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
- 南京中医药大学中医学院 · 中西医结合学院(南京 210023)School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 娅岚 潘
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 志芳 汪
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
| | - 杰 孙
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 凯 陈
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
| | - 光露 杨
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 礼宁 王
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 孟敏 刘
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| | - 杨 郭
- 南京中医药大学附属医院骨伤科(南京 210029)Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210029, P. R. China
- 南京中医药大学骨伤修复与重建新技术实验室(南京 210023)Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing Jiangsu, 210023, P. R. China
| |
Collapse
|
27
|
Tu P, Pan Y, Wu C, Yang G, Zhou X, Sun J, Wang L, Liu M, Wang Z, Liang Z, Guo Y, Ma Y. Cartilage Repair Using Clematis Triterpenoid Saponin Delivery Microcarrier, Cultured in a Microgravity Bioreactor Prior to Application in Rabbit Model. ACS Biomater Sci Eng 2022; 8:753-764. [PMID: 35084832 DOI: 10.1021/acsbiomaterials.1c01101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cartilage tissue engineering provides a promising method for the repair of articular cartilage defects, requiring appropriate biological scaffolds and necessary growth factors to enhance the efficiency of cartilage regeneration. Here, a silk fibroin (SF) microcarrier and a clematis triterpenoid saponin delivery SF (CTS-SF) microcarrier were prepared by the high-voltage electrostatic differentiation and lyophilization method, and chondrocytes were carried under the simulated microgravity condition by a rotating cell culture system. SF and CTS-SF microspheres were relatively uniform in size and had a porous structure with good swelling and cytocompatibility. Further, CTS-SF microcarriers could sustainably release CTSs in the monitored 10 days. Compared with the monolayer culture, chondrocytes under the microgravity condition maintained a better chondrogenic phenotype and showed better proliferation ability after culture on microcarriers. Moreover, the sustained release of CTS from CTS-SF microcarriers upregulated transforming growth factor-β, Smad2, and Smad3 signals, contributing to promote chondrogenesis. Hence, the biophysical effects of microgravity and bioactivities of CTS-ST were used for chondrocyte expansion and phenotype maintenance in vitro. With prolonged expansion, SF- and CTS-SF-based microcarrier-cell composites were directly implanted in vivo to repair rabbit articular defects. Gross evaluations, histopathological examinations, and biochemical analysis indicated that SF- and CTS-SF-based composites exhibited cartilage-like tissue repair compared with the nontreated group. Further, CTS-SF-based composites displayed superior hyaline cartilage-like repair that integrated with the surrounding cartilage better and higher cartilage extracellular matrix content. In conclusion, these results provide an alternative preparation method for drug-delivered SF microcarrier and a culture method for maintaining the chondrogenic phenotype of seed cells based on the microgravity environment. CTS showed its bioactive function, and the application of CTS-SF microcarriers can help repair and regenerate cartilage defects.
Collapse
Affiliation(s)
- Pengcheng Tu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,Nursing Institute of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
| | - Chengjie Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Guanglu Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xin Zhou
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Jie Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Lining Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Mengmin Liu
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Zhifang Wang
- Zhangjiagang Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou 215600, P.R. China
| | - Zhongqing Liang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yang Guo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yong Ma
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|
28
|
He Y, Zhou Z, Huang Y, Zhu W, He N, Zhu X, Han X, Liu H. An antibacterial ε-poly-L-lysine-derived bioink for 3D bioprinting applications. J Mater Chem B 2022; 10:8274-8281. [DOI: 10.1039/d1tb02800f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Limited bioinks have hindered applying 3D bioprinting to tissue engineering, and bacterial infection is a serious threat to these applications. Aiming to solve this problem, a novel ε-poly-L-lysine (EPL) derived...
Collapse
|
29
|
Huang Y, Meng X, Zhou Z, Zhu W, Chen X, He Y, He N, Han X, Zhou D, Duan X, Vadgama P, Liu H. A naringin-derived bioink enhances shape fidelity of 3D bioprinting and efficiency of cartilage defects repair. J Mater Chem B 2022; 10:7030-7044. [DOI: 10.1039/d2tb01247b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3D bioprinting is a major area of interest in health sciences for customized manufacturing, but lacks specific bioinks to enhance shape fidelity of 3D bioprinting and efficiency of tissue repair...
Collapse
|
30
|
Daou F, Cochis A, Leigheb M, Rimondini L. Current Advances in the Regeneration of Degenerated Articular Cartilage: A Literature Review on Tissue Engineering and Its Recent Clinical Translation. MATERIALS (BASEL, SWITZERLAND) 2021; 15:31. [PMID: 35009175 PMCID: PMC8745794 DOI: 10.3390/ma15010031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022]
Abstract
Functional ability is the basis of healthy aging. Articular cartilage degeneration is amongst the most prevalent degenerative conditions that cause adverse impacts on the quality of life; moreover, it represents a key predisposing factor to osteoarthritis (OA). Both the poor capacity of articular cartilage for self-repair and the unsatisfactory outcomes of available clinical interventions make innovative tissue engineering a promising therapeutic strategy for articular cartilage repair. Significant progress was made in this field; however, a marked heterogeneity in the applied biomaterials, biofabrication, and assessments is nowadays evident by the huge number of research studies published to date. Accordingly, this literature review assimilates the most recent advances in cell-based and cell-free tissue engineering of articular cartilage and also focuses on the assessments performed via various in vitro studies, ex vivo models, preclinical in vivo animal models, and clinical studies in order to provide a broad overview of the latest findings and clinical translation in the context of degenerated articular cartilage and OA.
Collapse
Affiliation(s)
- Farah Daou
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (F.D.); (A.C.); (M.L.)
| | - Andrea Cochis
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (F.D.); (A.C.); (M.L.)
| | - Massimiliano Leigheb
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (F.D.); (A.C.); (M.L.)
- Department of Orthopaedics and Traumatology, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Lia Rimondini
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (F.D.); (A.C.); (M.L.)
| |
Collapse
|
31
|
Huang Y, Zhou Z, Hu Y, He N, Li J, Han X, Zhao G, Liu H. Modified mannan for 3D bioprinting: a potential novel bioink for tissue engineering. Biomed Mater 2021; 16. [PMID: 34348252 DOI: 10.1088/1748-605x/ac1ab4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023]
Abstract
3D bioprinting technology displays many advantages for tissue engineering applications, but its utilization is limited by veryfew bioinks available for biofabrication. In this study, a novel type of bioink, which includes three methacryloyl modifiedmannans, was introduced to 3D bioprinting for tissue engineering applications. Yeast mannan (YM) was modified by reactingwith methacrylate anhydride (MA) at different concentrations, and three YM derived bioinks were obtained, which weretermed as YM-MA-1, YM-MA-2 and YM-MA-3 and were distinguished with different adjusted methacrylation degrees. TheYM derived bioink displayed an advantage that the mechanical properties of its photo-cured hydrogels can be enhanced withits methacrylation degree. Hence, YM derived bioinks are fitted for the mechanical requirements of most soft tissueengineering, including cartilage tissue engineering. By selecting chondrocytes as the testing cells, well cytocompatibility of YM-MA-1, YM-MA-2 had been confirmed by CCK-8 method. Following photo-crosslinking and implantation into SD rats for 4 weeks, thein vivobiocompatibility of the YM-MA-2 hydrogel is acceptable for tissue engineering applications. Hence, YM-MA-2 was chosen for 3D bioprinting. Our data demonstrated that hydrogel products with designed shape and living chondrocytes have been printed by applying YM-MA-2 as the bioink carrying chondrocytes. After the YM-MA-2 hydrogel with encapsulated chondrocytes was implanted subcutaneously in nude mice for 2 weeks, GAG and COLII secretion was confirmed by histological staining in YM-MA-2-H, indicating that the YM derived bioink can be potentially applied to tissue engineering by employing a 3D printer of stereolithography.
Collapse
Affiliation(s)
- Yuting Huang
- College of Material Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Yingbing Hu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China
| | - Ning He
- State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, People's Republic of China
| | - Jing Li
- State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, People's Republic of China
| | - Xiaoxiao Han
- State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, People's Republic of China
| | - Guoqun Zhao
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China
| | - Hairong Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
32
|
Chen W, Li Y, Huang Y, Dai Y, Xi T, Zhou Z, Liu H. Quercetin modified electrospun PHBV fibrous scaffold enhances cartilage regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:92. [PMID: 34374884 PMCID: PMC8354921 DOI: 10.1007/s10856-021-06565-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
It suggests that the poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) scaffold can be used for cartilage tissue engineering, but PHBV is short of bioactivity that is required for cartilage regeneration. To fabricate a bioactive cartilage tissue engineering scaffold that promotes cartilage regeneration, quercetin (QUE) modified PHBV (PHBV-g-QUE) fibrous scaffolds were prepared by a two-step surface modification method. The PHBV-g-QUE fibrous scaffold facilitates the growth of chondrocytes and maintains chondrocytic phenotype resulting from the upregulation of SOX9, COL II, and ACAN. The PHBV-g-QUE fibrous scaffold inhibited apoptosis of chondrocyte and reduced oxidative stress of chondrocytes by regulating the transcription of related genes. Following PHBV-g-QUE fibrous scaffolds and PHBV fibrous scaffolds with adhered chondrocytes were implanted into nude mice for 4 weeks, it demonstrated that PHBV-g-QUE fibrous scaffolds significantly promoted cartilage regeneration compared with the PHBV fibrous scaffolds. Hence, it suggests that the PHBV-g-QUE fibrous scaffold can be potentially applied in the clinical treatment of cartilage defects in the future.
Collapse
Affiliation(s)
- Wei Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yongsheng Li
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yuting Huang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yao Dai
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
| | - Tingfei Xi
- Shenzhen Institute, Peking University, Shenzhen, 518057, China
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha, 410082, China
| | - Hairong Liu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
- Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha, 410082, China.
| |
Collapse
|
33
|
Nong Y, Ren Y, Wang P, Zhou M, Yu Y, Yuan J, Xu B, Wang Q. A facile strategy for the preparation of photothermal silk fibroin aerogels with antibacterial and oil-water separation abilities. J Colloid Interface Sci 2021; 603:518-529. [PMID: 34216949 DOI: 10.1016/j.jcis.2021.06.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022]
Abstract
Curtains with light-to-heat conversion capacity can warm up a room under solar radiation and improve the thermal energy efficiency of buildings, thereby reducing energy consumption during winter. Herein, a photothermal silk fibroin aerogel is synthesized by freeze-drying and curing method, using silk fibroin (SF) as template and scaffold, copper sulfide nanoparticles (CuS NPs) as photothermal conversion material, polyethylene glycol (PEG) as plasticizer, and polydimethylsiloxane (PDMS) as the package agent. The results reveal that SF as the template may guide the growth of CuS NPs, and the introduction of PEG improves the flexibility of the prepared CuS@SF aerogel. The composite CuS@SF-PEG/PDMS aerogel not only preserves the initial characteristics of SF aerogel but also integrates hydrophobic, rapid antibacterial ability, high-performance photothermal conversion efficiency, and stable switching effect. The lightweight, self-heating SF-based aerogel can be applied to the preparation of home textiles such as smart curtains. Additionally, it can be used as absorbent for cleaning up viscous oil from water, which could expand the applications of SF-based biomaterials toward meeting the requirements of sustainable developments.
Collapse
Affiliation(s)
- Yelin Nong
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yiwen Ren
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
34
|
Li X, Lu Y, Wang Y, Zhou S, Li L, Zhao F. Thermo-responsive injectable naringin-loaded hydrogel polymerised sodium alginate/bioglass delivery for articular cartilage. Drug Deliv 2021; 28:1290-1300. [PMID: 34176372 PMCID: PMC8238061 DOI: 10.1080/10717544.2021.1938752] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the human body, joint cartilage is of great importance. It has long been a big therapeutic problem to fix joint cartilage lesions as it appears due to different conditions. Recent stories have shown that the cartilage replacement process must delay the extracellular (ECM) cartilage deterioration and modulate the host's inflammation response. For the reconstruction of the articular cartilage, drug-loaded injectable hydrogels were developed. This hydrogel could retain the chondrocyte phenotype, but the host's inflammatory reaction could also be controlled. The bioglass (BG)/sodium alginate (SA) injectable hydrogels was combined with agarose (AG)/Naringin hydrogel in injectable thermal response for articular cartilage regeneration with a non-chargeable hydrogel that contains both Naringin and BG (Naringin–BG hydrogels). The Naringin–BG hydrogel has an adequate swelling ratio that encourages the fusion of tissue formed with host tissue and enables the gradual release of Naringin bioavailabilities enhanced in situ. The Naringin–BG hydrogel can upgrade the typical chondrocyte phenotype by upregulating aggrecan, SRY-box 9, and collagen type II alpha one chain. It may also stimulate the polarization of M2 macrophage, lower inflammations, and prevent ECM degradations through the decrease of the expressions of the indictable metalloproteinase-13 matrix, nitric oxide synthase, and metalloproteinase-1 matrix. The formed tissues were identical to normal tissues and firmly incorporated with the surrounding tissue after administering the Naringin–BG hydrogels into the rat model articular cartilage defects. Then the injectable Naringin–BG hydrogel increases the bioavailable content of Naringin and retains the chondrocyte phenotype.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Yang Lu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Yuxin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Shengji Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Liangping Li
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Fengchao Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
Hu M, Yang J, Xu J. Structural and biological investigation of chitosan/hyaluronic acid with silanized-hydroxypropyl methylcellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Drug Deliv 2021; 28:607-619. [PMID: 33739203 PMCID: PMC7993376 DOI: 10.1080/10717544.2021.1895906] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cartilage damage continues to pose a threat to humans, but no treatment is currently available to fully restore cartilage function. In this study, a new class of composite hydrogels derived from water-soluble chitosan (CS)/hyaluronic acid (HA) and silanized-hydroxypropyl methylcellulose (Si-HPMC) (CS/HA/Si-HPMC) has been synthesized and tested as injectable hydrogels for cartilage tissue engineering when combined without the addition of a chemical crosslinking agent. Mechanical studies of CS/HA and CS/HA/Si-HPMC hydrogels showed that as Si-HPMC content increased, swelling rate and rheological properties were higher, compressive strength decreased and degradation was faster. Our results demonstrate that the CS and HA-based hydrogel scaffolds, especially the ones with 3.0% (w/v) Si-HPMC and 2.5/4.0% (w/v) CS/HA, have suitable physical performance and bioactive properties, thus provide a potential opportunity to be used for cartilage tissue engineering. In vitro studies of CS/HA and CS/HA/Si-HPMC hydrogels encapsulated in chondrocytes have shown that the proper amount of Si-HPMC increases the proliferation and deposition of the cartilage extracellular matrix. The regeneration rate of the CS/HA/Si-HPMC (3%) hydrogel reached about 79.5% at 21 days for long retention periods, indicating relatively good in vivo bone regeneration. These CS/HA/Si-HPMC hydrogels are promising candidates for tissue compatibility injectable scaffolds. The data provide proof of the principle that the resulting hydrogel has an excellent ability to repair joint cartilage using a tissue-engineered approach.RESEARCH HIGHLIGHTS An injectable hydrogel based on CS/HA/Si-HPMC composites was developed. The CS/HA/Si-HPMC hydrogel displays the tunable rheological with mechanical properties. The CS/HA/Si-HPMC hydrogel is highly porous with high swelling and degradation ratio. Increasing concentration of Si-HPMC promote an organized network in CS/HA/Si-HPMC hydrogels. Injectable CS/HA/Si-HPMC hydrogels have a high potential for cartilage tissue engineering.
Collapse
Affiliation(s)
- Mu Hu
- Department of Orthopedics, Ruijin Hospital North, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jielai Yang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jihai Xu
- Department of Hand Surgery, Ningbo No. 6 Hospital, Jiangdong, Ningbo, China
| |
Collapse
|
36
|
Wang Y, Xu Y, Zhou G, Liu Y, Cao Y. Biological Evaluation of Acellular Cartilaginous and Dermal Matrixes as Tissue Engineering Scaffolds for Cartilage Regeneration. Front Cell Dev Biol 2021; 8:624337. [PMID: 33505975 PMCID: PMC7829663 DOI: 10.3389/fcell.2020.624337] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022] Open
Abstract
An acellular matrix (AM) as a kind of natural biomaterial is gaining increasing attention in tissue engineering applications. An acellular cartilaginous matrix (ACM) and acellular dermal matrix (ADM) are two kinds of the most widely used AMs in cartilage tissue engineering. However, there is still debate over which of these AMs achieves optimal cartilage regeneration, especially in immunocompetent large animals. In the current study, we fabricated porous ADM and ACM scaffolds by a freeze-drying method and confirmed that ADM had a larger pore size than ACM. By recolonization with goat auricular chondrocytes and in vitro culture, ADM scaffolds exhibited a higher cell adhesion rate, more homogeneous chondrocyte distribution, and neocartilage formation compared with ACM. Additionally, quantitative polymerase chain reaction (qPCR) indicated that expression of cartilage-related genes, including ACAN, COLIIA1, and SOX9, was significantly higher in the ADM group than the ACM group. Furthermore, after subcutaneous implantation in a goat, histological evaluation showed that ADM achieved more stable and matured cartilage compared with ACM, which was confirmed by quantitative data including the wet weight, volume, and contents of DNA, GAG, total collagen, and collagen II. Additionally, immunological assessment suggested that ADM evoked a low immune response compared with ACM as evidenced by qPCR and immunohistochemical analyses of CD3 and CD68, and TUNEL. Collectively, our results indicate that ADM is a more suitable AM for cartilage regeneration, which can be used for cartilage regeneration in immunocompetent large animals.
Collapse
Affiliation(s)
- Yahui Wang
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Yong Xu
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangdong Zhou
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China.,National Tissue Engineering Center of China, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Liu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China.,National Tissue Engineering Center of China, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Cao
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China.,National Tissue Engineering Center of China, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Li Y, Liu X, Li B, Zheng Y, Han Y, Chen DF, Yeung KWK, Cui Z, Liang Y, Li Z, Zhu S, Wang X, Wu S. Near-Infrared Light Triggered Phototherapy and Immunotherapy for Elimination of Methicillin-Resistant Staphylococcus aureus Biofilm Infection on Bone Implant. ACS NANO 2020; 14:8157-8170. [PMID: 32585104 DOI: 10.1021/acsnano.0c01486] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Clinically, methicillin-resistant Staphylococcus aureus (MRSA) biofilm infection inevitably induces the failure of bone implants. Herein, a hydrophilic and viscous hydrogel of poly(vinyl alcohol) modified with chitosan, polydopamine, and NO release donor was formed on a red phosphorus nanofilm deposited on a titanium implant (Ti-RP/PCP/RSNO). Under the irradiation of near-infrared light (NIR), peroxynitrite (•ONOO-) was formed by the reaction between the released NO and superoxide (•O2-) produced by the RP nanofilm. Specifically, we revealed the antibacterial mechanism of the ONOO- against the MRSA biofilm. In addition, osteogenic differentiation was promoted and inflammatory polarization was regulated by the released NO without NIR irradiation through upregulating the expression of Opn and Ocn genes and TNF-α. The MRSA biofilm was synergistically eradicated by •ONOO-, hyperthermia, and •O2- under NIR irradiation as well as the immunoreaction of the M1 polarization. The in vivo results also confirmed the excellent osteogenesis and biofilm eradication by released NO from the RP/PCP/RSNO system under NIR irradiation, indicating the noninvasive tissue reconstruction of MRSA-infected tissues through phototherapy and immunotherapy.
Collapse
Affiliation(s)
- Yuan Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Xiangmei Liu
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Da-Fu Chen
- Beijing JiShuiTan Hospital, Beijing Research Institute Orthopaedics & Traumatology, Lab Bone Tissue Engineering, Beijing 100035, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li KaShing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Zhenduo Cui
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Yanqin Liang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Zhaoyang Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Shengli Zhu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Xianbao Wang
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Shuilin Wu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|