1
|
Titze L, Cadamuro F, Murenu N, Akbari R, Pellegrino L, Capitani G, Acciarri M, Antonini C, Russo L, Manfredi N. Spiro-Ometad As A Promising Substrate In Biomedical Devices. ChemistryOpen 2025; 14:e202400002. [PMID: 39790026 DOI: 10.1002/open.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Bioactive films composed of Spiro-OMeTAD, a conductive molecular material (CMM), in combination with collagen have been manufactured and characterised for the first time. In-vitro cellular testing demonstrated the non-cytotoxicity of the doped Spiro-OMeTAD /Collagen films, opening the way for implantable or wearable medical devices and biosensors based on molecular materials.
Collapse
Affiliation(s)
- Lisa Titze
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center - MIB-Solar, University of Milano-Bicocca, Via Cozzi 55, Milano, I-20125, Italy
| | - Francesca Cadamuro
- School of Medicine and Surgery, University of Milano-Bicocca, Via Raoul Follereau 3, Vedano al Lambro (MB), I-20854, Italy
| | - Nicoletta Murenu
- School of Medicine and Surgery, University of Milano-Bicocca, Via Raoul Follereau 3, Vedano al Lambro (MB), I-20854, Italy
| | - Raziyeh Akbari
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center - MIB-Solar, University of Milano-Bicocca, Via Cozzi 55, Milano, I-20125, Italy
| | - Luca Pellegrino
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milano, I-20126, Italy
| | - Giancarlo Capitani
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milano, I-20126, Italy
| | - Maurizio Acciarri
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center - MIB-Solar, University of Milano-Bicocca, Via Cozzi 55, Milano, I-20125, Italy
| | - Carlo Antonini
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center - MIB-Solar, University of Milano-Bicocca, Via Cozzi 55, Milano, I-20125, Italy
| | - Laura Russo
- School of Medicine and Surgery, University of Milano-Bicocca, Via Raoul Follereau 3, Vedano al Lambro (MB), I-20854, Italy
| | - Norberto Manfredi
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center - MIB-Solar, University of Milano-Bicocca, Via Cozzi 55, Milano, I-20125, Italy
| |
Collapse
|
2
|
Fan Y, Shen Y, Zhang W, Zeng G, Liu T, Wang Y, Wang S, Zheng J, Hou X. Electrochemical Redox Synergism-Enhanced Liquid Metal Locomotion for Unrestricted Circuit Substrate Patterning. Angew Chem Int Ed Engl 2025; 64:e202424637. [PMID: 39948716 DOI: 10.1002/anie.202424637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
The critical challenge in advancing liquid metal circuits (LMCs) lies in achieving interfacial compatibility with diverse substrates while dynamically balancing fabrication efficiency and quality to ensure robust conductive stability. Here we introduce an electrochemical redox synergistic liquid metal (E-rsLM) that enables the controllable generation of diverse intermetallic bond transition layers (Cu, Au, or Fe-based) between liquid metal and unrestricted substrate surfaces, applicable in pH-universal electrolytes. It involves enhanced locomotion of the liquid metal, driven by synergistic electrochemical energy transduction from cyclic changes in gallium redox states. Characterized by expansion-contraction-expansion, it enables unique self-propelled bouncing, tuning spreading speed (up to ~26.8 mm/s) and elongation rate (up to 1192 %) with a volume of only 80 μL. Additionally, we demonstrate the adaptability of E-rsLM fabrication across 30 different substrates, highlighting its versatility. The patterning displays the superimposed efficiency and self-indicated quality, leading to superior conductivity (with time-cost savings of 30.7 % and 13.4 % in heating-cooling cycles, and a nearly 90 % reduction in output resistance). The practical viability of these circuits is further showcased by the assembly of integrated circuits, marking a significant step in expanding LMCs applications beyond laboratory-scale prototypes.
Collapse
Affiliation(s)
- Yi Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Gating Inspired Future Technology Co., Ltd., Xiamen, 361005, China
| | - Yigang Shen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Machinery and Smart Structure, Research Center for Micro-Nano Device and System, College of Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Wenli Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guochao Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tete Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yilan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shuli Wang
- Fujian Engineering Research Center for Solid-State Lighting, Department of Electronic Science, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China
| | - Jing Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361005, China
- Institute of Electrochemical Science and Engineering, Xiamen University, Xiamen, 361005, China
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
3
|
Lin Z, Luo M, Liang J, Li Z, Lin Y, Chen X, Chen B, Peng L, Ouyang Y, Mou L. A liquid metal-based sticky conductor for wearable and real-time electromyogram monitoring with machine learning classification. J Mater Chem B 2025; 13:3906-3917. [PMID: 40007317 DOI: 10.1039/d4tb01711k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Skin electronics face challenges related to the interface between rigid and soft materials, resulting in discomfort and signal inaccuracies. This study presents the development and characterization of a liquid metal-polydimethylsiloxane (LM-PDMS) sticky conductor designed for wearable electromyography (EMG) monitoring. The conductor leverages a composite of LM inks and PDMS, augmented with silver nanowires (AgNWs) and surface-modified with mercaptoundecanoic acid (MUD) to enhance conductivity. The mechanical properties of the PDMS matrix were optimized using Triton-X to achieve a flexible and adhesive configuration suitable for skin contact. Our LM-PDMS sticky conductor demonstrated excellent stretchability, could endure up to 300% strain without damage, and maintained strong adherence to the skin without relative displacement. Biocompatibility tests confirmed high cell viability, making it suitable for long-term use. EMG signal analysis revealed reliable muscle activity detection, with advanced signal processing techniques effectively filtering noise and stabilizing the baseline. Furthermore, we employed machine learning algorithms to classify EMG signals, achieving high accuracy in distinguishing different muscle activities. This study showcases the potential of LM-PDMS sticky conductors for advanced wearable bioelectronics, offering promising applications in personalized healthcare and real-time muscle activity monitoring.
Collapse
Affiliation(s)
- Zixin Lin
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| | - Mingmei Luo
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| | - Jiayi Liang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Zijie Li
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| | - Yanting Lin
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| | - Xiaman Chen
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Baozhu Chen
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Liang Peng
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Yongchang Ouyang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Lei Mou
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| |
Collapse
|
4
|
Luo C, Zhao W, Yan J, Wu X, Yan W. Non-Secondary Activating Flexible Liquid Metal Sensors with Excellent Waterproof Capability for Detection of Human Signals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5838-5847. [PMID: 40014851 DOI: 10.1021/acs.langmuir.4c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
In recent years, flexible sensors have gained increasing attention due to their excellent flexibility. Liquid metal (LM) has gradually become an ideal material for fabricating flexible sensors, thanks to its outstanding electrical conductivity and low-temperature fluidity. However, oxidation and the need for secondary activation of LM present significant technical challenges in the development of flexible LM sensors. In this paper, we introduce a simple method that integrates the flexibility of polydimethylsiloxane (PDMS) to fabricate flexible LM sensors with a sandwich structure. The sandwich-structured sensor demonstrates superior conductivity and effectively prevents LM oxidation and the need for secondary mechanical activation. Additionally, the PDMS-LM sensor exhibits excellent performance under various conditions, with a fast response time to mechanical stimuli (0.5 s), as well as outstanding durability and stability (>10,000 s of cycling). These remarkable properties give the sandwich PDMS-LM sensor great potential for the field of human motion monitoring, bringing further development and direction for intelligent sensing technology.
Collapse
Affiliation(s)
- ChunLi Luo
- School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin300384, China
| | - Wei Zhao
- School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin300384, China
| | - JianYu Yan
- School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin300384, China
| | - Xuan Wu
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - WeiGuo Yan
- School of Science, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
5
|
Zhang J, Zou X, Li Z, Chan CPY, Lai KWC. Liquid-Metal-Based Multichannel Strain Sensor for Sign Language Gesture Classification Using Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6957-6968. [PMID: 39764604 DOI: 10.1021/acsami.4c19102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Liquid metals are highly conductive like metallic materials and have excellent deformability due to their liquid state, making them rather promising for flexible and stretchable wearable sensors. However, patterning liquid metals on soft substrates has been a challenge due to high surface tension. In this paper, a new method is proposed to overcome the difficulties in fabricating liquid-state strain sensors. The method involves adding nickel powder particles to the liquid metal to maintain the liquid metal's fluidity while lowering the surface tension so that the liquid metal can be easily patterned on a soft substrate using magnets. With the addition of 12 wt % nickel powder (40 μm) to the liquid metal, a gauge factor of 5.17 can be achieved at 300% strain. In addition, by the integration of multiple strain sensors in a smart glove to monitor 14 joints of the human hand, 10 sign language gestures can be recognized by comparing the results of five different machine learning models, among which the quadratic discriminative analysis model can be accomplished with an accuracy rate of 100%. The magnetically patterned nickel-containing liquid-metal strain sensors proposed in this study have a wide range of applications in intelligent soft robots and human-machine interfaces.
Collapse
Affiliation(s)
- Jing Zhang
- Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Xiaoyang Zou
- Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Ziqi Li
- Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Colin Pak Yu Chan
- Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - King Wai Chiu Lai
- Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
6
|
Meng Q, Chi T, Guo S, Razbin M, Wu S, He S, Han S, Peng S. Highly sensitive strain sensors with ultra-low detection limit based on pre-defined serpentine cracks. MATERIALS HORIZONS 2025; 12:178-189. [PMID: 39466650 DOI: 10.1039/d4mh01136h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Flexible and stretchable strain sensors have garnered significant interest due to their potential applications in various fields including human health monitoring and human-machine interfaces. Previous studies have shown that strain sensors based on microcracks can exhibit both high sensitivity and a wide sensing range by manipulating the opening and closing of randomly generated cracks within conductive thin films. However, the uncontrolled nature of microcrack formation can cause a drift in the sensor's performance over time, affecting its accuracy and reliability. In this study, by pre-defining the cracks, we introduce a novel resistive strain sensor with high sensitivity, excellent linearity, an ultra-low detection limit, and robustness against off-axis deformation. The sensor operates on a simple mechanism involving the modulation of ohmic contact within intricately designed conductive serpentine curves, which are encapsulated by pre-stretched thin films. This design facilitates a high gauge factor of 495, exceptional linearity (R2 > 0.98), and an ultra-low detection threshold of 0.01% strain. Moreover, it maintains performance integrity during off-axis deformations such as bending and twisting, features that are indispensable for accurately monitoring human motion. To explore practical applications, a driving scenario was simulated where a sensor array was positioned on the driver's neck. The sensor output was analyzed using machine learning algorithms to successfully determine the presence of driver fatigue. This demonstration underlines the potential of our sensor technology in applications ranging from healthcare monitoring to wearable biomechanical systems and human-machine interfaces.
Collapse
Affiliation(s)
- Qingshi Meng
- College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China.
| | - Tengfei Chi
- College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China.
| | - Shuang Guo
- Health Service Department, Northern Theatre General Hospital, Shenyang, 110016, China
| | - Milad Razbin
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shuying Wu
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shuai He
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Sensen Han
- College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China.
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
7
|
Yan J, Ding J, Cao Y, Yi H, Zhan L, Gao Y, Ge K, Ji H, Li M, Feng H. Additively Manufactured Flexible EGaIn Sensor for Dynamic Detection and Sensing on Ultra-Curved Surfaces. SENSORS (BASEL, SWITZERLAND) 2024; 25:37. [PMID: 39796832 PMCID: PMC11722807 DOI: 10.3390/s25010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Electronic skin is widely employed in multiple applications such as health monitoring, robot tactile perception, and bionic prosthetics. In this study, we fabricated millimeter-scale electronic skin featuring compact sensing units using the Boston Micro Fabrication S130 (a high-precision additive manufacturing device) and the template removal method. We used a gallium-based liquid metal and achieved an inner channel diameter of 0.1 mm. The size of the sensing unit was 3 × 3 mm2. This unit exhibited a wide linear sensing range (10-22,000 Pa) and high-pressure resolution (10 Pa) even on an ultra-curved surface (radius of curvature was 6 mm). Sliding was successfully detected at speeds of 8-54 mm/s. An artificial nose with nine sensing units was fabricated, and it exhibited excellent multitouch and sliding trajectory recognition capabilities. This confirmed that the electronic skin functioned normally, even on an ultra-curved surface.
Collapse
Affiliation(s)
- Jiangnan Yan
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Jianing Ding
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Yang Cao
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Hongyu Yi
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Limeng Zhan
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Yifan Gao
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Kongyu Ge
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Hongjun Ji
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Mingyu Li
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Huanhuan Feng
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
Bai Y, Zhou Y, Wu X, Yin M, Yin L, Qu S, Zhang F, Li K, Huang Y. Flexible Strain Sensors with Ultra-High Sensitivity and Wide Range Enabled by Crack-Modulated Electrical Pathways. NANO-MICRO LETTERS 2024; 17:64. [PMID: 39551898 PMCID: PMC11570575 DOI: 10.1007/s40820-024-01571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
This study presents a breakthrough in flexible strain sensor technology with the development of an ultra-high sensitivity and wide-range sensor, addressing the critical challenge of reconciling sensitivity with measurement range. Inspired by the structure of bamboo slips, we introduce a novel approach that utilises liquid metal to modulate the electrical pathways within a cracked platinum fabric electrode. The resulting sensor demonstrates a gauge factor greater than 108 and a strain measurement capability exceeding 100%. The integration of patterned liquid metal enables customisable tuning of the sensor's response, while the porous fabric structure ensures superior comfort and air permeability for the wearer. Our design not only optimises the sensor's performance but also enhances the electrical stability that is essential for practical applications. Through systematic investigation, we reveal the intrinsic mechanisms governing the sensor's response, offering valuable insights for the design of wearable strain sensors. The sensor's exceptional performance across a spectrum of applications, from micro-strain to large-strain detection, highlights its potential for a wide range of real-world uses, demonstrating a significant advancement in the field of flexible electronics.
Collapse
Affiliation(s)
- Yunzhao Bai
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Yunlei Zhou
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311200, People's Republic of China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China
| | - Xuanyu Wu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Mengfei Yin
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Liting Yin
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shiyuan Qu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Fan Zhang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Kan Li
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - YongAn Huang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
9
|
Zhao W, Li Y, Tian J, Cui Q, Tang C, Yin F, Xu L, Cheng S, Fei X. Highly Stretchable Sensitive Multiscale Hydrogel Inspired by Biological Muscles for Wearing Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58313-58325. [PMID: 39422652 DOI: 10.1021/acsami.4c12118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Hydrogels have attracted substantial research interest for application in wearable electronics due to their stretchability, elasticity, and compliance. However, most hydrogels could not satisfy the application requirements for high-performance wearable sensors due to their poor sensitivity, low mechanical properties, and sensing detection range until this day. Inspired by the fascia in biological muscles, we propose a strategy to form entangled "clusters" through the dense entanglement between highly cross-linked elastic hydrogel microspheres and polymer segments, and prepared a multiscale hydrogel with high sensitivity and mechanical toughness. This strategy embedded highly swollen hydrogel microspheres (with different pore sizes) to act as the microregions of dense entanglement in the soft matrix to adjust the microstructure of multiscale gel. When pressure was applied, this structure could provide a fast response due to the stack layer formed by microspheres and soft matrix produced effective stress distribution, resulting in the outstanding sensitivity of the multiscale hydrogel (S = 1.1 kPa-1) in the pressure range of 0-50 kPa. The distinct microspheres functioning as microscale joint areas significantly augment energy dissipation, culminating in exceptional mechanical stability, ultrastretchability (≈1050%), and high strength of the multiscale hydrogel. The most notable progress was that the synthesized multiscale hydrogel not only combined the above advantages but also simultaneously solved multiple dilemmas of tedious synthesis steps, high cost, and poor durability. Besides, the multiscale hydrogel also had excellent antibacterial properties and biocompatibility, which enabled them to have large-scale application potential in wearable and implantable electronic devices. Our research could provide a universal approach to the creation of robust, flexible, wearable, and sensitive sensors, significantly increasing the uses of stress sensors in wearable technology.
Collapse
Affiliation(s)
- Wenhui Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, China
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qinqin Cui
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chenyang Tang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fawen Yin
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, China
| | - Longquan Xu
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, China
| | - Sheng Cheng
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, China
| | - Xu Fei
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, China
| |
Collapse
|
10
|
Jiang H, Zhang J, Weng Z, Chen L, Wu Y, Weng X. Flexible Microfluidic Strain Sensor Made with Poly(3,4-ethylenedioxythiophene):polystyrenesulfonate-MXene-Au Nanocomposites for Monitoring Physiological Signals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49745-49755. [PMID: 39226117 DOI: 10.1021/acsami.4c09173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Flexible strain sensors have been widely used in wearable electronics. However, the fabrication of flexible strain sensors with a large strain detection range, high sensitivity, and negligible hysteresis remains a formidable challenge, even after enormous advancements in the field. Herein, a flexible microfluidic strain sensor was fabricated by filling poly(3,4-ethylenedioxythiophene):polystyrenesulfonate-MXene-gold (PEDOT:PSS-MXene-Au) nanocomposites into microchannels in an elastic matrix. Owing to the unique properties of the nanofiller and Ecoflex elastomer microchannel, the microfluidic strain sensor detected a strain of 0%-500% with low hysteresis (2.4%), high sensitivity (guage factor = 25.4), short response times (∼86 ms), and good durability. Moreover, the flexible microfluidic sensor was used to detect various physiological signals and human activities, control a mechanical hand, and capture hand motions in real time. As demonstrated by its good performance, the proposed flexible microfluidic sensor holds great potential in applications such as wearable electronics, physiological signal monitoring and human-machine interactions.
Collapse
Affiliation(s)
- Hai Jiang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
- Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong 523808, China
| | - Jiabo Zhang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Zhiwei Weng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Longyan Chen
- Department of Biomedical, Industrial & Systems Engineering, Gannon University, 109 University Square, Erie, Pennsylvania 16541, United States
| | - Yichuan Wu
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
- Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong 523808, China
| | - Xuan Weng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
- Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong 523808, China
| |
Collapse
|
11
|
Li N, Yuan X, Li Y, Zhang G, Yang Q, Zhou Y, Guo M, Liu J. Bioinspired Liquid Metal Based Soft Humanoid Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404330. [PMID: 38723269 DOI: 10.1002/adma.202404330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Indexed: 08/29/2024]
Abstract
The pursuit of constructing humanoid robots to replicate the anatomical structures and capabilities of human beings has been a long-standing significant undertaking and especially garnered tremendous attention in recent years. However, despite the progress made over recent decades, humanoid robots have predominantly been confined to those rigid metallic structures, which however starkly contrast with the inherent flexibility observed in biological systems. To better innovate this area, the present work systematically explores the value and potential of liquid metals and their derivatives in facilitating a crucial transition towards soft humanoid robots. Through a comprehensive interpretation of bionics, an overview of liquid metals' multifaceted roles as essential components in constructing advanced humanoid robots-functioning as soft actuators, sensors, power sources, logical devices, circuit systems, and even transformable skeletal structures-is presented. It is conceived that the integration of these components with flexible structures, facilitated by the unique properties of liquid metals, can create unexpected versatile functionalities and behaviors to better fulfill human needs. Finally, a revolution in humanoid robots is envisioned, transitioning from metallic frameworks to hybrid soft-rigid structures resembling that of biological tissues. This study is expected to provide fundamental guidance for the coming research, thereby advancing the area.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Yuan
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| | - Yuqing Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangcheng Zhang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianhong Yang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxin Zhou
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Jamil B, Rodrigue H. Ultrastretchable Segmented Sensors for Functional Human-Machine Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32784-32793. [PMID: 38862273 DOI: 10.1021/acsami.4c08547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The key feature that enables soft sensors to shorten the performance gap between robots and biological structures is their deformability, coupled with their capability to measure physical changes. Robots equipped with these sensors can interact safely and proprioceptively with their environments. This has sparked interest in developing novel sensors with high stretchability for application in human-robot interactions. This study presents a novel ultrasoft optoelectronic segmented sensor design capable of measuring strains exceeding 500%. The sensor features an ultrastretchable segment physically joined with an asymmetrically configured soft proprioceptive segment. This configuration enables it to measure high strain and to detect both the magnitude and direction of bending. Although the sensor cannot decouple these types of deformations, it can sense prescribed motions that combine stretching and bending. The proposed sensor was applied to a highly deformable scissor mechanism and a human-robot interface (HRI) device for a robotic arm, capable of quantifying parameters in complex interactions. The results from the experiments also demonstrate the potential of the proposed segmented sensor concept when used in tandem with machine learning, affording new dimensions of proprioception to robots during multilayered interactions with humans.
Collapse
Affiliation(s)
- Babar Jamil
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hugo Rodrigue
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
13
|
Vazquez R, Motovilova E, Winkler SA. Stretchable Sensor Materials Applicable to Radiofrequency Coil Design in Magnetic Resonance Imaging: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:3390. [PMID: 38894182 PMCID: PMC11174967 DOI: 10.3390/s24113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Wearable sensors are rapidly gaining influence in the diagnostics, monitoring, and treatment of disease, thereby improving patient outcomes. In this review, we aim to explore how these advances can be applied to magnetic resonance imaging (MRI). We begin by (i) introducing limitations in current flexible/stretchable RF coils and then move to the broader field of flexible sensor technology to identify translatable technologies. To this goal, we discuss (ii) emerging materials currently used for sensor substrates, (iii) stretchable conductive materials, (iv) pairing and matching of conductors with substrates, and (v) implementation of lumped elements such as capacitors. Applicable (vi) fabrication methods are presented, and the review concludes with a brief commentary on (vii) the implementation of the discussed sensor technologies in MRI coil applications. The main takeaway of our research is that a large body of work has led to exciting new sensor innovations allowing for stretchable wearables, but further exploration of materials and manufacturing techniques remains necessary, especially when applied to MRI diagnostics.
Collapse
Affiliation(s)
- Rigoberto Vazquez
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 10065, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Simone Angela Winkler
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 10065, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
14
|
Papani R, Li Y, Wang S. Soft mechanical sensors for wearable and implantable applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1961. [PMID: 38723798 PMCID: PMC11108230 DOI: 10.1002/wnan.1961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 05/23/2024]
Abstract
Wearable and implantable sensing of biomechanical signals such as pressure, strain, shear, and vibration can enable a multitude of human-integrated applications, including on-skin monitoring of vital signs, motion tracking, monitoring of internal organ condition, restoration of lost/impaired mechanoreception, among many others. The mechanical conformability of such sensors to the human skin and tissue is critical to enhancing their biocompatibility and sensing accuracy. As such, in the recent decade, significant efforts have been made in the development of soft mechanical sensors. To satisfy the requirements of different wearable and implantable applications, such sensors have been imparted with various additional properties to make them better suited for the varied contexts of human-integrated applications. In this review, focusing on the four major types of soft mechanical sensors for pressure, strain, shear, and vibration, we discussed the recent material and device design innovations for achieving several important properties, including flexibility and stretchability, bioresorbability and biodegradability, self-healing properties, breathability, transparency, wireless communication capabilities, and high-density integration. We then went on to discuss the current research state of the use of such novel soft mechanical sensors in wearable and implantable applications, based on which future research needs were further discussed. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Rithvik Papani
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Yang Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
- Nanoscience and Technology Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois, United States
| |
Collapse
|
15
|
Xu C, Chen J, Zhu Z, Liu M, Lan R, Chen X, Tang W, Zhang Y, Li H. Flexible Pressure Sensors in Human-Machine Interface Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306655. [PMID: 38009791 DOI: 10.1002/smll.202306655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Flexible sensors are highly flexible, malleable, and capable of adapting todifferent shapes, surfaces, and environments, which opens a wide range ofpotential applications in the field of human-machine interface (HMI). Inparticular, flexible pressure sensors as a crucial member of the flexiblesensor family, are widely used in wearable devices, health monitoringinstruments, robots and other fields because they can achieve accuratemeasurement and convert the pressure into electrical signals. The mostintuitive feeling that flexible sensors bring to people is the change ofhuman-machine interface interaction, from the previous rigid interaction suchas keyboard and mouse to flexible interaction such as smart gloves, more inline with people's natural control habits. Many advanced flexible pressuresensors have emerged through extensive research and development, and to adaptto various fields of application. Researchers have been seeking to enhanceperformance of flexible pressure sensors through improving materials, sensingmechanisms, fabrication methods, and microstructures. This paper reviews the flexible pressure sensors in HMI in recent years, mainlyincluding the following aspects: current cutting-edge flexible pressuresensors; sensing mechanisms, substrate materials and active materials; sensorfabrication, performances, and their optimization methods; the flexiblepressure sensors for various HMI applications and their prospects.
Collapse
Affiliation(s)
- Chengsheng Xu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Jing Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Zhengfang Zhu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Moran Liu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Ronghua Lan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Xiaohong Chen
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Wei Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yan Zhang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Hui Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
16
|
Zhu J, Li J, Tong Y, Hu T, Chen Z, Xiao Y, Zhang S, Yang H, Gao M, Pan T, Cheng H, Lin Y. Recent progress in multifunctional, reconfigurable, integrated liquid metal-based stretchable sensors and standalone systems. PROGRESS IN MATERIALS SCIENCE 2024; 142:101228. [PMID: 38745676 PMCID: PMC11090487 DOI: 10.1016/j.pmatsci.2023.101228] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Possessing a unique combination of properties that are traditionally contradictory in other natural or synthetical materials, Ga-based liquid metals (LMs) exhibit low mechanical stiffness and flowability like a liquid, with good electrical and thermal conductivity like metal, as well as good biocompatibility and room-temperature phase transformation. These remarkable properties have paved the way for the development of novel reconfigurable or stretchable electronics and devices. Despite these outstanding properties, the easy oxidation, high surface tension, and low rheological viscosity of LMs have presented formidable challenges in high-resolution patterning. To address this challenge, various surface modifications or additives have been employed to tailor the oxidation state, viscosity, and patterning capability of LMs. One effective approach for LM patterning is breaking down LMs into microparticles known as liquid metal particles (LMPs). This facilitates LM patterning using conventional techniques such as stencil, screening, or inkjet printing. Judiciously formulated photo-curable LMP inks or the introduction of an adhesive seed layer combined with a modified lift-off process further provide the micrometer-level LM patterns. Incorporating porous and adhesive substrates in LM-based electronics allows direct interfacing with the skin for robust and long-term monitoring of physiological signals. Combined with self-healing polymers in the form of substrates or composites, LM-based electronics can provide mechanical-robust devices to heal after damage for working in harsh environments. This review provides the latest advances in LM-based composites, fabrication methods, and their novel and unique applications in stretchable or reconfigurable sensors and resulting integrated systems. It is believed that the advancements in LM-based material preparation and high-resolution techniques have opened up opportunities for customized designs of LM-based stretchable sensors, as well as multifunctional, reconfigurable, highly integrated, and even standalone systems.
Collapse
Affiliation(s)
- Jia Zhu
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jiaying Li
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yao Tong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Taiqi Hu
- School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Ziqi Chen
- School of Physical Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang Xiao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Senhao Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Min Gao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Taisong Pan
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuan Lin
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
17
|
Ferreira R, Silva AP, Nunes-Pereira J. Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review. ACS Sens 2024; 9:1104-1133. [PMID: 38394033 PMCID: PMC10964246 DOI: 10.1021/acssensors.3c02555] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Due to an ever-increasing amount of the population focusing more on their personal health, thanks to rising living standards, there is a pressing need to improve personal healthcare devices. These devices presently require laborious, time-consuming, and convoluted procedures that heavily rely on cumbersome equipment, causing discomfort and pain for the patients during invasive methods such as sample-gathering, blood sampling, and other traditional benchtop techniques. The solution lies in the development of new flexible sensors with temperature, humidity, strain, pressure, and sweat detection and monitoring capabilities, mimicking some of the sensory capabilities of the skin. In this review, a comprehensive presentation of the themes regarding flexible sensors, chosen materials, manufacturing processes, and trends was made. It was concluded that carbon-based composite materials, along with graphene and its derivates, have garnered significant interest due to their electromechanical stability, extraordinary electrical conductivity, high specific surface area, variety, and relatively low cost.
Collapse
Affiliation(s)
- Rodrigo
G. Ferreira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Abílio P. Silva
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - João Nunes-Pereira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
18
|
Luo Y, Fan H, Lai X, Zeng Z, Lan X, Lin P, Tang L, Wang W, Chen Y, Tang Y. Flexible liquid metal-based microfluidic strain sensors with fractal-designed microchannels for monitoring human motion and physiological signals. Biosens Bioelectron 2024; 246:115905. [PMID: 38056340 DOI: 10.1016/j.bios.2023.115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/28/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
With the rapid advancement of wearable electronics, there is an increasing demand for high-performance flexible strain sensors. In this work, a flexible strain sensor based on liquid metal (LM)-integrated into a microfluidic device is developed with Peano-type fractal structure design. Compared with the microfluidic sensors with straight and wavy microchannels, the sensor with Peano-shaped channels shows lower hysteresis and improved stretchability. Furthermore, the increase of the fractal order can further improve the sensing performances. The third-order Peano sensor exhibits excellent mechanical and electrical properties, including high tensile capability (490.3%), minimal hysteresis (DH = 0.86%), ultra-low detection limit (0.1%), low overshoot, rapid response time (117 ms), as well as good stability and durability. By adding two independent and perpendicular straight channels to the Peano sensing unit, the feasibility of multi-directional strain recognition is demonstrated. To further improve the sensitivity of the Peano-shaped sensor, a multi-layer Peano sensor is developed, exhibiting remarkably enhanced sensitivity while maintaining low hysteresis. Overall, the developed LM-based microfluidic strain sensors enrolling Peano fractal geometry hold high potential for various wearable electronics applications.
Collapse
Affiliation(s)
- Yuli Luo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hao Fan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiangjie Lai
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zu'an Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xingzi Lan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Peiran Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Linjun Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wenlong Wang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Yao W, Yan Y, Sun J, Zhang Z, Sun W, Huang W, Cheng J, Zhao H, Xie M, Sun Q, Huang G, Lin X. Mechanically Durable Superhydrophobic Strain Sensors with High Biocompatibility and Sensing Performance for Underwater Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6548-6561. [PMID: 38270085 DOI: 10.1021/acsami.3c14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Much progress has been made toward the development of wearable flexible strain sensors with high sensing performance to monitor human motion, but continuous function in harsh aqueous environments remains a significant challenge. A promising strategy has been the design of sensors with highly durable superhydrophobicity and maintenance of unique sensing properties. Herein, an extremely durable superhydrophobic strain sensor with an ultrawide sensing range was simply fabricated by directly brushing conductive carbon black nanoparticles (CBNPs) onto an elastic silicone rubber sheet (SS) with poly(dimethylsiloxane) (PDMS) coatings (i.e., SS/PDMS-CBNPs sensors). First, this method avoided the use of toxic solvents and a conventional prestretching treatment. Second, considering the easily destroyed rough structures and surface chemistry for conventional superhydrophobic sensors during practical applications, the prepared SS/PDMS-CBNP sensors showed excellent mechanical durability of both superhydrophobicity and sensing as examined by harsh abrasion (300 cycles), stretching (up to 200%), and ultrasonication (40 min) treatments. Third, the prepared superhydrophobic strain sensor exhibited high sensitivity (gauge factor of 101.75), high stretchability (0.015-460%), low hysteresis (83 ms), and long-term stability (10000 cycles). Fourth, the high biocompatibility of the SS/PDMS-CBNP sensor was demonstrated by rabbit skin irritation tests. Finally, the remarkable water-repellent and sensing properties of the SS/PDMS-CBNP sensor allowed its application to monitor a swimmer's real-time situation and send distress signals when needed.
Collapse
Affiliation(s)
- Wanchen Yao
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Yuzhong Yan
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jianlei Sun
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zeshan Zhang
- Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan
| | - Wenwen Sun
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Wenrui Huang
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jing Cheng
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Hui Zhao
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Meihua Xie
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Xiangde Lin
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- Graduate School, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
20
|
Wang Q, Yao Z, Zhang C, Song H, Ding H, Li B, Niu S, Huang X, Chen C, Han Z, Ren L. A Selective-Response Hypersensitive Bio-Inspired Strain Sensor Enabled by Hysteresis Effect and Parallel Through-Slits Structures. NANO-MICRO LETTERS 2023; 16:26. [PMID: 37985532 PMCID: PMC10661685 DOI: 10.1007/s40820-023-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Flexible strain sensors are promising in sensing minuscule mechanical signals, and thereby widely used in various advanced fields. However, the effective integration of hypersensitivity and highly selective response into one flexible strain sensor remains a huge challenge. Herein, inspired by the hysteresis strategy of the scorpion slit receptor, a bio-inspired flexible strain sensor (BFSS) with parallel through-slit arrays is designed and fabricated. Specifically, BFSS consists of conductive monolayer graphene and viscoelastic styrene-isoprene-styrene block copolymer. Under the synergistic effect of the bio-inspired slit structures and flexible viscoelastic materials, BFSS can achieve both hypersensitivity and highly selective frequency response. Remarkably, the BFSS exhibits a high gage factor of 657.36, and a precise identification of vibration frequencies at a resolution of 0.2 Hz through undergoing different morphological changes to high-frequency vibration and low-frequency vibration. Moreover, the BFSS possesses a wide frequency detection range (103 Hz) and stable durability (1000 cycles). It can sense and recognize vibration signals with different characteristics, including the frequency, amplitude, and waveform. This work, which turns the hysteresis effect into a "treasure," can provide new design ideas for sensors for potential applications including human-computer interaction and health monitoring of mechanical equipment.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Zhongwen Yao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Changchao Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Honglie Song
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Hanliang Ding
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Bo Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China.
- Liaoning Academy of Materials, Liaoning, Shenyang, 110167, People's Republic of China.
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China.
- Liaoning Academy of Materials, Liaoning, Shenyang, 110167, People's Republic of China.
| | - Xinguan Huang
- Key Laboratory of CNC Equipment Reliability (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Chuanhai Chen
- Key Laboratory of CNC Equipment Reliability (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China.
- Liaoning Academy of Materials, Liaoning, Shenyang, 110167, People's Republic of China.
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
- Liaoning Academy of Materials, Liaoning, Shenyang, 110167, People's Republic of China
| |
Collapse
|
21
|
Baines R, Zuliani F, Chennoufi N, Joshi S, Kramer-Bottiglio R, Paik J. Multi-modal deformation and temperature sensing for context-sensitive machines. Nat Commun 2023; 14:7499. [PMID: 37980333 PMCID: PMC10657382 DOI: 10.1038/s41467-023-42655-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023] Open
Abstract
Owing to the remarkable properties of the somatosensory system, human skin compactly perceives myriad forms of physical stimuli with high precision. Machines, conversely, are often equipped with sensory suites constituted of dozens of unique sensors, each made for detecting limited stimuli. Emerging high degree-of-freedom human-robot interfaces and soft robot applications are delimited by the lack of simple, cohesive, and information-dense sensing technologies. Stepping toward biological levels of proprioception, we present a sensing technology capable of decoding omnidirectional bending, compression, stretch, binary changes in temperature, and combinations thereof. This multi-modal deformation and temperature sensor harnesses chromaticity and intensity of light as it travels through patterned elastomer doped with functional dyes. Deformations and temperature shifts augment the light chromaticity and intensity, resulting in a one-to-one mapping between stimulus modes that are sequentially combined and the sensor output. We study the working principle of the sensor via a comprehensive opto-thermo-mechanical assay, and find that the information density provided by a single sensing element permits deciphering rich and diverse human-robot and robot-environmental interactions.
Collapse
Affiliation(s)
- Robert Baines
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06520, USA
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM RRL MED 1 2313 Station 9, Vaud, 1025, Switzerland
| | - Fabio Zuliani
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM RRL MED 1 2313 Station 9, Vaud, 1025, Switzerland
| | - Neil Chennoufi
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM RRL MED 1 2313 Station 9, Vaud, 1025, Switzerland
| | - Sagar Joshi
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM RRL MED 1 2313 Station 9, Vaud, 1025, Switzerland
| | - Rebecca Kramer-Bottiglio
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06520, USA
| | - Jamie Paik
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM RRL MED 1 2313 Station 9, Vaud, 1025, Switzerland.
| |
Collapse
|
22
|
Huang X, Liu L, Lin YH, Feng R, Shen Y, Chang Y, Zhao H. High-stretchability and low-hysteresis strain sensors using origami-inspired 3D mesostructures. SCIENCE ADVANCES 2023; 9:eadh9799. [PMID: 37624897 PMCID: PMC10456843 DOI: 10.1126/sciadv.adh9799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Stretchable strain sensors are essential for various applications such as wearable electronics, prosthetics, and soft robotics. Strain sensors with high strain range, minimal hysteresis, and fast response speed are highly desirable for accurate measurements of large and dynamic deformations of soft bodies. Current stretchable strain sensors mostly rely on deformable conducting materials, which often have difficulties in achieving these properties simultaneously. In this study, we introduce capacitive strain sensor concepts based on origami-inspired three-dimensional mesoscale electrodes formed by a mechanically guided assembly process. These sensors exhibit up to 200% stretchability with 1.2% degree of hysteresis, <22 ms response time, small sensing area (~5 mm2), and directional strain responses. To showcase potential applications, we demonstrate the use of distributed strain sensors for measuring multimodal deformations of a soft continuum arm.
Collapse
Affiliation(s)
- Xinghao Huang
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Liangshu Liu
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yung Hsin Lin
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Rui Feng
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Yiyang Shen
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuanning Chang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Hangbo Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
23
|
Liu Y, Zhang C, Chen Y, Yin R, He P, Zhao W. Rational Design of Conductive Pathways in Flexible Tactile Sensors via Indirect 3D-Printing of Liquid Metal for High-Precision Monitoring and Recognition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38572-38580. [PMID: 37526636 DOI: 10.1021/acsami.3c07237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Highly sensitive and conformal sensors are essential for the implementation of human-machine interfaces, health monitoring, and rehabilitation prostheses. The proper adjustment of conductive pathways in the sensing materials is essential for their sensitive transduction of mechanical stimuli into electrical signals. However, the rational, precise, and wide-range control of electrical networks within traditional conductive composites is difficult due to the randomly distributed fillers. Herein, we adopt an indirect 3D-printing method to fabricate pressure sensors with various microchannels for liquid metal (LM) to form consistent and tunable conductive pathways. LM is highly conductive, fluidic, and incompressible at ambient conditions, which guarantees the reliable regulation and function of our pressure sensor. Additive manufacturing provides a facile way to construct complicated microchannels with different lengths, different orientations, cross-sectional sizes, depth-width ratios, and shapes, which can effectively modulate the sensitivity and the sensing range. Under the optimized structural configurations, our sensor achieves a high sensitivity of 1.139 kPa-1, a detection range of 0-68 kPa (loading process), and stability of over 5000 cycles, whose sensing performance is better than most microchannel-filled LM sensors. It can achieve high-accuracy monitoring of pulse, speaking and gestures, and exhibit a full recognition of objects under the assistance of machine learning. This work can provide new ideas on the design of conductive pathways in flexible electronics and expand the application of recyclable LM in human-machine interfaces.
Collapse
Affiliation(s)
- Yaming Liu
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Chen Zhang
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Youyou Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Rui Yin
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Peng He
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Weiwei Zhao
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
24
|
Liu S, Xu Z, Li G, Li Z, Ye Z, Xu Z, Chen W, Jin D, Ma X. Ultrasonic-Enabled Nondestructive and Substrate-Independent Liquid Metal Ink Sintering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301292. [PMID: 37316967 PMCID: PMC10427386 DOI: 10.1002/advs.202301292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Printing or patterning particle-based liquid metal (LM) ink is a good strategy to overcome poor wettability of LM for its circuits' preparation in flexible and printed electronics. Subsequently, a crucial step is to recover conductivity of LM circuits consisting of insulating LM micro/nano-particles. However, most widely used mechanical sintering methods based on hard contact such as pressing, may not be able to contact the LM patterns' whole surface conformally, leading to insufficient sintering in some areas. Hard contact may also break delicate shapes of the printed patterns. Hereby, an ultrasonic-assisted sintering strategy that can not only preserve original morphology of the LM circuits but also sinter circuits on various substrates of complex surface topography is proposed. The influencing factors of the ultrasonic sintering are investigated empirically and interpreted with theoretical understanding by simulation. LM circuits encapsulated inside soft elastomer are successfully sintered, proving feasibility in constructing stretchable or flexible electronics. By using water as energy transmission medium, remote sintering without any direct contact with substrate is achieved, which greatly protect LM circuits from mechanical damage. In virtue of such remote and non-contact manipulation manner, the ultrasonic sintering strategy would greatly advance the fabrication and application scenarios of LM electronics.
Collapse
Affiliation(s)
- Sanhu Liu
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Zhiwu Xu
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Guoqiang Li
- Sauvage Laboratory for Smart MaterialsSchool of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenGuangdong518055China
| | - Zhengwei Li
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Zihan Ye
- Sauvage Laboratory for Smart MaterialsSchool of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenGuangdong518055China
| | - Zirong Xu
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Wenjun Chen
- Sauvage Laboratory for Smart MaterialsSchool of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenGuangdong518055China
| | - Dongdong Jin
- Sauvage Laboratory for Smart MaterialsSchool of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenGuangdong518055China
| | - Xing Ma
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
- Sauvage Laboratory for Smart MaterialsSchool of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenGuangdong518055China
| |
Collapse
|
25
|
Ma J, Krisnadi F, Vong MH, Kong M, Awartani OM, Dickey MD. Shaping a Soft Future: Patterning Liquid Metals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205196. [PMID: 36044678 DOI: 10.1002/adma.202205196] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/23/2022] [Indexed: 05/12/2023]
Abstract
This review highlights the unique techniques for patterning liquid metals containing gallium (e.g., eutectic gallium indium, EGaIn). These techniques are enabled by two unique attributes of these liquids relative to solid metals: 1) The fluidity of the metal allows it to be injected, sprayed, and generally dispensed. 2) The solid native oxide shell allows the metal to adhere to surfaces and be shaped in ways that would normally be prohibited due to surface tension. The ability to shape liquid metals into non-spherical structures such as wires, antennas, and electrodes can enable fluidic metallic conductors for stretchable electronics, soft robotics, e-skins, and wearables. The key properties of these metals with a focus on methods to pattern liquid metals into soft or stretchable devices are summari.
Collapse
Affiliation(s)
- Jinwoo Ma
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Febby Krisnadi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Man Hou Vong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Minsik Kong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Omar M Awartani
- Department of Mechanical Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
26
|
Liu C, Wang Y, Wang S, Xia X, Xiao H, Liu J, Hu S, Yi X, Liu Y, Wu Y, Shang J, Li RW. Design and 3D Printing of Stretchable Conductor with High Dynamic Stability. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3098. [PMID: 37109934 PMCID: PMC10146708 DOI: 10.3390/ma16083098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
As an indispensable part of wearable devices and mechanical arms, stretchable conductors have received extensive attention in recent years. The design of a high-dynamic-stability, stretchable conductor is the key technology to ensure the normal transmission of electrical signals and electrical energy of wearable devices under large mechanical deformation, which has always been an important research topic domestically and abroad. In this paper, a stretchable conductor with a linear bunch structure is designed and prepared by combining numerical modeling and simulation with 3D printing technology. The stretchable conductor consists of a 3D-printed bunch-structured equiwall elastic insulating resin tube and internally filled free-deformable liquid metal. This conductor has a very high conductivity exceeding 104 S cm-1, good stretchability with an elongation at break exceeding 50%, and great tensile stability, with a relative change in resistance of only about 1% at 50% tensile strain. Finally, this paper demonstrates it as a headphone cable (transmitting electrical signals) and a mobile phone charging wire (transmitting electrical energy), which proves its good mechanical and electrical properties and shows good application potential.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuwei Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Shengding Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiangling Xia
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Huiyun Xiao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jinyun Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Siqi Hu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaohui Yi
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Run-Wei Li
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Liang C, Sun J, Liu Z, Tian G, Liu Y, Zhao Q, Yang D, Chen J, Zhong B, Zhu M, Xu H, Qi D. Wide Range Strain Distributions on the Electrode for Highly Sensitive Flexible Tactile Sensor with Low Hysteresis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15096-15107. [PMID: 36942778 DOI: 10.1021/acsami.2c21241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flexible piezoresistive tactile sensors are widely used in wearable electronic devices because of their ability to detect mechanical stimuli. However, achieving high sensitivity and low hysteresis over a broad detection range remains a challenge with current piezoresistive tactile sensors. To address these obstacles, we designed elastomeric micropyramid arrays with different heights to redistribute the strain on the electrode. Furthermore, we mixed single-walled carbon nanotubes in the elastomeric micropyramids to compensate for the conductivity loss caused by random cracks in the gold film and increase the adhesion strength between the gold film (deposited on the pyramid surface) and the elastomer. Thus, the energy loss of the sensor during deformation and hysteresis (∼2.52%) was effectively reduced. Therefore, under the synactic effects of the percolation effect, tunnel effect, and multistage strain distribution, the as-prepared sensor exhibited a high sensitivity (1.28 × 106 kPa-1) and a broad detection range (4.51-54837.06 Pa). The sensitivity was considerably higher than those of most flexible pressure sensors with a microstructure design. As a proof of concept, the sensors were successfully applied in the fields of health monitoring and human-machine interaction.
Collapse
Affiliation(s)
- Cuiyuan Liang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Jingqi Sun
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Zhihua Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 138634 Singapore
| | - Gongwei Tian
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Yan Liu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Qinyi Zhao
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Dan Yang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Jianhui Chen
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Bowen Zhong
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Ming Zhu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Hongbo Xu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Dianpeng Qi
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| |
Collapse
|
28
|
Li W, Lin K, Chen L, Yang D, Ge Q, Wang Z. Self-Powered Wireless Flexible Ionogel Wearable Devices. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36881511 DOI: 10.1021/acsami.2c19744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ionogels are promising soft materials for flexible wearable devices because of their unique features such as ionic conductivity and thermal stability. Ionogels reported to date show excellent sensing sensitivity; however, they suffer from a complicated external power supply. Herein, we report a self-powered wearable device based on an ionogel incorporating poly(vinylidene fluoride) (PVDF). The three-dimensional (3D) printed PVDF-ionogel exhibits amazing stretchability (1500%), high conductivity (0.36 S/m at 105 Hz), and an extremely low glass transition temperature (-84 °C). Moreover, the flexible wearable devices assembled from the PVDF-ionogel can precisely detect physiological signals (e.g., wrist, gesture, running, etc.) with a self-powered supply. Most significantly, a self-powered wireless flexible wearable device based on our PVDF-ionogel achieves monitoring healthcare of a human by transmitting obtained signals with a Bluetooth module timely and accurately. This work provides a facile and efficient method for fabricating cost-effective wireless wearable devices with a self-powered supply, enabling their potential applications for healthcare, motion detection, human-machine interfaces, etc.
Collapse
Affiliation(s)
- Wenhao Li
- Interdisciplinary Research Center of Low-carbon Technology and Equipment, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - Kaibin Lin
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lei Chen
- Interdisciplinary Research Center of Low-carbon Technology and Equipment, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | | | - Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Zhaolong Wang
- Interdisciplinary Research Center of Low-carbon Technology and Equipment, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
29
|
Nishikawa T, Yamane H, Matsuhisa N, Miki N. Stretchable Strain Sensor with Small but Sufficient Adhesion to Skin. SENSORS (BASEL, SWITZERLAND) 2023; 23:1774. [PMID: 36850371 PMCID: PMC9967902 DOI: 10.3390/s23041774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Stretchable strain sensors that use a liquid metal (eutectic gallium-indium alloy; E-GaIn) and flexible silicone rubber (Ecoflex) as the support and adhesive layers, respectively, are demonstrated. The flexibility of Ecoflex and the deformability of E-GaIn enable the sensors to be stretched by 100%. Ecoflex gel has sufficiently large adhesion force to skin, even though the adhesion force is smaller than that for commercially available adhesives. This enables the sensor to be used for non-invasive monitoring of human motion. The mechanical and electrical properties of the sensor are experimentally evaluated. The effectiveness of the proposed sensors is demonstrated by monitoring joint movements, facial expressions, and respiration.
Collapse
Affiliation(s)
- Takaaki Nishikawa
- Department of Mechanical Engineering, Keio University, Kanagawa, Yokohama 223-8522, Japan
| | - Hisaya Yamane
- Department of Mechanical Engineering, Keio University, Kanagawa, Yokohama 223-8522, Japan
| | - Naoji Matsuhisa
- Department of Electronics and Electrical Engineering, Keio University, Kanagawa, Yokohama 223-8522, Japan
- JST PRESTO, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Norihisa Miki
- Department of Mechanical Engineering, Keio University, Kanagawa, Yokohama 223-8522, Japan
| |
Collapse
|
30
|
Xie L, Zhang Z, Wu Q, Gao Z, Mi G, Wang R, Sun HB, Zhao Y, Du Y. Intelligent wearable devices based on nanomaterials and nanostructures for healthcare. NANOSCALE 2023; 15:405-433. [PMID: 36519286 DOI: 10.1039/d2nr04551f] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Emerging classes of flexible electronic sensors as alternatives to conventional rigid sensors offer a powerful set of capabilities for detecting and quantifying physiological and physical signals from human skin in personal healthcare. Unfortunately, the practical applications and commercialization of flexible sensors are generally limited by certain unsatisfactory aspects of their performance, such as biocompatibility, low sensing range, power supply, or single sensory function. This review intends to provide up-to-date literature on wearable devices for smart healthcare. A systematic review is provided, from sensors based on nanomaterials and nanostructures, algorithms, to multifunctional integrated devices with stretchability, self-powered performance, and biocompatibility. Typical electromechanical sensors are investigated with a specific focus on the strategies for constructing high-performance sensors based on nanomaterials and nanostructures. Then, the review emphasizes the importance of tailoring the fabrication techniques in order to improve stretchability, biocompatibility, and self-powered performance. The construction of wearable devices with high integration, high performance, and multi-functionalization for multiparameter healthcare is discussed in depth. Integrating wearable devices with appropriate machine learning algorithms is summarized. After interpretation of the algorithms, intelligent predictions are produced to give instructions or predictions for smart implementations. It is desired that this review will offer guidance for future excellence in flexible wearable sensing technologies and provide insight into commercial wearable sensors.
Collapse
Affiliation(s)
- Liping Xie
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| | - Zelin Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| | - Qiushuo Wu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| | - Zhuxuan Gao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| | - Gaotian Mi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| | - Renqiao Wang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| | - Hong-Bin Sun
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Yue Zhao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
31
|
Zhao Z, Soni S, Lee T, Nijhuis CA, Xiang D. Smart Eutectic Gallium-Indium: From Properties to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203391. [PMID: 36036771 DOI: 10.1002/adma.202203391] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/30/2022] [Indexed: 05/27/2023]
Abstract
Eutectic gallium-indium (EGaIn), a liquid metal with a melting point close to or below room temperature, has attracted extensive attention in recent years due to its excellent properties such as fluidity, high conductivity, thermal conductivity, stretchability, self-healing capability, biocompatibility, and recyclability. These features of EGaIn can be adjusted by changing the experimental condition, and various composite materials with extended properties can be further obtained by mixing EGaIn with other materials. In this review, not only the are unique properties of EGaIn introduced, but also the working principles for the EGaIn-based devices are illustrated and the developments of EGaIn-related techniques are summarized. The applications of EGaIn in various fields, such as flexible electronics (sensors, antennas, electronic circuits), molecular electronics (molecular memory, opto-electronic switches, or reconfigurable junctions), energy catalysis (heat management, motors, generators, batteries), biomedical science (drug delivery, tumor therapy, bioimaging and neural interfaces) are reviewed. Finally, a critical discussion of the main challenges for the development of EGaIn-based techniques are discussed, and the potential applications in new fields are prospected.
Collapse
Affiliation(s)
- Zhibin Zhao
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| | - Saurabh Soni
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Takhee Lee
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Christian A Nijhuis
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| |
Collapse
|
32
|
Yang B, Yang Z, Tang L. Recent progress in fiber-based soft electronics enabled by liquid metal. Front Bioeng Biotechnol 2023; 11:1178995. [PMID: 37187888 PMCID: PMC10175636 DOI: 10.3389/fbioe.2023.1178995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Soft electronics can seamlessly integrate with the human skin which will greatly improve the quality of life in the fields of healthcare monitoring, disease treatment, virtual reality, and human-machine interfaces. Currently, the stretchability of most soft electronics is achieved by incorporating stretchable conductors with elastic substrates. Among stretchable conductors, liquid metals stand out for their metal-grade conductivity, liquid-grade deformability, and relatively low cost. However, the elastic substrates usually composed of silicone rubber, polyurethane, and hydrogels have poor air permeability, and long-term exposure can cause skin redness and irritation. The substrates composed of fibers usually have excellent air permeability due to their high porosity, making them ideal substrates for soft electronics in long-term applications. Fibers can be woven directly into various shapes, or formed into various shapes on the mold by spinning techniques such as electrospinning. Here, we provide an overview of fiber-based soft electronics enabled by liquid metals. An introduction to the spinning technology is provided. Typical applications and patterning strategies of liquid metal are presented. We review the latest progress in the design and fabrication of representative liquid metal fibers and their application in soft electronics such as conductors, sensors, and energy harvesting. Finally, we discuss the challenges of fiber-based soft electronics and provide an outlook on future prospects.
Collapse
Affiliation(s)
- Bowen Yang
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Zihan Yang
- Fashion Accessory Art and Engineering College, Beijing Institute of Fashion Technology, Beijing, China
- *Correspondence: Zihan Yang, ; Lixue Tang,
| | - Lixue Tang
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
- *Correspondence: Zihan Yang, ; Lixue Tang,
| |
Collapse
|
33
|
Luo Y, Chen X, Li X, Tian H, Li S, Wang L, He J, Yang Z, Shao J. Heterogeneous Strain Distribution Based Programmable Gated Microchannel for Ultrasensitive and Stable Strain Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207141. [PMID: 36281804 DOI: 10.1002/adma.202207141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Developing highly sensitive strain sensors requires conduction pathways capable of rapidly switching between disconnection and reconnection in response to strain. Ion channels in living organisms exactly control the channel switch through protein-composed gates, achieving changeable ion currents. Herein, inspired by the gating characteristics of the ion channels, a programmable fluidic strain sensor enhanced by gating ion pathways through heterogeneous strain distribution of discrete micropillars is proposed. During stretching, the contraction and closure of the widthwise gaps between discrete micropillars greatly weaken or even nearly cut off the conduction pathway, resulting in orders of magnitude increase in resistance and thus ultrahigh sensitivity. By adjusting the combination form and structural parameters of the discrete micropillars in the fluidic channel, the sensitivity and strain range can be customized. Thus, a gauge factor of up to 45 300 and a stretch range of 590% are obtained. Benefiting from the fluidic gating mechanism, no mechanical mismatch can be observed at the interface, breaking through the sensing stability issue of flexible sensors. The proposed sensor can be used to detect the full range of human motion, and integrated into a data glove to achieve human-machine interaction.
Collapse
Affiliation(s)
- Yongsong Luo
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaoliang Chen
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiangming Li
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Hongmiao Tian
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Sheng Li
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Liang Wang
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Juan He
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhengbing Yang
- Strength Transmission Test Laboratory, AECC Sichuan Gas Turbine Establishment, Chengdu, Sichuan, 610500, China
| | - Jinyou Shao
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
34
|
Sun X, Fu JH, Zhao H, Xiang W, Zhan F, Sun C, Tang S, Wang L, Liu J. Electronic whiskers for velocity sensing based on the liquid metal hysteresis effect. SOFT MATTER 2022; 18:9153-9162. [PMID: 36458603 DOI: 10.1039/d2sm01175a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The artificial biomimetic sensory hair as state-of-art electronics has drawn great attention from academic theorists of industrial production given its potential application in soft robotics, environmental exploration and health monitoring. However, it still remains a challenge to develop highly sensitive electronic sensory hair with fast response. In this study, a bio-inspired electronic whisker (e-whisker) with a hollow polymer shell and a liquid metal core was prepared by microinjection for airflow measurement and detection of obstacles. In addition, we illustrated the effect of liquid metal hysteresis on its distribution in microchannels on deformation. The difference in the deformed velocity between the selected fiber and EGaIn would result in a disturbance emerging in the liquid metal channel, which further causes a variation in resistance. Taking advantage of this phenomenon, the integrated fiber e-whisker can be employed to detect tiny airflow and disturbance. The experimental results indicate that the fiber sensor can detect the airflow velocity as low as 0.2 m s-1 within 0.1 s. The e-whisker can accurately monitor rainfall, human motion and object velocity. This work sheds light on the liquid metal viscosity-induced sensing mechanism and offers a novel strategy to fabricate high-performance velocity sensors.
Collapse
Affiliation(s)
- Xinlong Sun
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Jun-Heng Fu
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an, 625014, P. R. China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, General Research Institute for Nonferrous Metals, Beijing 100088, P. R. China
| | - Wentao Xiang
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Fei Zhan
- School of Electrical and Electronic Engineering, Shijiazhuang Railway University, Shijiazhuang, Hebei, 050043, P. R. China
| | - Chenkun Sun
- Department of Chemical and Physical Science, University of Toronto Mississaiga, L5L 1C6, Canada
| | - Shousheng Tang
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Lei Wang
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Jing Liu
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
35
|
Jia J, Peng Y, Zha XJ, Ke K, Bao RY, Liu ZY, Yang MB, Yang W. Janus and Heteromodulus Elastomeric Fiber Mats Feature Regulable Stress Redistribution for Boosted Strain Sensing Performance. ACS NANO 2022; 16:16806-16815. [PMID: 36194701 DOI: 10.1021/acsnano.2c06482] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wearable strain sensors have huge potential for applications in healthcare, human-machine interfacing, and augmented reality systems. However, the nonlinear response of the resistance signal to strain has caused considerable difficulty and complexity in data processing and signal transformation, thus impeding their practical applications severely. Herein, we propose a simple way to achieve linear and reproducible resistive signals responding to strain in a relatively wide strain range for flexible strain sensors, which is achieved via the fabrication of Janus and heteromodulus elastomeric fiber mats with micropatterns using microimprinting second processing technology. In detail, both isotropic and anisotropic fiber mats can turn into Janus fiber mats with periodical and heteromodulus micropatterns via controlling the fiber fusion and the diffusion of local macromolecular chains of thermoplastic elastomers. The Janus heterogeneous microstructure allows for stress redistribution upon stretching, thus leading to lower strain hysteresis and improved linearity of resistive signal. Moreover, tunable sensing performance can be achieved by tailoring the size of the micropatterns on the fiber mat surface and the fiber anisotropy. The Janus mat strain sensors with high signal linearity and good reproducibility have a very low strain detection limit, enabling potential applications in human-machine interfacing and intelligent control fields if combined with a wireless communication module.
Collapse
Affiliation(s)
- Jin Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yan Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiang-Jun Zha
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zheng-Ying Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
36
|
Wang X, Deng Y, Jiang P, Chen X, Yu H. Low-hysteresis, pressure-insensitive, and transparent capacitive strain sensor for human activity monitoring. MICROSYSTEMS & NANOENGINEERING 2022; 8:113. [PMID: 36247083 PMCID: PMC9553868 DOI: 10.1038/s41378-022-00450-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/29/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Wearable strain sensors have been widely used for human activity monitoring. Most reported strain sensors have mainly focused on material engineering, high stretchability and large gauge factors. Few works have focused on strain sensor's robustness and reliability, including low hysteresis, good long-term stability, good electrode material stability, and low coupling effects under multi-input signals, which are the factors that limit practical strain sensor applications. To develop a high-performance strain sensor, we propose a flexible capacitive sensor structure with three-dimensional (3D) interdigital electrodes fabricated by vertically aligned carbon nanotubes. Compared with a traditional resistive strain sensor and a capacitive strain sensor with vertical sandwich electrodes, a strain sensor with horizontal parallel interdigital electrodes can benefit from low cross talk in terms of the normal force and improve substrate transparency. Additionally, embedding 3D electrodes into the substrate improves ultrahigh robustness with a low-pressure coupling effect under normal force. Moreover, compared with other reported works, the electrode variation under strain is small (less than 1.6%), which means that the perturbation of inert properties on device performance is small. Finally, the fabricated strain sensor achieves an ultralow hysteresis (0.35%), excellent pressure-insensitive performance (less than 0.8%), fast response (60 ms), good long-term stability, and good transparency. As an application example, a flexible strain sensor was successfully demonstrated as a wearable device for the precise monitoring of different types of human activities, including bending of the finger, knee, elbow, wrist, and neck with large strain signals and small strain signals generated by a mouth-opening activity. This excellent performance indicates that the flexible strain sensor is a promising candidate for human motion detection, soft robotics, and medical care.
Collapse
Affiliation(s)
- Xiaoyi Wang
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Yang Deng
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Peng Jiang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Xingru Chen
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Hongyu Yu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| |
Collapse
|
37
|
Tang J, Wu Y, Ma S, Yan T, Pan Z. Sensing mechanism of a flexible strain sensor developed directly using electrospun composite nanofiber yarn with ternary carbon nanomaterials. iScience 2022; 25:105162. [PMID: 36212024 PMCID: PMC9535124 DOI: 10.1016/j.isci.2022.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, various strain-sensing yarns have been developed without ideal stitchability. Herein, we used spherical carbon black particles (CBs), linear carbon nanotubes (CNTs), and lamellar graphene flakes (GRs) as conductive nanofillers to construct multi-element conductive networks inside a thermoplastic polyurethane (TPU) matrix. First, a highly stretchable and conductive multidimensional carbon-based nanomaterial/TPU composite nanofiber yarn was fabricated using electrospinning, which could be used as a flexible strain sensor without post-processing. Accordingly, the effects of nanomaterials’ dimensionality and synergy on yarns’ conductivity, mechanical properties, and strain sensing performances were explored. The yarn containing multiple networks formed by CB/CNT/GR ternary hybrid networks, CNT and GR auxiliary networks exhibited the best performances. Subsequently, the structural evolution of the ternary conductive network under stretching was revealed to further analyze the sensing mechanism. Finally, the yarn endowed a medicated plaster with an intelligent function to detect motions in the rehabilitation of joint pain by simple sewing. An anti-interference and washable strain-sensing composite nanofiber yarn Synergy of carbon black particles, carbon nanotubes, and graphene flakes Strain-sensing mechanism of ternary conductive networks are revealed A smart medicated plaster can detect motions in the rehabilitation of joint pain
Collapse
Affiliation(s)
- Jian Tang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yuting Wu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Shidong Ma
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Tao Yan
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Suzhou 215123, China
- Corresponding author
| | - Zhijuan Pan
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Suzhou 215123, China
- Corresponding author
| |
Collapse
|
38
|
Wang L, Lai R, Zhang L, Zeng M, Fu L. Emerging Liquid Metal Biomaterials: From Design to Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201956. [PMID: 35545821 DOI: 10.1002/adma.202201956] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Liquid metals (LMs) as emerging biomaterials possess unique advantages including their favorable biosafety, high fluidity, and excellent electrical and thermal conductivities, thus providing a unique platform for a wide range of biomedical applications ranging from drug delivery, tumor therapy, and bioimaging to biosensors. The structural design and functionalization of LMs endow them with enhanced functions such as enhanced targeting ability and stimuli responsiveness, enabling them to achieve better and even multifunctional synergistic therapeutic effects. Herein, the advantages of LMs in biomedicine are presented. The design of LM-based biomaterials with different scales ranging from micro-/nanoscale to macroscale and various components is explored in-depth to promote the understanding of structure-property relationships, guiding their performance optimization and applications. Furthermore, the related advanced progress in the development of LM-based biomaterials in biomedicine is summarized. Current challenges and prospects of LMs in the biomedical field are also discussed.
Collapse
Affiliation(s)
- Luyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Runze Lai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lichen Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Renmin Hospital of Wuhan University, Wuhan, 410013, China
| |
Collapse
|
39
|
Wang W, Ma Y, Wang T, Ding K, Zhao W, Jiao L, Shu D, Li C, Hua F, Jiang H, Tong S, Yang S, Ni Y, Cheng B. Double-Layered Conductive Network Design of Flexible Strain Sensors for High Sensitivity and Wide Working Range. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36611-36621. [PMID: 35926517 DOI: 10.1021/acsami.2c08285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For flexible strain sensors, the optimization between sensitivity and working range is a significant challenge due to the fact that high sensitivity and high working range are usually difficult to obtain at the same time. Herein, a breathable flexible strain sensor with a double-layered conductive network structure was designed and developed, which consists of a thermoplastic polyurethane (TPU)/carbon nanotube (CNT) layer (as a substrate layer) and a Ag nanowire (AgNW) layer. The TPU/CNT layer is made of electrospinning TPU with CNTs deposited onto the surface of TPU fibers, and the flexible TPU/CNT mat guarantees the integrity of the conductive path under a large strain. The AgNW layer was prepared by depositing different amounts of AgNWs on the surface of the TPU/CNT layer, and the high-conductivity AgNWs offer a low initial resistance. Benefitting from the synergistic two-layer structure, the as-obtained flexible strain sensor exhibits a very high sensitivity (up to 1477.7) and a very wide working range (up to 150%). Besides, the fabricated sensor exhibits fast response (88 ms), excellent dynamical stability (7000 cycles), and excellent breathability. The working mechanism of the strain sensor was further investigated using various techniques (microscopy, equivalent circuit, and thermal effects of current). Furthermore, the as-fabricated flexible strain sensors accurately detect the omnidirectional human motions, including subtle and large human motions. This work provides an efficient approach to achieve the optimization between high sensitivity and large working range of strain sensors, which may have great potential applications in health monitoring, body motion detection, and human-machine interactions.
Collapse
Affiliation(s)
- Wei Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuying Ma
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tianyi Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kai Ding
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Zhao
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Jiao
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dengkun Shu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chenyang Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Feiguo Hua
- Zhejiang Jinjiahao Green Nanomaterial Co., Ltd., Longyou 324404, China
- Zhejiang Jinchang Specialty Paper Co., Ltd., Longyou 324404, China
| | - Hong Jiang
- Jiangxi Changshuo Outdoor Leisured Articles Co.,Ltd, Shangrao 334000, China
| | - Shuhua Tong
- Zhejiang Jinchang Specialty Paper Co., Ltd., Longyou 324404, China
| | - Shuo Yang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
- Zhejiang Jinchang Specialty Paper Co., Ltd., Longyou 324404, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Bowen Cheng
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
40
|
Feng H, Liu Y, Feng L, Zhan L, Meng S, Ji H, Zhang J, Li M, He P, Zhao W, Wei J. Additively Manufactured Flexible Electronics with Ultrabroad Range and High Sensitivity for Multiple Physiological Signals' Detection. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9871489. [PMID: 36061822 PMCID: PMC9394051 DOI: 10.34133/2022/9871489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Flexible electronics can be seamlessly attached to human skin and used for various purposes, such as pulse monitoring, pressure measurement, tensile sensing, and motion detection. Despite their broad applications, most flexible electronics do not possess both high sensitivity and wide detection range simultaneously; their sensitivity drops rapidly when they are subjected to even just medium pressure. In this study, ultrabroad-range, high-sensitivity flexible electronics are fabricated through additive manufacturing to address this issue. The key to possess high sensitivity and a wide detection range simultaneously is to fabricate flexible electronics with large depth-width ratio circuit channels using the additive manufacturing inner-rinsing template method. These electronics exhibit an unprecedented high sensitivity of 320 kPa-1 over the whole detection range, which ranges from 0.3 to 30,000 Pa (five orders of magnitude). Their minimum detectable weight is 0.02 g (the weight of a fly), which is comparable with human skin. They can stretch to over 500% strain without breaking and show no tensile fatigue after 1000 repetitions of stretching to 100% strain. A highly sensitive and flexible electronic epidermal pulse monitor is fabricated to detect multiple physiological signals, such as pulse signal, breathing rhythm, and real-time beat-to-beat cuffless blood pressure. All of these signals can be obtained simultaneously for detailed health detection and monitoring. The fabrication method does not involve complex expensive equipment or complicated operational processes, so it is especially suitable for the fabrication of large-area, complex flexible electronics. We believe this approach will pave the way for the application of flexible electronics in biomedical detection and health monitoring.
Collapse
Affiliation(s)
- Huanhuan Feng
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Yaming Liu
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, China
| | - Liang Feng
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Limeng Zhan
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Shuaishuai Meng
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Hongjun Ji
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Mingyu Li
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Peng He
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, China
| | - Weiwei Zhao
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Jun Wei
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| |
Collapse
|
41
|
A Miniature Soft Sensor with Origami-Inspired Self-Folding Parallel Mechanism. MICROMACHINES 2022; 13:mi13081188. [PMID: 36014110 PMCID: PMC9413114 DOI: 10.3390/mi13081188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023]
Abstract
Miniature soft sensors are crucial for the perception of soft robots. Although centimeter-scale sensors have been well developed, very few works addressed millimeter-scale, three-dimensional-shaped soft sensors capable of measuring multi-axis forces. In this work, we developed a millimeter-scale (overall size of 6 mm × 11 mm × 11 mm) soft sensor based on liquid metal printing technology and self-folding origami parallel mechanism. The origami design of the sensor enables the soft sensor to be manufactured within the plane and then fold into a three-dimensional shape. Furthermore, the parallel mechanism allows the sensor to rotate along two orthogonal axes. We showed that the soft sensor can be self-folded (took 17 s) using a shape-memory polymer and magnets. The results also showed that the sensor prototype can reach a deformation of up to 20 mm at the tip. The sensor can realize a measurement of external loads in six directions. We also showed that the soft sensor enables underwater sensing with a minimum sensitivity of 20 mm/s water flow. This work may provide a new manufacturing method and insight into future millimeter-scale soft sensors for bio-inspired robots.
Collapse
|
42
|
Stretchable and Conductive Cellulose/Conductive Polymer Composite Films for On-Skin Strain Sensors. MATERIALS 2022; 15:ma15145009. [PMID: 35888475 PMCID: PMC9317044 DOI: 10.3390/ma15145009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 01/07/2023]
Abstract
Conductive composite materials have attracted considerable interest of researchers for application in stretchable sensors for wearable health monitoring. In this study, highly stretchable and conductive composite films based on carboxymethyl cellulose (CMC)-poly (3,4-ethylenedioxythiopehe):poly (styrenesulfonate) (PEDOT:PSS) (CMC-PEDOT:PSS) were fabricated. The composite films achieved excellent electrical and mechanical properties by optimizing the lab-synthesized PEDOT:PSS, dimethyl sulfoxide, and glycerol content in the CMC matrix. The optimized composite film exhibited a small increase of only 1.25-fold in relative resistance under 100% strain. The CMC-PEDOT:PSS composite film exhibited outstanding mechanical properties under cyclic tape attachment/detachment, bending, and stretching/releasing tests. The small changes in the relative resistance of the films under mechanical deformation indicated excellent electrical contacts between the conductive PEDOT:PSS in the CMC matrix, and strong bonding strength between CMC and PEDOT:PSS. We fabricated highly stretchable and conformable on-skin sensors based on conductive and stretchable CMC-PEDOT:PSS composite films, which can sensitively monitor subtle bio-signals and human motions such as respiratory humidity, drinking water, speaking, skin touching, skin wrinkling, and finger bending. Because of the outstanding electrical properties of the films, the on-skin sensors can operate with a low power consumption of only a few microwatts. Our approach paves the way for the realization of low-power-consumption stretchable electronics using highly stretchable CMC-PEDOT:PSS composite films.
Collapse
|
43
|
Handschuh-Wang S, Gancarz T, Uporov S, Wang T, Gao E, Stadler FJ, Zhou X. A Short History on Fusible Metals and Alloys ‐ Towards Room Temperature Liquid Metals. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stephan Handschuh-Wang
- Shenzhen University Department of Chemistry and Environmental Engineering Xueyuan Rd., Xili, Nanshan District, 518055 Shenzhen CHINA
| | - Tomasz Gancarz
- Polish Academy of Sciences: Polska Akademia Nauk Institute of Metallurgy and Materials Science POLAND
| | - Sergey Uporov
- Russian Academy of Sciences Institute of Metallurgy RUSSIAN FEDERATION
| | - Tao Wang
- Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology Functional Thin Films Research Center CHINA
| | - Eryuan Gao
- Shenzhen Aerospace Dongfanghong Satellite Ltd Shenzhen Aerospace Dongfanghong Satellite. Ltd CHINA
| | | | - Xuechang Zhou
- Shenzhen University College of Chemistry and Environmental Engineering CHINA
| |
Collapse
|
44
|
Lu G, Yuan H, Zhou J, Chen F, Li C, Xue T, Shu X, Zhao Y, Nie J, Zhu X. Patterned Magnetofluids via Magnetic Printing and Photopolymerization for Multifunctional Flexible Electronic Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30332-30342. [PMID: 35730674 DOI: 10.1021/acsami.2c04755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid conductor-based flexible sensors with high mechanical deformability and reliable electrical reversibility have aroused great interest in electronic skin, soft robotics, environmental monitoring, and other fields. Herein, we develop a novel strategy to fabricate liquid conductor-based flexible sensors by combining ionic liquid-based magnetofluids (IL-MFs), magnetic printing, and photopolymerization techniques. The as-prepared sensors exhibit excellent electromechanical properties, such as a wide detection range, low hysteresis, fast response time, good durability, etc. Moreover, the gauge factors (GFs) of the sensor could be easily adjusted by changing the modulators with different line widths or patterns, and the strain sensors can also be designed for anisotropic monitoring. Apart from serving as strain sensors, the magnetofluid-based flexible sensors can be used to detect external pressure, human activities, and changes in temperature, illumination, and magnetic field as well. This work provides a facile strategy to fabricate liquid conductor-based multifunctional sensors. Such a magnetofluid-based sensor has a great promising future.
Collapse
Affiliation(s)
- Guoqiang Lu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hengda Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiulei Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fuping Chen
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tanlong Xue
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Shu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yingying Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaoqun Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
45
|
Liu Y, Yang L, Chen Q, Wang Z, Yang Z, Cao J, Wang X, Li H, Huang X. Deposition of Vertically Aligned Ag/Ag 2 S Nanoflakes on EGaIn Particles for Humidity Sensing. Chemistry 2022; 28:e202200298. [PMID: 35384089 DOI: 10.1002/chem.202200298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Indexed: 12/14/2022]
Abstract
Liquid metals, which possess both good electrical conductivity and liquid-like processability, have drawn much attention recently. They are also capable of acting as synthesis templates to guide the deposition of other functional materials. Herein, through an in-situ galvanic replacement reaction assisted by ultrasonication, core-shell EGaIn/Ag particles composed of EGaIn cores and vertically aligned Ag nanoflakes as shells were prepared; they were further sulfurized to yield ternary EGaIn/Ag/Ag2 S core-shell composite particles. A humidity sensor based on EGaIn/Ag/Ag2 S particles showed much higher sensing response than EGaIn and EGaIn/Ag. Such superior performance could be attributed to the n-type semiconducting character of Ag2 S allowing it to receive electrons from water molecules at low humidity, and its highly hydrophilic surface allowing it to absorb more water molecules at higher humidity so as to enable the formation of ion-conductive paths.
Collapse
Affiliation(s)
- Yanlei Liu
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Lei Yang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Qian Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and, Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Zeyi Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Zhiwei Yang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Jiacheng Cao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and, Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Xiaoshan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and, Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Hai Li
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
46
|
Li T, Su Y, Chen F, Zheng H, Meng W, Liu Z, Ai Q, Liu Q, Tan Y, Zhou Z. Bioinspired Stretchable Fiber-Based Sensor toward Intelligent Human-Machine Interactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22666-22677. [PMID: 35533008 DOI: 10.1021/acsami.2c05823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wearable integrated sensing devices with flexible electronic elements exhibit enormous potential in human-machine interfaces (HMI), but they have limitations such as complex structures, poor waterproofness, and electromagnetic interference. Herein, inspired by the profile of Lindernia nummularifolia (LN), a bionic stretchable optical strain (BSOS) sensor composed of an LN-shaped optical fiber incorporated with a stretchable substrate is developed for intelligent HMI. Such a sensor enables large strain and bending angle measurements with temperature self-compensation by the intensity difference of two fiber Bragg gratings' (FBGs') center wavelength. Such configurations enable an excellent tensile strain range of up to 80%, moreover, leading to ultrasensitivity, durability (≥20,000 cycles), and waterproofness. The sensor is also capable of measuring different human activities and achieving HMI control, including immersive virtual reality, robot remote interactive control, and personal hands-free communication. Combined with the machine learning technique, gesture classification can be achieved using muscle activity signals captured from the BSOS sensor, which can be employed to obtain the motion intention of the prosthetic. These merits effectively indicate its potential as a solution for medical care HMI and show promise in smart medical and rehabilitation medicine.
Collapse
Affiliation(s)
- Tianliang Li
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yifei Su
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Fayin Chen
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Han Zheng
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Meng
- School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zemin Liu
- School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qingsong Ai
- School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Quan Liu
- School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yuegang Tan
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zude Zhou
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
47
|
Ji J, Zhang C, Yang S, Liu Y, Wang J, Shi Z. High Sensitivity and a Wide Sensing Range Flexible Strain Sensor Based on the V-Groove/Wrinkles Hierarchical Array. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24059-24066. [PMID: 35544950 DOI: 10.1021/acsami.2c04773] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible strain sensors occupying a large part of human body detection and wearable electronics, which have a wide sensing range and high sensitivity, are crucial in fully monitoring human motion signals. This study proposed a strategy to construct flexible strain sensors based on the V-groove/wrinkles hierarchical array. The V-groove array was prepared on a polydimethylsiloxane (PDMS) substrate through mold transfer printing. The gold film was sputtered on the prestretching PDMS substrate, and the V-groove/wrinkles hierarchical array was formed after strain release. Compared with the sensors based on single-scale wrinkle structures and a V-groove array, the fabricated strain sensor with the hierarchical array showed high sensitivity (maximum gauge factor up to 2,557.71) and a wide sensing range (up to 45%). In addition, the dynamic characteristics of the sensor were investigated in detail, indicating that the sensor had a fast response (less than 130 ms), a low detection limit (0.1% strain), and good stability (almost no performance loss after 10,000 cycles). In practical applications, the sensor was used to detect sizable physical motion and weak physiological signals, demonstrating great potential application value in human motion detection. This study could provide new ideas for preparing high-performance flexible strain sensors.
Collapse
Affiliation(s)
- Jin Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Chengpeng Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Shaohua Yang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yongzhi Liu
- Shandong Institute of Nonmetallic Materials, Jinan 250031, Shandong, China
| | - Jilai Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Zhenyu Shi
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
48
|
Borges EIA, Rieder JSI, Aschenbrenner D, Scharff RBN. Framework for Armature-Based 3D Shape Reconstruction of Sensorized Soft Robots in eXtended Reality. Front Robot AI 2022; 9:810328. [PMID: 35572373 PMCID: PMC9096452 DOI: 10.3389/frobt.2022.810328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Soft robots are typically intended to operate in highly unpredictable and unstructured environments. Although their soft bodies help them to passively conform to their environment, the execution of specific tasks within such environments often requires the help of an operator that supervises the interaction between the robot and its environment and adjusts the actuation inputs in order to successfully execute the task. However, direct observation of the soft robot is often impeded by the environment in which it operates. Therefore, the operator has to depend on a real-time simulation of the soft robot based on the signals from proprioceptive sensors. However, the complicated three-dimensional (3D) configurations of the soft robot can be difficult to interpret using traditional visualization techniques. In this work, we present an open-source framework for real-time 3D reconstruction of soft robots in eXtended Reality (Augmented and Virtual Reality), based on signals from their proprioceptive sensors. This framework has a Robot Operating System (ROS) backbone, allowing for easy integration with existing soft robot control algorithms for intuitive and real-time teleoperation. This approach is demonstrated in Augmented Reality using a Microsoft Hololens device and runs at up to 60 FPS. We explore the influence that system parameters such as mesh density and armature complexity have on the reconstruction's key performance metrics (i.e., speed, scalability). The open-source framework is expected to function as a platform for future research and developments on real-time remote control of soft robots operating in environments that impede direct observation of the robot.
Collapse
Affiliation(s)
- Elvis I. A. Borges
- Department of Sustainable Design Engineering, Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
- *Correspondence: Elvis I. A. Borges, ; Rob B. N. Scharff,
| | - Jonas S. I. Rieder
- Department of Sustainable Design Engineering, Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Doris Aschenbrenner
- Department of Sustainable Design Engineering, Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
- Department of Mechanical Engineering, Aalen University, Aalen, Germany
| | - Rob B. N. Scharff
- Bioinspired Soft Robotics Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
- *Correspondence: Elvis I. A. Borges, ; Rob B. N. Scharff,
| |
Collapse
|
49
|
Mao L, Pan T, Ke Y, Yan Z, Huang S, Guo D, Gao N, Huang W, Yao G, Gao M, Lin Y. Configurable direction sensitivity of skin-mounted microfluidic strain sensor with auxetic metamaterial. LAB ON A CHIP 2022; 22:1630-1639. [PMID: 35348159 DOI: 10.1039/d2lc00141a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electromechanical coupling plays a key role in determining the performance of stretchable strain sensor. Current regulation of the electromechanical coupling in stretchable strain sensor is largely restricted by the intrinsic mechanical properties of the device. In this study, a microfluidic strain sensor based on the core-shell package design with the auxetic metamaterial (AM) is presented. By overriding the mechanical properties of the device, the AM in the package effectively tunes the deformation of the microfluidic channel with the applied strain and configures the directional strain sensitivity with a large modulation range. The gauge factor (GF) of the strain sensor in the radial direction of the channel can be gradually shifted from the intrinsically negative value to a positive one by adopting the AMs with different designs. By simply replacing the AM in the package, the microfluidic strain sensor with the core-shell package can be configurated as an omnidirectional or directional stretchable strain sensor. With the directional sensitivity brought by the rational AM design, the application of the AM-integrated strain sensor in the skin-mounted tactile detection is demonstrated with high tolerance to unintended wrist movements.
Collapse
Affiliation(s)
- Linna Mao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Yizhen Ke
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Zhuocheng Yan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
| | - Sirong Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
| | - Dengji Guo
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
| | - Neng Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
| | - Wen Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Guang Yao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| |
Collapse
|
50
|
Xu D, Cao J, Liu F, Zou S, Lei W, Wu Y, Liu Y, Shang J, Li RW. Liquid Metal Based Nano-Composites for Printable Stretchable Electronics. SENSORS (BASEL, SWITZERLAND) 2022; 22:2516. [PMID: 35408131 PMCID: PMC9002646 DOI: 10.3390/s22072516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 05/25/2023]
Abstract
Liquid metal (LM) has attracted prominent attention for stretchable and elastic electronics applications due to its exceptional fluidity and conductivity at room temperature. Despite progress in this field, a great disparity remains between material fabrication and practical applications on account of the high surface tension and unavoidable oxidation of LM. Here, the composition and nanolization of liquid metal can be envisioned as effective solutions to the processibility-performance dilemma caused by high surface tension. This review aims to summarize the strategies for the fabrication, processing, and application of LM-based nano-composites. The intrinsic mechanism and superiority of the composition method will further extend the capabilities of printable ink. Recent applications of LM-based nano-composites in printing are also provided to guide the large-scale production of stretchable electronics.
Collapse
Affiliation(s)
- Dan Xu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinwei Cao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- New Materials Institute, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo, Ningbo 315100, China
| | - Fei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Shengbo Zou
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wenjuan Lei
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|