1
|
He ZK, Zhao J, Li K, Zhao J, He H, Gao Z, Song YY. Rational Integration of SnMOF/SnO 2 Hybrid on TiO 2 Nanotube Arrays: An Effective Strategy for Accelerating Formaldehyde Sensing Performance at Room Temperature. ACS Sens 2023; 8:4189-4197. [PMID: 37870917 DOI: 10.1021/acssensors.3c01525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Formaldehyde is ubiquitously found in the environment, meaning that real-time monitoring of formaldehyde, particularly indoors, can have a significant impact on human health. However, the performance of commercially available interdigital electrode-based sensors is a compromise between active material loading and steric hindrance. In this work, a spaced TiO2 nanotube array (NTA) was exploited as a scaffold and electron collector in a formaldehyde sensor for the first time. A Sn-based metal-organic framework was successfully decorated on the inside and outside of TiO2 nanotube walls by a facile solvothermal decoration strategy. This was followed by regulated calcination, which successfully integrated the preconcentration effect of a porous Sn-based metal-organic framework (SnMOF) structure and highly active SnO2 nanocrystals into the spaced TiO2 NTA to form a Schottky heterojunction-type gas sensor. This SnMOF/SnO2@TiO2 NTA sensor achieved a high room-temperature formaldehyde response (1.7 at 6 ppm) with a fast response (4.0 s) and recovery (2.5 s) times. This work provides a new platform for preparing alternatives to interdigital electrode-based sensors and offers an effective strategy for achieving target preconcentrations for gas sensing processes. The as-prepared SnMOF/SnO2@TiO2 NTA sensor demonstrated excellent sensitivity, stability, reproducibility, flexibility, and convenience, showing excellent potential as a miniaturized device for medical diagnosis, environmental monitoring, and other intelligent sensing systems.
Collapse
Affiliation(s)
- Zhen-Kun He
- College of Science, Northeastern University, Shenyang 110819, China
| | - Jiahui Zhao
- College of Science, Northeastern University, Shenyang 110819, China
| | - Keke Li
- College of Science, Northeastern University, Shenyang 110819, China
| | - Junjian Zhao
- College of Science, Northeastern University, Shenyang 110819, China
| | - Haoxuan He
- College of Science, Northeastern University, Shenyang 110819, China
| | - Zhida Gao
- College of Science, Northeastern University, Shenyang 110819, China
| | - Yan-Yan Song
- College of Science, Northeastern University, Shenyang 110819, China
| |
Collapse
|
2
|
Lesego M, Ndinteh DT, Ndungu P, Mamo MA. Zeolitic imidazolate framework as humidity-resistant solid state-chemiresistive gas sensors: A review. Heliyon 2023; 9:e22329. [PMID: 38034700 PMCID: PMC10687067 DOI: 10.1016/j.heliyon.2023.e22329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
With significant technological advances, solid-state gas sensors have been extensively applied to detect toxic gases and volatile organic compounds (VOCs) in confined areas such as indoor environments and industries and to identify gas leakage. Semiconductor metal oxides are the primary sensing materials, although their major drawbacks include a lack of sensitivity, poor performance at high humidity, and operating at high temperatures ranging between 140 and 400 °C. Recently, the use of zeolitic imidazolate frameworks (ZIFs) in gas sensors has received considerable attention as a promising material to overcome the drawbacks possessed by semiconductor metal oxide-based gas sensors. Because of their unique properties, including size tunability, high surface area, and stability in humidity, ZIF becomes a preferred candidate for sensing materials. The use of ZIF materials in gas sensors is limited because of their high-temperature operation and low gas responses. This review outlines the strategies and developments in the utilization of ZIF-based materials in gas sensing. The significant influence of the addition of carbon additives in ZIF materials for temperature operation sensors is discussed. Finally, ZIF-carbon additives and SMO@ZIFs/carbon additives are the proposed materials to be studied for future prospects for the detection of VOCs at low temperatures and exhibiting good selectivity towards the gas of interest.
Collapse
Affiliation(s)
- Malepe Lesego
- Department of Chemical Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028 Johannesburg, South Africa
| | - Derek T. Ndinteh
- Department of Chemical Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028 Johannesburg, South Africa
| | - Patrick Ndungu
- Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Messai A. Mamo
- Department of Chemical Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028 Johannesburg, South Africa
| |
Collapse
|
3
|
Poschmann MM, Siebert L, Lupan C, Lupan O, Schütt F, Adelung R, Stock N. Surface Conversion of ZnO Tetrapods Produces Pinhole-Free ZIF-8 Layers for Selective and Sensitive H 2 Sensing Even in Pure Methane. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38674-38681. [PMID: 37527811 PMCID: PMC10436243 DOI: 10.1021/acsami.3c06317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023]
Abstract
As the necessary transition to a supply of renewable energy moves forward rapidly, hydrogen (H2) becomes increasingly important as a green chemical energy carrier. The manifold applications associated with the use of hydrogen in the energy sector require sensor materials that can efficiently detect H2 in small quantities and in gas mixtures. As a possible candidate, we here present a metal-organic framework (MOF, namely ZIF-8) functionalized metal-oxide gas sensor (MOS, namely ZnO). The gas sensor is based on single-crystalline tetrapodal ZnO (t-ZnO) microparticles, which are coated with a thin layer of ZIF-8 ([Zn(C4H5N2)2]) by a ZnO conversion reaction to obtain t-ZnO@ZIF-8 (core@shell) composites. The vapor-phase synthesis enables ZIF-8 thickness control as shown by powder X-ray diffraction, thermogravimetric analysis, and N2 sorption measurements. Gas-sensing measurements of a single microrod of t-ZnO@ZIF-8 composite demonstrate the synergistic benefits of both MOS sensors and MOFs, resulting in an outstanding high selectivity, sensitivity (S ≅ 546), and response times (1-2 s) to 100 ppm H2 in the air at a low operation temperature of 100 °C. Under these conditions, no response to acetone, n-butanol, methane, ethanol, ammonia, 2-propanol, and carbon dioxide was observed. Thereby, the sensor is able to reliably detect H2 in mixtures with air and even methane, with the latter being highly important for determining the H2 dilution level in natural gas pipelines, which is of great importance to the energy sector.
Collapse
Affiliation(s)
- Mirjam
P. M. Poschmann
- Institute
for Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Leonard Siebert
- Department
of Materials Science, Chair for Functional Nanomaterials, Faculty
of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Cristian Lupan
- Department
of Microelectronics and Biomedical Engineering, Center
for Nanotechnology and Nanosensors, Technical
University of Moldova, 168 Stefan cel Mare Avenue, MD-2004 Chisinau, Republic of Moldova
| | - Oleg Lupan
- Department
of Materials Science, Chair for Functional Nanomaterials, Faculty
of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
- Department
of Microelectronics and Biomedical Engineering, Center
for Nanotechnology and Nanosensors, Technical
University of Moldova, 168 Stefan cel Mare Avenue, MD-2004 Chisinau, Republic of Moldova
| | - Fabian Schütt
- Department
of Materials Science, Chair for Functional Nanomaterials, Faculty
of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Rainer Adelung
- Department
of Materials Science, Chair for Functional Nanomaterials, Faculty
of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Norbert Stock
- Institute
for Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2, 24118 Kiel, Germany
| |
Collapse
|
4
|
Malepe L, Ndinteh TD, Ndungu P, Mamo MA. A humidity-resistant and room temperature carbon soot@ZIF-67 composite sensor for acetone vapour detection. NANOSCALE ADVANCES 2023; 5:1956-1969. [PMID: 36998651 PMCID: PMC10044860 DOI: 10.1039/d3na00050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
Zeolitic imidazolate framework-67 (ZIF-67), carbon nanoparticles (CNPs), and the CNPs@ZIF-67 composite were prepared and used to fabricate sensors for the detection of acetone vapour. The prepared materials were characterized using transmission electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and Fourier-transform infrared spectroscopy. The sensors were tested using an LCR meter under the resistance parameter. It was found that the ZIF-67 sensor did not respond at room temperature, the CNP sensor had a non-linear response to all analytes, and the CNPs/ZIF-67 sensor had an excellent linear response to acetone vapour and was less sensitive to 3-pentanone, 4-methyl-1-hexene, toluene and cyclohexane vapours. However, it was found that ZIF-67 improves carbon soot sensor sensitivity by 155 times, wherein the sensitivity of the carbon soot sensor and carbon soot@ZIF-67 sensor on acetone vapour was found to be 0.0004 and 0.062 respectively. In addition, the sensor was found to be insensitive to humidity and the limit of detection was 484 ppb at room temperature.
Collapse
Affiliation(s)
- Lesego Malepe
- Department of Chemical Science, University of Johannesburg PO Box 17011 Doornfontein 2028 Johannesburg South Africa
| | - Tantoh Derek Ndinteh
- Department of Chemical Science, University of Johannesburg PO Box 17011 Doornfontein 2028 Johannesburg South Africa
| | - Patrick Ndungu
- Department of Chemistry, University of Pretoria Private Bag X20 Hatfield 0028 Pretoria South Africa
| | - Messai Adenew Mamo
- Department of Chemical Science, University of Johannesburg PO Box 17011 Doornfontein 2028 Johannesburg South Africa
| |
Collapse
|
5
|
ZnPA@ZIF-8 nanoparticles: Synthesis, sustained release properties and anticorrosion performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Malepe L, Ndinteh DT, Ndungu P, Mamo MA. Selective detection of methanol vapour from a multicomponent gas mixture using a CNPs/ZnO@ZIF-8 based room temperature solid-state sensor. RSC Adv 2022; 12:27094-27108. [PMID: 36276012 PMCID: PMC9501866 DOI: 10.1039/d2ra04665b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 10/28/2023] Open
Abstract
Methanol vapour is harmful to human health if it is inhaled, swallowed, or absorbed through the skin. Solid-state gas sensors are a promising system for the detection of volatile organic compounds, unfortunately, they can have poor gas selectivity, low sensitivity, an inferior limit of detection (LOD), sensitivity towards humidity, and a need to operate at higher temperatures. A novel solid-state gas sensor was assembled using carbon nanoparticles (CNPs), prepared from a simple pyrolysis reaction, and zinc oxide@zeolitic imidazolate framework-8 nanorods (ZnO@ZIF-8 nanorods), synthesised using a hydrothermal method. The nanomaterials were characterized using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy Raman spectroscopy, and Fourier transform infrared spectroscopy. The ZnO@ZIF-8 nanorods were inactive as a sensor, the CNPs showed some sensor activity, and the CNPs/ZnO@ZIF-8 nanorod composite performed as a viable solid-state sensor. The mass ratio of ZnO@ZIF-8 nanorods within the CNPs/ZnO@ZIF-8 nanorod composite was varied to investigate selectivity and sensitivity for the detection of ethanol, 2-propanol, acetone, ethyl acetate, chloroform, and methanol vapours. The assembled sensor composed of the CNPs/ZnO@ZIF-8 nanorod composite with a mass ratio of 1.5 : 6 showed improved gas sensing properties in the detection of methanol vapour with a LOD of 60 ppb. The sensor is insensitive to humidity and the methanol vapour sensitivity was found to be 0.51 Ω ppm-1 when detected at room temperature.
Collapse
Affiliation(s)
- Lesego Malepe
- Department of Chemical Science, University of Johannesburg PO Box 17011, Doornfontein 2028 Johannesburg South Africa
| | - Derek Tantoh Ndinteh
- Department of Chemical Science, University of Johannesburg PO Box 17011, Doornfontein 2028 Johannesburg South Africa
| | - Patrick Ndungu
- Department of Chemistry, University of Pretoria Private Bag X20, Hatfield 0028 Pretoria South Africa
| | - Messai Adenew Mamo
- Department of Chemical Science, University of Johannesburg PO Box 17011, Doornfontein 2028 Johannesburg South Africa
| |
Collapse
|
7
|
Agoudjil K, Haddadine N, Davidson A, Barama S, Abouzeid K, Barama A, Selmane M, Bouslah N, Benaboura A, Barillé R, Samy El‐Shall M. Poly(methyl methacrylate) Nanoparticles Grafted with Gold‐L‐Cysteine as a Water Cleaning Material for the Photocatalytic Degradation of Paracetamol. ChemistrySelect 2022. [DOI: 10.1002/slct.202200771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Karima Agoudjil
- Laboratoire de Synthèse Macromoléculaire et Thio-organique Macromoléculaire (LSMTM) USTHB BP 32 El Alia 16111 Bab-Ezzouar Algiers Algeria
| | - Nabila Haddadine
- Laboratoire de Synthèse Macromoléculaire et Thio-organique Macromoléculaire (LSMTM) USTHB BP 32 El Alia 16111 Bab-Ezzouar Algiers Algeria
- Department of Chemistry Virginia Commonwealth University Virginia 23284-2006 USA
| | - Anne Davidson
- Laboratoire de Réactivité de Surface (LRS) Sorbonne Université, UPMC-Paris, 4 place Jussieu 75252 Paris Cedex 05 France
| | - Siham Barama
- Laboratoire de Matériaux Catalytiques et Catalyse en Chimie Organique (LMCCCO), USTHB BP 32 El Alia 16111 Bab-Ezzouar Algiers Algeria
| | - Khaled Abouzeid
- Department of Chemistry Virginia Commonwealth University Virginia 23284-2006 USA
| | - Akila Barama
- Laboratoire de Matériaux Catalytiques et Catalyse en Chimie Organique (LMCCCO), USTHB BP 32 El Alia 16111 Bab-Ezzouar Algiers Algeria
| | - Mohamed Selmane
- Institut des Matériaux de Paris centre (IMPC) Sorbonne-Université 4 place Jussieu 75252 Paris, Cedex 5 France
| | - Naima Bouslah
- Laboratoire de Synthèse Macromoléculaire et Thio-organique Macromoléculaire (LSMTM) USTHB BP 32 El Alia 16111 Bab-Ezzouar Algiers Algeria
| | - Ahmed Benaboura
- Laboratoire de Synthèse Macromoléculaire et Thio-organique Macromoléculaire (LSMTM) USTHB BP 32 El Alia 16111 Bab-Ezzouar Algiers Algeria
| | - Régis Barillé
- Laboratoire MOLTECH ANJOU Université d'Angers/UMR CNRS 62002, Bd Lavoisier 49045 Angers France
| | - M. Samy El‐Shall
- Department of Chemistry Virginia Commonwealth University Virginia 23284-2006 USA
| |
Collapse
|
8
|
Zhao X, Lu X, Chen WJ, Liu Y, Pan X. Palladium decoration directed synthesis of ZIF-8 nanocubes with efficient catalytic activity for nitrobenzene hydrogenation. Dalton Trans 2022; 51:10847-10851. [PMID: 35848604 DOI: 10.1039/d2dt01695h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium precursor (H2PdCl4) has been utilized as a novel structure-directing agent for controlling the morphology of ZIF-8. Using reverse micelles as nanoreactors, the Pd/ZIF-8 nanocomposite with a uniform size distribution is obtained. It is revealed that Pd(II) can selectively coordinate with the (100) plane of ZIF-8. As a result, the morphology of ZIF-8 is transformed from rhombic dodecahedral to cubic. After hydrogen treatment, the as-obtained Pd NPs/ZIF-8 nanocubes show efficient catalytic activity for nitrobenzene hydrogenation, which is higher than that of the commercially available Pd/C catalyst.
Collapse
Affiliation(s)
- Xiaojing Zhao
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, 362000, China.
| | - Xiaoxiao Lu
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, 362000, China. .,College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Wen-Jie Chen
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, 362000, China.
| | - Yubin Liu
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, 362000, China.
| | - Xiaoyang Pan
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, 362000, China.
| |
Collapse
|
9
|
Wang Z, Liu H, Shao J, Li Z, Zhang H, Sun C, Pan G, Yang X. AuPd nanoparticles functionalized core-shell Co 3O 4/ZnO@ZnO for ultra-sensitive toluene detection. NANOTECHNOLOGY 2022; 33:365501. [PMID: 35636397 DOI: 10.1088/1361-6528/ac7475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
In this work, core-shell AuPd nanoparticles (NPs) sensitized Co3O4/ZnO@ZnO ellipsoid nanoparticles was successfully synthesized via a simple liquid phase synthesis method. SEM and TEM characterization results showed that the as-prepared samples have core-shell ellipsoid morphology and the size of the nanoparticles were uniform. Systematic gas sensing characterization was carried out to obtain the gas sensing property of AuPd NPs decorated Co3O4/ZnO@ZnO. It was found that the gas sensing property could be significantly enhanced after noble metal decoration with Au, Pd and AuPd NPs, respectively. The optimal gas sensing performance was achieved by AuPd NPs functionalized Co3O4/ZnO@ZnO based gas sensor. The maximum response reached 256-100 ppm toluene at 250 °C, which is 50 °C lower than pure ZnO. The detection limit of AuPd functionalized Co3O4/ZnO@ZnO was as low as 100 ppb. The enhanced sensing mechanism was mainly attributed to the synergistic effect of Au and Pd, which was detailly discussed in gas sensing mechanism part.
Collapse
Affiliation(s)
- Ziyan Wang
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Hongyan Liu
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Junkai Shao
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Zhenhua Li
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Hao Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Caixuan Sun
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Guofeng Pan
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Xueli Yang
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300130, People's Republic of China
| |
Collapse
|
10
|
Kumar A, Zhao Y, Mohammadi MM, Liu J, Thundat T, Swihart MT. Palladium Nanosheet-Based Dual Gas Sensors for Sensitive Room-Temperature Hydrogen and Carbon Monoxide Detection. ACS Sens 2022; 7:225-234. [PMID: 35025508 DOI: 10.1021/acssensors.1c02015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Palladium has long been explored for use in gas sensors because of its excellent catalytic properties and its unique property of forming hydrides in the presence of H2. However, pure Pd-based sensors usually suffer from low response and a relatively high limit of detection. Palladium nanosheets (PdNS) are of particular interest for gas sensing applications due to their high surface area and excellent electrical conductivity. Here, we demonstrate the design and fabrication of low-cost PdNS-based dual gas sensors for room-temperature detection of H2 and CO over a wide concentration range. We fabricated sensors using multiwalled carbon nanotube@PdNS (MWCNT@PdNS) composites and compared their performance against pure PdNS devices for hydrogen sensing based on electrical resistive response. Devices using PdNS alone had a response and response time of 0.4% and 50 s, respectively, to 1% H2 in air. MWCNT@PdNS (1:5 mass ratio) showed enhanced performance at a lower hydrogen concentration with a limit of detection (LODH2) of 5 ppm. Nearly an order of magnitude increase in response was observed on increasing the amount of MWCNT to 50 mass % in the nanocomposite, but the response fell off at low H2 concentration. Overall, these PdNS-based sensors were found to show good repeatability, stability, and performance under humid conditions. Their response was selective for H2 versus CH4, CO2, and NH3; the response to CO was comparable in magnitude but opposite in sign to the response to H2. Upon simultaneous exposure to equal concentrations (10 ppm each) of H2 and CO, the response to CO was dominant. The PdNS showed high sensitivity to CO, detecting as little as 1 ppm CO in air at room temperature. The sensitivity to CO could be used either in a stand-alone room-temperature CO detector, where H2 is known not to be present, or in combination with CO and combustible gas detectors to distinguish H2 from other combustible gases.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Yaoli Zhao
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Mohammad Moein Mohammadi
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Jun Liu
- Department of Mechanical and Aerospace Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
- RENEW Institute, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Thomas Thundat
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
- RENEW Institute, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Mark T. Swihart
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
- RENEW Institute, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| |
Collapse
|
11
|
Shahsavari M, Mohammadzadeh Jahani P, Sheikhshoaie I, Tajik S, Aghaei Afshar A, Askari MB, Salarizadeh P, Di Bartolomeo A, Beitollahi H. Green Synthesis of Zeolitic Imidazolate Frameworks: A Review of Their Characterization and Industrial and Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:447. [PMID: 35057165 PMCID: PMC8779251 DOI: 10.3390/ma15020447] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023]
Abstract
Metal organic frameworks (MOF) are a class of hybrid networks of supramolecular solid materials comprising a large number of inorganic and organic linkers, all bound to metal ions in a well-organized fashion. Zeolitic imidazolate frameworks (ZIFs) are a sub-group of MOFs with imidazole as an organic linker to metals; it is rich in carbon, nitrogen, and transition metals. ZIFs combine the classical zeolite characteristics of thermal and chemical stability with pore-size tunability and the rich topological diversity of MOFs. Due to the energy crisis and the existence of organic solvents that lead to environmental hazards, considerable research efforts have been devoted to devising clean and sustainable synthesis routes for ZIFs to reduce the environmental impact of their preparation. Green chemistry is the key to sustainable development, as it will lead to new solutions to existing problems. Moreover, it will present opportunities for new processes and products and, at its heart, is scientific and technological innovation. The green chemistry approach seeks to redesign the materials that make up the basis of our society and our economy, including the materials that generate, store, and transport our energy, in ways that are benign for humans and the environment and that possess intrinsic sustainability. This study covers the principles of green chemistry as used in designing strategies for synthesizing greener, less toxic ZIFs the consume less energy to produce. First, the necessity of green methods in today's society, their replacement of the usual non-green methods and their benefits are discussed; then, various methods for the green synthesis of ZIF compounds, such as hydrothermally, ionothermally, and by the electrospray technique, are considered. These methods use the least harmful and toxic substances, especially concerning organic solvents, and are also more economical. When a compound is synthesized by a green method, a question arises as to whether these compounds can replace the same compounds as synthesized by non-green methods. For example, is the thermal stability of these compounds (which is one of the most important features of ZIFs) preserved? Therefore, after studying the methods of identifying these compounds, in the last part, there is an in-depth discussion on the various applications of these green-synthesized compounds.
Collapse
Affiliation(s)
- Mahboobeh Shahsavari
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (M.S.); (I.S.)
| | | | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (M.S.); (I.S.)
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (S.T.); (A.A.A.)
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (S.T.); (A.A.A.)
| | - Mohammad Bagher Askari
- Department of Physics, Faculty of Science, University of Guilan, Rasht 4199613776, Iran;
| | - Parisa Salarizadeh
- High-Temperature Fuel Cell Research Department, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran;
| | - Antonio Di Bartolomeo
- Department of Physics “E. R. Caianiello” and “Interdepartmental Center NANOMATES”, University of Salerno, 84084 Fisciano, SA, Italy
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| |
Collapse
|
12
|
Kim B, Lee H, Hong S, Kim HJ, Kim K, Kang H. Influence of metallization process on solution-processed InGaZnO thin film transistors. NANOTECHNOLOGY 2021; 32:405203. [PMID: 34171856 DOI: 10.1088/1361-6528/ac0eaf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Low-temperature solution-processed InGaZnO (IGZO) thin film transistors (TFTs) have recently attracted significant attention as the next-generation flexible display TFTs, owing to their high transparency, high electrical performance, low-cost fabrication, and large-area scalability. However, solution-processed amorphous IGZO TFTs have several drawbacks, such as poor film quality or low stability, and have been studied with view to improving the device performance. One of the critical components determining device characteristics is the metallization process, which we systematically studied using aluminum (Al) source and drain electrodes. The electrical properties were measured for different channel lengths and evaluated using the threshold voltage (Vth) and subthreshold swing (SS). Al electrodes directly affect the channel region, enhancing the electron density because of the doping effect from Al and oxygen vacancy-related oxidation of Al and causing an abnormal negative shift ofVth, which is confirmed by the component analysis via various spectroscopies. To understand and improve the TFT characteristics, we conducted a low-temperature post-annealing process and polymer passivation and succeeded in movingVthfrom over 150 V to near 0 V and remarkably improved SS. This study discovered that the influence of source-drain metallization on the channel region determines the device characteristics through the close relation between metal oxidation and the number of oxygen vacancies.
Collapse
Affiliation(s)
- Byeongwan Kim
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunkyung Lee
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Seungyeon Hong
- Department of Organic Material Sceience and Engineering, Pusan National University, Busan 46241, Republic of Korea
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyo Jung Kim
- Department of Organic Material Sceience and Engineering, Pusan National University, Busan 46241, Republic of Korea
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kanghyun Kim
- Samsung Display, Chungcheongnam-Do 31454, Republic of Korea
| | - Haeyong Kang
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Xiao Z, Fan Z, Niu Y, Kou X. Construction of hollow proanthocyanidin cages as a novel delivery system using zeolitic imidazolate framework-8 sacrificial templates. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Yang W, Shen H, Ge J, Xu B. Improving TiO 2 gas sensing selectivity to acetone and other gases via a molecular imprinting method. NANOTECHNOLOGY 2021; 32:155503. [PMID: 33395679 DOI: 10.1088/1361-6528/abd818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Various gas sensors have made considerable improvements to the quality of people's lives. However, in most cases, changing of materials is necessary to adapt to the changing of the target gas, which limits the further application of gas sensors. To meet this challenge, in this work, molecular imprinting (MI) technology is introduced. Acrylic acid is used as a functional monomer, while gas molecules, including acetone, are used as templates. The MI process with an acetone template helps improve the acetone selectivity of TiO2 by up to 1.74-2.80 times. Moreover, it proved that other templates can increase the corresponding selectivity by at least 1.5 times by using the same matrix material. These results demonstrate the potential importance of the MI process in constructing a highly compatible gas sensor industry. Beyond this, the MI process has proved to achieve an ultrahigh specific surface area of 384.36 m2 · g-1. The optimal acetone sensor exhibits desirable comprehensive performance compared with other reports. An excellent TiO2 based prototype acetone sensor working at 300 °C with a low detection limit of 18 ppb is obtained.
Collapse
Affiliation(s)
- Wangyang Yang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Honglie Shen
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Jiawei Ge
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Binbin Xu
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| |
Collapse
|
15
|
Darmadi I, Nugroho FAA, Langhammer C. High-Performance Nanostructured Palladium-Based Hydrogen Sensors-Current Limitations and Strategies for Their Mitigation. ACS Sens 2020; 5:3306-3327. [PMID: 33181012 PMCID: PMC7735785 DOI: 10.1021/acssensors.0c02019] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022]
Abstract
Hydrogen gas is rapidly approaching a global breakthrough as a carbon-free energy vector. In such a hydrogen economy, safety sensors for hydrogen leak detection will be an indispensable element along the entire value chain, from the site of hydrogen production to the point of consumption, due to the high flammability of hydrogen-air mixtures. To stimulate and guide the development of such sensors, industrial and governmental stakeholders have defined sets of strict performance targets, which are yet to be entirely fulfilled. In this Perspective, we summarize recent efforts and discuss research strategies for the development of hydrogen sensors that aim at meeting the set performance goals. In the first part, we describe the state-of-the-art for fast and selective hydrogen sensors at the research level, and we identify nanostructured Pd transducer materials as the common denominator in the best performing solutions. As a consequence, in the second part, we introduce the fundamentals of the Pd-hydrogen interaction to lay the foundation for a detailed discussion of key strategies and Pd-based material design rules necessary for the development of next generation high-performance nanostructured Pd-based hydrogen sensors that are on par with even the most stringent and challenging performance targets.
Collapse
Affiliation(s)
- Iwan Darmadi
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Ferry Anggoro Ardy Nugroho
- DIFFER
- Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612
AJ Eindhoven, The Netherlands
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, De Boelelaan
1081, 1081 HV Amsterdam, The Netherlands
| | - Christoph Langhammer
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
16
|
Gao Z, Wang T, Li X, Li Q, Zhang X, Cao T, Li Y, Zhang L, Guo L, Fu Y. Pd-Decorated PdO Hollow Shells: A H 2-Sensing System in Which Catalyst Nanoparticle and Semiconductor Support are Interconvertible. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42971-42981. [PMID: 32865972 DOI: 10.1021/acsami.0c13137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing a simple strategy to fabricate high-performance hydrogen sensors with long-term stability remains quite challenging. Here, we report the H2-sensing performance of Pd-decorated PdO hollow shells (Pd/PdO HSs). In this novel system, the catalyst nanoparticles (Pd NPs) and semiconductor support (PdO) are interconvertible, which is different from traditional hydrogen-sensing systems such as Pd/TiO2 and Pd/ZnO. This Pd/PdO system exhibits multiple unique properties. First, well-distributed Pd NPs with controllable density can be decorated on PdO support through a one-step NaBH4 treatment during which PdO is partially reduced into Pd. Second, the decorated Pd NPs are physically inlaid in the PdO support, which not only prevents the agglomeration or detachment of Pd NPs but also enhances the electron transfer between Pd NPs and PdO. Third, Pd/PdO HSs can be reoxidized into PdO HSs once their sensing performance degrades, which repeatedly manipulates Pd/PdO HSs under the initial reduction process, leading to the reactivation of the sensing performance. With all these advantages, Pd/PdO HSs demonstrate a detection limit lower than 1 ppm, a response/recovery time to 1% H2 of 5 s/32 s at room temperature, and a repeatable reactivation ability. The strategy presented here is convenient and time saving and has no need to prefunctionalize the PdO surface for the decoration of catalyst NPs. Moreover, the unique reactivation ability of Pd/PdO system opens a new strategy toward extending the lifetime of H2 sensors.
Collapse
Affiliation(s)
- Zhimin Gao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| | - Tieqiang Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| | - Xuefei Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| | - Qian Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| | - Xuemin Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| | - Tianlong Cao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| | - Yunong Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| | - Liying Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| | - Lei Guo
- Texas A&M Institute of Biosciences & Technology, Houston, Texas 77030, United States
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| |
Collapse
|