1
|
Wu Y, He J, Huang H, Li H, Wang R, Li H, Jiang W, Xu H. Polymer-induced self-assembly strategy toward 3D printable porous MoO 3/Al 2O 3 catalyst for efficient oxidative desulfurization. J Colloid Interface Sci 2025; 686:14-26. [PMID: 39889666 DOI: 10.1016/j.jcis.2025.01.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Abstract
Porous metal oxides have attracted much attention due to their large number of internal crosslinking channels and higher specific surface areas in the fields of heterogeneous catalysis. Herein, a solvent-free polymer-induced self-assembly strategy is reported for the preparation of porous metal oxides by the strong interaction between polymers and inorganic precursors in a high-energy ball milling process. The 5 %MoO3/Al2O3 catalyst has a stratified pore structure and high surface area. Meanwhile, due to the introduction of the active component molybdenum oxide, the abundant low-price molybdenum species and the corresponding oxygen vacancy are retained, which shows high catalytic oxidative desulfurization performance for a variety of aromatic sulfides, especially the intractable 4,6-DMDBT. The 3D printing ink with excellent viscoelasticity is prepared by the composite of powder porous metal oxides and montmorillonite, and the monolithic catalyst is obtained by direct ink writing 3D printing technology. This research provides a new idea for the design and fabrication of high efficiency catalysts.
Collapse
Affiliation(s)
- Yingcheng Wu
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013 PR China
| | - Jing He
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013 PR China.
| | - Haiyan Huang
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013 PR China
| | - Hongping Li
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013 PR China
| | - Rui Wang
- Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang 212003 PR China
| | - Huaming Li
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013 PR China
| | - Wei Jiang
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013 PR China.
| | - Hui Xu
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013 PR China.
| |
Collapse
|
2
|
Ali H, Orooji Y, Alzahrani AYA, Hassan HMA, Ajmal Z, Yue D, Hayat A. Advanced Porous Aromatic Frameworks: A Comprehensive Overview of Emerging Functional Strategies and Potential Applications. ACS NANO 2025; 19:7482-7545. [PMID: 39965777 DOI: 10.1021/acsnano.4c16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Porous aromatic frameworks (PAFs) are a fundamental group of porous materials characterized by their distinct structural features and large surface areas. These materials are synthesized from aromatic building units linked by strong carbon-carbon bonds, which confer exceptional rigidity and long-term stability. PAFs functionalities may arise directly from the intrinsic chemistry of their building units or through the postmodification of aromatic motifs using well-defined chemical processes. Compared to other traditional porous materials such as zeolites and metallic-organic frameworks, PAFs demonstrate superior stability under severe chemical treatments due to their robust carbon-carbon bonding. Even in challenging environments, the chemical stability and ease of functionalization of PAFs demonstrate their flexibility and specificity. Research on PAFs has significantly expanded and accelerated over the past decade, necessitating a comprehensive overview of key advancements in this field. This review provides an in-depth analysis of the recent advances in the synthesis, functionalization, and dimensionality of PAFs, along with their distinctive properties and wide-ranging applications. This review explores the innovative methodologies in PAFs synthesis, the strategies for functionalizing their structures, and the manipulation of their dimensionality to tailor their properties for specific potential applications. Similarly, the key application areas, including batteries, absorption, sensors, CO2 capture, photo-/electrocatalytic usages, supercapacitors, separation, and biomedical are discussed in detail, highlighting the versatility and potential of PAFs in addressing modern scientific and industrial challenges.
Collapse
Affiliation(s)
- Hamid Ali
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
- School of Resources and Environment, Shensi Lab, University of Electronic Science and Technology of China, Chengdu, 611731,China
| | - Yasin Orooji
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang PR, China
| | | | - Hassan M A Hassan
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, 72345, Saudi Arabia
| | - Zeeshan Ajmal
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang PR, China
| | - Dewu Yue
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Asif Hayat
- Department of Chemistry, Lishui University, Lishui, Zhejiang 323000, China
| |
Collapse
|
3
|
Jabin S, Abbas S, Gupta P, Jadoun S, Rajput A, Rajput P. Recent advances in nanoporous organic polymers (NPOPs) for hydrogen storage applications. NANOSCALE 2025; 17:4226-4249. [PMID: 39810493 DOI: 10.1039/d4nr03623a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Nanoporous organic polymers (NPOPs) have emerged as versatile materials with robust thermal stability, large surface area (up to 2500 m2 g-1), and customizable porosity, making them ideal candidates for advanced hydrogen (H2) storage applications. This review provides a comprehensive analysis of various NPOPs, including covalent organic frameworks (COFs), hypercrosslinked polymers (HCLPs), conjugated microporous polymers (CMPs), and porous aromatic frameworks (POAFs). Notably, these materials demonstrate superior H2 storage capacities, achieving up to 10 wt% at cryogenic temperatures, which is essential for applying H2 as a clean energy carrier. The review also highlights recent advancements, such as integrating metal-organic frameworks (MOFs) into NPOPs, further enhancing storage capacities by up to 30%. Their multifaceted properties underpin various applications, from fuel storage and gas separation to water treatment and optical devices. This review explores the significance and versatility of NPOPs in H2 storage due to their unique properties and enhanced storage capacities. Additionally, recent advancements in utilizing NPOPs for H2 storage are highlighted with a detailed discussion of emerging trends and the synthesis of innovative NPOPs. The review concludes with a discussion of the advantages, applications, challenges, research, and future directions for research in this area.
Collapse
Affiliation(s)
- Shagufta Jabin
- Department of Applied Science (Chemistry), School of Engineering, Manav Rachna International Institute of Research & Studies, Faridabad, Haryana, India.
| | - Sadiqa Abbas
- Department of Civil Engineering, School of Engineering, Manav Rachna International Institute of Research & Studies, Faridabad, Haryana, India
| | - Priti Gupta
- Department of Sciences, School of Sciences, Manav Rachna University, Faridabad, Haryana, India.
| | - Sapana Jadoun
- Sol-ARIS, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Anupama Rajput
- Department of Applied Science (Chemistry), School of Engineering, Manav Rachna International Institute of Research & Studies, Faridabad, Haryana, India.
| | - Prachika Rajput
- Department of Chemistry, Netaji Subhas University of Technology, Delhi, India.
| |
Collapse
|
4
|
Liu K, Chen P, Chen F, Sun F, Lv P, Shi J, Jiang YJ. Task-Specific Design of a Porous Aromatic Framework as an Ultrastable Platform for Enantioselective Organocatalysis. Chemistry 2025; 31:e202404128. [PMID: 39624000 DOI: 10.1002/chem.202404128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/11/2024]
Abstract
A hydroxyl-tagged porous aromatic framework PAF-NBU2-OH was task-specifically designed and successfully synthesized targeted toward immobilizing chiral catalysts. Using proline-type compound as model chiral organocatalyst, PAF-NBU2-OH was used as a platform to covalently link proline-type group. The obtained PAF-immobilized organocatalyst PAF-NBU2-OPro featured high chemical stability in different solvents even under very harsh conditions. PAF-NBU2-OPro showed excellent catalytic activity, diastereoselectivity and enantioselectivity with complete and easy recyclability when catalyzing the aldol reaction between p-nitrobenzaldehyde and cyclohexanone, which could undergo at least 30 cycles without any activity, diastereoselectivity or enantioselectivity loss for catalyzing the current reaction.
Collapse
Affiliation(s)
- Kun Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Peng Chen
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Fan Chen
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Pei Lv
- Ningbo Institute of Measurement and Testing, Ningbo Inspection and Testing Center for New Materials), Ningbo, 315048, China
| | - Jianghuan Shi
- Ningbo Institute of Measurement and Testing, Ningbo Inspection and Testing Center for New Materials), Ningbo, 315048, China
| | - Yi-Jun Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
5
|
Xiao Y, Jiang N, Liao M, Pi X, Zhang Z, Peng C, Zhang L, Wu H, Guo J. Hydrophobic Modification of Halloysite Nanotubes Loaded with a Small Amount of Tungsten Oxide for Efficient Oxidative Desulfurization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63470-63481. [PMID: 39506511 DOI: 10.1021/acsami.4c12095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Transition metal oxides can be used as efficient multiphase catalysts in the field of catalysis. In this study, a hydrophobic halloysite nanotube (HNT) catalyst was designed and prepared with a low loading. Tungsten oxide was immobilized on the inner surface of the HNT, through electrostatic adsorption and calcination. Furthermore, a dual-functional W/HMT/M catalyst was prepared by hydrophobic modification of the outer surface of HNT through a harmless and nontoxic method. The catalyst was applied in the oxidative desulfurization (ODS) of dibenzothiophene (DBT), and characterized by inductively coupled plasma (ICP), contact angle tests, and other methods. Systematic characterization further confirmed that W/HNT/M has a low loading (0.48 wt %) and a relatively high contact angle of 92.6°. Oxidative desulfurization experiments demonstrated that the high contact angle corresponds to good hydrophobicity. The low loading and high activity of the catalyst enabled it to achieve a removal efficiency of 100% for DBT under conditions of 60 °C and an O/S = 4. The hydrophobic surface of HNT allowed better dispersion in the oil phase, while its hydrophilic inner cavity could adsorb H2O2 and the converted dibenzothiophene sulfoxide, thereby reducing the subsequent extraction steps after oxidative desulfurization and enhancing the reaction environment for reactants and active oxygen. W/HNT/M maintained high activity for at least 5 cycles. Additionally, the potential mechanism of the catalyst in the aqueous ODS reaction was proposed. This study demonstrates that HNT-supported metal oxides have desulfurization potential and provides ideas for improving ODS catalytic activity of the ODS through low loading, high activity, and unique hydrophobicity design.
Collapse
Affiliation(s)
- Yuanjie Xiao
- Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
- Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
| | - Nan Jiang
- Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
- Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
| | - Mingyu Liao
- Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
- Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
| | - Xiaolin Pi
- Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
- Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
| | - Zhe Zhang
- Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
- Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
| | - Chuanao Peng
- Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
- Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
| | - Linfeng Zhang
- Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
- Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
| | - Huadong Wu
- Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
- Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
| | - Jia Guo
- Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
- Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Guanggu first Road, Wuhan 430073, P. R. China
| |
Collapse
|
6
|
Sahoo A, Jaiswal S, Das S, Patra A. Imidazolium and Pyridinium-Based Ionic Porous Organic Polymers: Advances in Transformative Solutions for Oxoanion Sequestration and Non-Redox CO 2 Fixation. Chempluschem 2024; 89:e202400189. [PMID: 38963082 DOI: 10.1002/cplu.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/05/2024]
Abstract
The rapid pace of industrialization has led to a multitude of detrimental environmental consequences, including water pollution and global warming. Consequently, there is an urgent need to devise appropriate materials to address these challenges. Ionic porous organic polymers (iPOPs) have emerged as promising materials for oxoanion sequestration and non-redox CO2 fixation. Notably, iPOPs offer hydrothermal stability, structural tunability, a charged framework, and readily available nucleophilic counteranions. This review explores the significance of pores and charged functionalities alongside design strategies outlined in existing literature, mainly focusing on the incorporation of pyridinium and imidazolium units into nitrogen-rich iPOPs for oxoanion sequestration and non-redox CO2 fixation. The present review also addresses the current challenges and future prospects, delineating the design and development of innovative iPOPs for water treatment and heterogeneous catalysis.
Collapse
Affiliation(s)
- Aniket Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| | - Shilpi Jaiswal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| |
Collapse
|
7
|
Shao JJ, Xue ZD, Chen WM, Zhang Y, Gao Q, Chen LZ, Wang FM. Realizing Color Transitions for Three Copper (I) Cluster Organic-Inorganic Hybrid Materials by Adjusting Reaction Conditions. Chemistry 2024; 30:e202401553. [PMID: 38937940 DOI: 10.1002/chem.202401553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Copper iodide organic-inorganic hybrid materials have been favored by many researchers in the field of solid-state lighting (SSL) due to their structural diversity and optical adjustability. In this paper, three isomeric copper iodide cluster hybrid materials, Cu4I6(L)2(1), Cu5I4.5Cl2.5(L)2(2) and Cu5I7(L)2) (3) (L=1-(4-methylpyrimidin-2-yl)-1,4-diazabicyclo[2.2.2]octan-1-ium), were achieved by adjusting the reaction conditions. The crystal color transit from green, yellow to orange and the internal quantum yield (IQY) increase from 57 %-88 %. All three complexes have good thermal stability, good solution processability, and high quantum yield. And origin and mechanism of luminescence of complexes were further studied. This study can provide ideas and theoretical basis for the regulation of cuprous iodide cluster luminescent materials.
Collapse
Affiliation(s)
- Juan-Juan Shao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, P. R. China
| | - Zhen-Dong Xue
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, P. R. China
| | - Wei-Min Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, P. R. China
| | - Yi Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, P. R. China
| | - Qiang Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, P. R. China
| | - Li-Zhuang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, P. R. China
| | - Fang-Ming Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, P. R. China
| |
Collapse
|
8
|
Ren Z, Sheng J, Yuan Q, Su Y, Zhu L, Dai C, Zhao H. Cross-Linked Polyvinylimidazole Complexed with Heteropolyacid Clusters for Deep Oxidative Desulfurization. Molecules 2024; 29:4238. [PMID: 39275086 PMCID: PMC11396842 DOI: 10.3390/molecules29174238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
The combustion of fuel with high sulfur concentrations produces a large number of sulfur oxides (SOx), which have a range of negative effects on human health and life. The preparation of catalysts with excellent performance in the oxidative desulfurization (ODS) process is highly effective for reducing SOx production. In this paper, cross-linked polyvinylimidazole (VE) was successfully created using a simple ontology aggregation method, after which a catalyst of polyvinylimidazolyl heteropolyacid clusters (VE-HPA) was prepared by adding heteropolyacid clusters. Polyvinylimidazolyl-phosphotungstic acid (VE-HPW) showed an outstanding desulfurization performance, and the desulfurization efficiency reached 99.68% in 60 min at 50 °C with H2O2 as an oxidant. Additionally, the catalyst exhibited recyclability nine consecutive times and remained stable, with a removal rate of 98.60%. The reaction mechanism was eventually proposed with the assistance of the free radical capture experiment and GC-MS analysis.
Collapse
Affiliation(s)
- Zhuoyi Ren
- Engineering Research Center of Tropical Marine Functional Polymer Materials of Hainan Province, Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Organic Polymers of Haikou, Hainan Normal University, Haikou 571158, China
| | - Jiangfen Sheng
- Jiangsu Jitri Carbon Fiber & Composite Application Technologies Research Institute Co., Ltd., Changzhou 213000, China
| | - Qibin Yuan
- Engineering Research Center of Tropical Marine Functional Polymer Materials of Hainan Province, Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Organic Polymers of Haikou, Hainan Normal University, Haikou 571158, China
| | - Yizhen Su
- Engineering Research Center of Tropical Marine Functional Polymer Materials of Hainan Province, Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Organic Polymers of Haikou, Hainan Normal University, Haikou 571158, China
| | - Linhua Zhu
- Engineering Research Center of Tropical Marine Functional Polymer Materials of Hainan Province, Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Organic Polymers of Haikou, Hainan Normal University, Haikou 571158, China
| | - Chunyan Dai
- Engineering Research Center of Tropical Marine Functional Polymer Materials of Hainan Province, Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Organic Polymers of Haikou, Hainan Normal University, Haikou 571158, China
| | - Honglei Zhao
- Hainan Lesso Technology Industrial Co., Ltd., Dingan 571200, China
| |
Collapse
|
9
|
Winterstein SF, Bettermann M, Timm J, Marschall R, Senker J. Thermodynamically Stable Functionalization of Microporous Aromatic Frameworks with Sulfonic Acid Groups by Inserting Methylene Spacers. Molecules 2024; 29:1666. [PMID: 38611945 PMCID: PMC11013227 DOI: 10.3390/molecules29071666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
Porous aromatic frameworks (PAFs) are an auspicious class of materials that allow for the introduction of sulfonic acid groups at the aromatic core units by post-synthetic modification. This makes PAFs promising for proton-exchange materials. However, the limited thermal stability of sulfonic acid groups attached to aromatic cores prevents high-temperature applications. Here, we present a framework based on PAF-303 where the acid groups were added as methylene sulfonic acid side chains in a two-step post-synthetic route (SMPAF-303) via the intermediate chloromethylene PAF (ClMPAF-303). Elemental analysis, NMR spectroscopy, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy were used to characterize both frameworks and corroborate the successful attachment of the side chains. The resulting framework SMPAF-303 features high thermal stability and an ion-exchange capacity of about 1.7 mequiv g-1. The proton conductivity depends strongly on the adsorbed water level. It reaches from about 10-7 S cm-1 for 33% RH to about 10-1 S cm-1 for 100% RH. We attribute the strong change to a locally alternating polarity of the inner surfaces. The latter introduces bottleneck effects for the water molecule and oxonium ion diffusion at lower relative humidities, due to electrolyte clustering. When the pores are completely filled with water, these bottlenecks vanish, leading to an unhindered electrolyte diffusion through the framework, explaining the conductivity rise.
Collapse
Affiliation(s)
- Simon F. Winterstein
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Michael Bettermann
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Jana Timm
- Physical Chemistry III, Department of Chemistry, University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany (R.M.)
| | - Roland Marschall
- Physical Chemistry III, Department of Chemistry, University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany (R.M.)
| | - Jürgen Senker
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|
10
|
Xu H, Wu L, Zhao X, Yang S, Yao Y, Liu C, Chang G, Yang X. Hierarchically porous amino-functionalized nanoMOF network anchored phosphomolybdic acid for oxidative desulfurization and shaping application. J Colloid Interface Sci 2024; 658:313-323. [PMID: 38113540 DOI: 10.1016/j.jcis.2023.12.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The applications of hierarchically porous metal-organic frameworks (HP-MOFs) against traditional microporous counterparts for oxidative desulfurization (ODS) have triggered wide research interests due to their highly exposed accessible active sites and fast mass transfer of substrate molecules, particularly for the large-sized refractory sulfur compounds. Herein, a series of hierarchically porous amino-functionalized Zr-MOFs (HP-UiO-66-NH2-X) network with controllable mesopore sizes (3.5-9.2 nm) were firstly prepared through a template-free method, which were further utilized as anchoring support to bind the active phosphomolybdic acid (PMA) via the strong host-guest interaction to catalyze the ODS reaction. Benefitting from the hierarchically porous structure, accessible active sites and the strong host-guest interaction, the resultant PMA/HP-UiO-66-NH2-X exhibited excellent ODS performance, of which, the PMA/HP-UiO-66-NH2-9 with an appropriate mesopore size (4.0 nm) showed the highest catalytic activity, achieving a 99.9% removal of dibenzothiophene (DBT) within 60 min at 50 °C, far exceeding the microporous sample and PMA/HP-UiO-66. Furthermore, the scavenger experiments confirmed that •OH radical was the main reactive species and the density functional theory (DFT) calculations revealed that electron transfer (from amino group to PMA) made PMA react more easily with oxidant, thereby generating more •OH radical to promote the ODS reaction. Finally, from the industrial point of view, the powdered MOF nanoparticles (NPs) were in situ grown on the carboxymethyl cellulose (CMC) substrates and shaped into monolithic MOF-based catalysts, which still exhibited satisfying ODS performance in the case of model real fuel with good reusability, indicating its potential industrial application prospect.
Collapse
Affiliation(s)
- Hongjian Xu
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Lu Wu
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China; Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xinyu Zhao
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Shujie Yang
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yao Yao
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Chao Liu
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Ganggang Chang
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| | - Xiaoyu Yang
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| |
Collapse
|
11
|
Sun M, Abazari R, Chen J, Hussain CM, Zhou Y, Kirillov AM. Encapsulation of H 4SiW 12O 40 into an Amide-Functionalized MOF: A Highly Efficient Nanocomposite Catalyst for Oxidative Desulfurization of Diesel Fuel. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37931039 DOI: 10.1021/acsami.3c12374] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Production of hydrocarbon fuels containing sulfur in ultralow levels is in high demand and requires the development of novel catalytic systems for oxidative desulfurization (ODS). Herein, a new nanocomposite SiW12@ZSTU-10 catalyst containing H4SiW12O40 (SiW12) encapsulated into a zinc(II) 3D metal-organic framework (MOF) (ZSTU-10) was assembled and characterized. The intricate structure and porosity of ZSTU-10 permit efficient encapsulation of the catalytically active SiW12 cages. The impact of different experimental parameters on the ODS of model oil containing dibenzothiophene as a typical S-based contaminant was evaluated. The SiW12@ZSTU-10 catalyst exhibits remarkable activity with up to 99.8% sulfur removal in 30 min. Kinetic features, trapping tests, and mechanistic studies were also performed. Furthermore, the catalyst offered an outstanding thermal and chemical stability, without apparent leaching and decline in the activity after six cycles. Such an improved catalytic efficiency of SiW12@ZSTU-10 can be assigned to (i) size-matched occupation of the ZSTU-10 pores by SiW12-active species, (ii) prevention of polyoxometalate (POM) leaching from the MOF matrix, (iii) facilitation of the access of S-based substrates to the active sites of SiW12, and (iv) excellent stability and recyclability of the obtained nanocomposite. The preset work widens a family of promising nanocomposite catalysts for improving the desulfurization performance of hybrid POM-MOF catalytic systems.
Collapse
Affiliation(s)
- Mingyuzhi Sun
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China
| | - Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh 83111-55181, Iran
| | - Jing Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| |
Collapse
|
12
|
Guo L, He L, Zhuang Q, Li B, Wang C, Lv Y, Chu J, Song YF. Recent Advances in Confining Polyoxometalates and the Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207315. [PMID: 36929209 DOI: 10.1002/smll.202207315] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/24/2023] [Indexed: 06/15/2023]
Abstract
Polyoxometalates (POMs) are widely used in catalysis, energy storage, biomedicine, and other research fields due to their unique acidity, photothermal, and redox features. However, the leaching and agglomeration problems of POMs greatly limit their practical applications. Confining POMs in a host material is an efficient tool to address the above-mentioned issues. POM@host materials have received extensive attention in recent years. They not only inherent characteristics of POMs and host, but also play a significant synergistic effect from each component. This review focuses on the recent advances in the development and applications of POM@host materials. Different types of host materials are elaborated in detail, including tubular, layered, and porous materials. Variations in the structures and properties of POMs and hosts before and after confinement are highlighted as well. In addition, an overview of applications for the representative POM@host materials in electrochemical, catalytic, and biological fields is provided. Finally, the challenges and future perspectives of POM@host composites are discussed.
Collapse
Affiliation(s)
- Lin Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lei He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qinghe Zhuang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bole Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Cuifeng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanfei Lv
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jinfeng Chu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
13
|
Design of hierarchically porous Zr-MOFs with reo topology and confined PMA for ultra-efficient oxidation desulfurization. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
14
|
Chen H, Hou S, Cui H, Wang C, Zhang M, Li H, Xu H, Wu J, Zhu W. Construction of amphiphilic and polyoxometalate poly(ionic liquids) for enhanced oxidative desulfurization in fuel. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
15
|
Chen M, Liu X, Yang Y, Xu W, Chen K, Luo R. Aluminum Porphyrin-Based Ionic Porous Aromatic Frameworks Having High Surface Areas and Highly Dispersed Dual-Function Sites for Boosting the Catalytic Conversion of CO 2 into Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8263-8274. [PMID: 36733212 DOI: 10.1021/acsami.2c22824] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Multifunctionalization of porous organic polymers toward synergistic CO2 catalysis has drawn much attention in recent decades, but it still faces many challenges. Herein, we develop a facile, simple, and efficient strategy to obtain a series of aluminum porphyrin-based ionic porous aromatic frameworks (iPAFs), which are considered excellent bifunctional catalysts for converting CO2 into cyclic carbonates without any cocatalyst under mild and solvent-free conditions. By increasing the amounts of tetraphenylmethane fragments in the porphyrin backbones, the cooperative effect between Lewis acidic metal centers and nucleophilic ionic sites has been enhanced and then the significant improvement of catalytic activity can be achieved owing to the high surface areas (up to 719 m2·g-1), abundant hierarchical micro-mesopores, and prominent CO2 adsorption capacities (up to 1.8 mmol·g-1 at 273 K) as well as highly dispersed dual-function sites. More fascinatingly, high-active AlPor-iPAF-3 enables CO2 cycloaddition to perform with diluted CO2 (15% CO2 in 85% N2, v/v) or under ambient conditions. Therefore, this postsynthetic modification procedure in combination with the framework dilution strategy provides a new approach to fabricating high-surface-area metalloporphyrin-based porous ionic polymers (PIPs) with hierarchical structures, which is conducive to improving the accessibility of multiple active sites around substrates.
Collapse
Affiliation(s)
- Min Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiangying Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiying Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Xu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Kechi Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Rongchang Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| |
Collapse
|
16
|
Polikarpova P, Koptelova AO, Vutolkina AV, Akopyan AV. Combined Heterogeneous Catalyst Based on Titanium Oxide for Highly Efficient Oxidative Desulfurization of Model Fuels. ACS OMEGA 2022; 7:48349-48360. [PMID: 36591125 PMCID: PMC9798520 DOI: 10.1021/acsomega.2c06568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
In this work, new heterogeneous Mo-containing catalysts based on sulfonic titanium dioxide were developed for the oxidation of sulfur-containing model feed. The synergistic effect of molybdenum and sulfonic group modifiers allows for enhancing catalytic activity in dibenzothiophene oxidative transformation, and a strong interaction between support and active component for thus obtained catalysts provides increased stability for leaching. For the selected optimal conditions, the Mo/TiO2-SO3H catalyst exhibited 100% DBT conversion for 10 min (1 wt % catalyst, molar ratio of H2O2:DBT, 2:1; 80 °C). Complete oxidation of DBT in the presence of the synthesized catalyst is achieved when using a stoichiometric amount of oxidizing agent, which indicates its high selectivity. The enhanced stability for metal leaching was proved in recycling tests, where the catalyst was operated for seven oxidation cycles without regeneration with retainable activity in DBT-containing model feed oxidation with hydrogen peroxide under mild reaction conditions. In 30 min of the reaction (H2O2:S = 2:1 (mol), 0.5% catalyst, 5 mL of acetonitrile, 80 °C), it was possible to reduce the content of sulfur compounds in the diesel fraction by 88% (from 5600 to 600 ppm).
Collapse
|
17
|
Liu Y, Zhou Z, Li Y, Qin J, Wang X, Lu C, Wu W. Efficient Removal of Dibenzothiophene (DBT) over WO3–Mo–Al Catalysts in the Extractive Catalytic Oxidative Desulfurization (ECODS) System. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422120329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Jiang W, An X, Xiao J, Yang Z, Liu J, Chen H, Li H, Zhu W, Li H, Dai S. Enhanced Oxygen Activation Achieved by Robust Single Chromium Atom-Derived Catalysts in Aerobic Oxidative Desulfurization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Jiang
- Institute for Energy Research, School of Chemical and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xin An
- Institute for Energy Research, School of Chemical and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jin Xiao
- Institute for Energy Research, School of Chemical and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jixing Liu
- Institute for Energy Research, School of Chemical and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hao Chen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hongping Li
- Institute for Energy Research, School of Chemical and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Wenshuai Zhu
- Institute for Energy Research, School of Chemical and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Huaming Li
- Institute for Energy Research, School of Chemical and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
19
|
Wu P, Liu P, Chen L, Ma W, Zhu L, Liu M, He J, Lu L, Chao Y, Zhu W. Synergistic Effect of Au–Cu Alloy Nanoparticles on TiO 2 for Efficient Aerobic Catalytic Oxidative Desulfurization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Peiwen Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Penghui Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Linlin Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenhui Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Linhua Zhu
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Mingyang Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jing He
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Linjie Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanhong Chao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
20
|
Ji H, Liu S, Shi H, Wang W. Phosphomolybdic acid-based sulfur-containing metal–organic framework as an efficient catalyst for dibenzothiophene oxidative desulfurization. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2039142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Haifeng Ji
- School of Petroleum and Chemical Engineering, Jilin Institute of Chemical Technology, Jilin, People’s Republic of China
| | - Shuting Liu
- School of Petroleum and Chemical Engineering, Jilin Institute of Chemical Technology, Jilin, People’s Republic of China
| | - Hongfei Shi
- School of Petroleum and Chemical Engineering, Jilin Institute of Chemical Technology, Jilin, People’s Republic of China
| | - Weidong Wang
- School of Chemical Engineering and Resource Recycling, Wuzhou University, Wuzhou, People’s Republic of China
| |
Collapse
|
21
|
Ma L, Guo F, Ma JF. Two Cu( i)-based inorganic–organic complexes assembled with polyoxometalate and thiacalix[4]arene for efficient catalytic reactions. NEW J CHEM 2022. [DOI: 10.1039/d2nj00290f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two Cu(i)-based inorganic–organic complexes were synthesized, which can be used as high-efficiency heterogeneous catalysts for ODS and AAC reactions, respectively.
Collapse
Affiliation(s)
- Le Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Feifan Guo
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jian-Fang Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
22
|
Akopyan AV, Kulikov LA, Polikarpova PD, Shlenova AO, Anisimov AV, Maximov AL, Karakhanov EA. Metal-Free Oxidative Desulfurization Catalysts Based on Porous Aromatic Frameworks. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Argam V. Akopyan
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Leonid A. Kulikov
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Polina D. Polikarpova
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Anna O. Shlenova
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Alexander V. Anisimov
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Anton L. Maximov
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
- A.V.Topchiev Institute of Petrochemical Synthesis, 29 Leninsky Prospect, 119991 Moscow, Russia
| | - Eduard A. Karakhanov
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| |
Collapse
|
23
|
Eight-membered ring petal-shaped V8 cluster: An efficient heterogeneous catalyst for selective sulfur oxidation. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Wang XL, Zhang JY, Chang ZH, Zhang Z, Wang X, Lin HY, Cui ZW. α-γ-Type [Mo 8O 26] 4--Containing Metal-Organic Complex Possessing Efficient Catalytic Activity toward the Oxidation of Thioether Derivatives. Inorg Chem 2021; 60:3331-3337. [PMID: 33543933 DOI: 10.1021/acs.inorgchem.0c03738] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this work, a new α-γ-type [Mo8O26]4- anion was first synthesized and characterized by single-crystal X-ray diffraction analysis and was obtained by introducing molybdate to the synthesis of metal-organic complex (MOC) under hydrothermal conditions. An octamolybdate-based MOC, namely, {[Cu8(H2O)6](dpyh)4(α-γ-Mo8O26) }·(β-Mo8O26)·8.5H2O (H2dpyh = N,N-bis(3-pyrazolamide)-1,2-hexahydrobenzene), was obtained. The α-γ-type [Mo8O26]4- anion was composed of four MoO6 octahedra and four MoO5 trigonal bipyramids by sharing their edges and corners. The title complex exhibited a 1D structure in which an α-γ-type [Mo8O26]4- anion was connected with [Cu4(dpyh)2] units in a staggered manner. Under optimized conditions, complex 1 as the catalyst can achieve a highly efficient conversion (more than 99%) of thioanisole within 30 min and above 99% selectivity toward sulfoxide. Furthermore, efficient catalytic oxidation of thioether derivatives was also performed with 1 as the catalyst. In addition, the stable electrochemical sensing performance and adsorption capacity toward organic dyes were tested.
Collapse
Affiliation(s)
- Xiu Li Wang
- Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121000, P. R. China
| | - Jing Yuan Zhang
- Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121000, P. R. China
| | - Zhi Han Chang
- Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121000, P. R. China
| | - Zhong Zhang
- Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121000, P. R. China
| | - Xiang Wang
- Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121000, P. R. China
| | - Hong Yan Lin
- Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121000, P. R. China
| | - Zi Wei Cui
- Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121000, P. R. China
| |
Collapse
|
25
|
He J, Jia G, Wu P, Wu Y, Li H, Lu L, Yu Z, Zhou S, Zhu W, Li H. Engineering Highly Dispersed Pt Species by Defects for Boosting the Reactive Desulfurization Performance. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jing He
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Guangyu Jia
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Peiwen Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Yingcheng Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Hongping Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Linjie Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Zhendong Yu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - ShuaiShuai Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| |
Collapse
|
26
|
Li J, Du P, Liu YY, Ma JF. Assembly of polyoxometalate-thiacalix[4]arene-based inorganic-organic hybrids as efficient catalytic oxidation desulfurization catalysts. Dalton Trans 2021; 50:1349-1356. [PMID: 33416817 DOI: 10.1039/d0dt04097e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly of polyoxometalates, Ni(ii)/Ag(i) cations and tetra-[5-(mercapto)-1-methyltetrazole]-thiacalix[4]arene (L) yielded three inorganic-organic hybrids, namely, [Ni3L2(CH3OH)6(H2O)4][PMo12O40]2·3CH3OH·2H2O (1), [Ni3L2(CH3OH)6(H2O)4][PW12O40]2·3CH3OH·2H2O (2) and [Ag3L(PMo12O40)] (3). In hybrids (1) and (2), Ni(ii) cations are linked by L ligands to produce layered frameworks, and H bonds among the [PMo12O40]3-/[PW12O40]3- anions and L ligands lengthen the structures to form 3D supramolecular architectures. Hybrid (3) exhibits a 3D architecture, of which Ag(i) cations not only coordinated with the N and O atoms of L ligands and [PMo12O40]3- anions simultaneously, but also connected each other by Ag-Ag interactions. It is worth mentioning that 1 and 3 as recyclable catalysts show excellent heterogeneous catalytic activity in oxidation desulfurization reactions.
Collapse
Affiliation(s)
- Jie Li
- Key Lab of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Peng Du
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Ying-Ying Liu
- Key Lab of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Jian-Fang Ma
- Key Lab of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
27
|
Piao W, Li Z, Li C, Park JS, Lee JH, Li Z, Kim KY, Jin LY, Kim JM, Jin M. Efficient and reusable ordered mesoporous WO x/SnO 2 catalyst for oxidative desulfurization of dibenzothiophene. RSC Adv 2021; 11:27453-27460. [PMID: 35480669 PMCID: PMC9037815 DOI: 10.1039/d1ra04957g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
The oxidative desulfurization (ODS) of organic sulfur compounds over tungsten oxide supported on highly ordered mesoporous SnO2 (WOx/meso-SnO2) was investigated. A series of WOx/meso-SnO2 with WOx contents from 10 wt% to 30 wt%, were prepared by conventional wet impregnation. The physico-chemical properties of the WOx/meso-SnO2 catalysts were characterized by X-ray diffraction (XRD), N2 adsorption–desorption isotherms, electron microscopy, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and the temperature-programmed reduction of hydrogen (H2-TPR). The characterization results indicated that these catalysts possessed mesoporous structures with uniform pores, high specific surface areas, and well-dispersed polyoxotungstate species on the surface of meso-SnO2 support. The ODS performances were evaluated in a biphasic system (model oil/acetonitrile, Sinitial = 2000 ppm), using H2O2 as an oxidant, and acetonitrile as an extractant. Dibenzothiophene (DBT) in the model oil was removed completely within 60 min at 50 °C using 20 wt% WOx/meso-SnO2 catalyst. Additionally, the effect of reaction temperature, H2O2/DBT molar ratio, amount of catalyst and different sulfur-containing substrates on the catalytic performances were also investigated in detail. More importantly, the 20 wt% WOx/meso-SnO2 catalyst exhibited 100% surfur-removal efficiency without any regeneration process, even after six times recycling. The highly ordered mesoporous WOx/meso-SnO2 showed excellent catalytic activity and reusability in removing dibenzothiophene (DBT).![]()
Collapse
Affiliation(s)
- Wenxiang Piao
- Department of Chemistry, Park Road 977, Yanji City, Jilin Province 133002, P. R. China
| | - Zhenghua Li
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Chengbin Li
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Jin Seo Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Jung-ho Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Zhengyang Li
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Ki Yeong Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Long Yi Jin
- Department of Chemistry, Park Road 977, Yanji City, Jilin Province 133002, P. R. China
| | - Ji Man Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Mingshi Jin
- Department of Chemistry, Park Road 977, Yanji City, Jilin Province 133002, P. R. China
| |
Collapse
|
28
|
Li YX, Ji YN, Mao SX, Jin MM, Liu XQ, Sun LB. Construction of a superhydrophobic microenvironment via polystyrene coating: an unexpected way to stabilize Cu I against oxidation. Inorg Chem Front 2021. [DOI: 10.1039/d1qi01050f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A superhydrophobic microenvironment in MIL-101(Cr) was constructed via coating polystyrene, resulting in improved CuI stability and adsorptive desulfurization performance.
Collapse
Affiliation(s)
- Yu-Xia Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yu-Nong Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Shi-Xian Mao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Meng-Meng Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
29
|
Liu Y, Zuo P, Wang F, Lv Y, Wang R, Jiao W. Extraction combined oxidation desulfurization of dibenzothiophene using polyoxometalate-supported magnetic chitosan microspheres. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Wang H, Tang M, Shi F, Ding R, Wang L, Wu J, Li X, Liu Z, Lv B. Amorphous Cr 2WO 6-Modified WO 3 Nanowires with a Large Specific Surface Area and Rich Lewis Acid Sites: A Highly Efficient Catalyst for Oxidative Desulfurization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38140-38152. [PMID: 32846487 DOI: 10.1021/acsami.0c10118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oxidative desulfurization (ODS) of fuel oils is of great significance for environmental protection, and the development of efficient ODS heterogeneous catalysts is highly desired. Herein, we have designed and synthesized a novel material of amorphous Cr2WO6-modified WO3 (a-Cr2WO6/WO3) nanowires (3-6 nm) with a large specific surface area of 289.5 m2·g-1 and rich Lewis acid sites. The formation of such a unique nanowire is attributed to the adsorption of Cr3+ cations on non-(001) planes of WO3. In the ODS process, the a-Cr2WO6/WO3 nanowires can efficiently oxidize benzothiophene (BT), dibenzothiophene (DBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT) to their corresponding sulfones in a quasi-microemulsion reaction system and possess the highest activity (Ea = 55.4 kJ/mol) for DBT: 99.0% of 15,000 ppm DBT with 2600 ppm S can be removed (70 °C, H2O2 as the oxidant). The improvement in ODS activity from most of WO3 catalysts is owing to the sufficient active sites and enhanced adsorption of DBT on the basis of structural features of a-Cr2WO6/WO3 nanowires. Combined with free radical capture experiments, a possible ODS mechanism of W(O2) peroxotungstate route based on surface -OH groups is reasonably proposed. Moreover, the a-Cr2WO6/WO3 nanowires have good stability and can be synthesized on a large scale, suggesting its potential applications as an efficient heterogeneous catalyst.
Collapse
Affiliation(s)
- Huixiang Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Mingxing Tang
- Laboratory of Applied Catalysis and Green Chemical Engineering, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Fenglei Shi
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruimin Ding
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Liancheng Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuekuan Li
- Laboratory of Applied Catalysis and Green Chemical Engineering, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Zhong Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Baoliang Lv
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|