1
|
Zhang D, Chen H, Zhang Y, Yang J, Chen Q, Wu J, Liu Y, Zhao C, Tang Y, Zheng J. Antifreezing hydrogels: from mechanisms and strategies to applications. Chem Soc Rev 2025. [PMID: 40395069 DOI: 10.1039/d4cs00718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Antifreezing hydrogels have emerged as an innovative solution for maintaining functional performance and mechanical integrity in subzero environments, offering a robust alternative to traditional water-free antifreezing materials that often fail under wet and cold conditions. These water-rich hydrogels leverage their porous, crosslinked, polymeric networks, which serve as the structural basis for implementing two parallel strategies: the incorporation of antifreezing additives (peptides/proteins, salts, ionic liquids, and organics) and the meticulous engineering of polymer systems and network structures for manipulating the water-ice phase equilibrium to significantly enhance antifreezing properties. This review synthesizes recent findings to provide a fundamental overview of the important advancements in antifreezing hydrogels, focusing on their designs, mechanisms, performances, and functional applications. Various types of antifreezing hydrogels have been developed, utilizing strategies like the incorporation of antifreeze agents, use of strongly water-bound polymers, and design of highly crosslinked networks to illustrate different antifreezing mechanisms: freezing point depression, ice recrystallization inhibition, and network freezing inhibition. This review also explores the diverse functions of antifreezing hydrogels in biomedical devices, soft robotics, flexible electronics, food industry, and environmental engineering. Finally, this review concludes with future directions, emphasizing the potential of integrating machine learning and advanced molecular simulations into materials design. This strategic vision is aimed at promoting continuous innovation and progress in the rapidly evolving field of antifreezing hydrogels.
Collapse
Affiliation(s)
- Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Hong Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Jintao Yang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 352001, China
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Chao Zhao
- Deptartment of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
2
|
Sun C, Zhang X, Yang Y, Fu J, Xu L. Room-temperature phosphorescent materials with Clusteroluminescence mechanism and applications from renewable resource of Xanthan gum derivatives. Int J Biol Macromol 2025; 307:142328. [PMID: 40118406 DOI: 10.1016/j.ijbiomac.2025.142328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/27/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
To face the energy crisis and global warming caused by the massive consumption of fossil resources, researchers worldwide are exploring new renewable resources to achieve sustainable development in future society. Based on this, renewable biomass from nature resource is expected to play a crucial role in low-carbon development. In this work, new renewable biomass of aggregation-induced emission (AIE) compound of cysteine based on Xanthan gum (Xag-Cys) derivatives with Clusteroluminescence mechanism and room-temperature phosphorescent (RTP) property was studied. Furthermore, it has the potential applications values in information encryption storage, moreover, it can also be as biosensor to detecting the concentration of H2S, GSH which used to diagnosing and monitoring of tumor cell in bioimaging.
Collapse
Affiliation(s)
- Chihe Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xiangyu Zhang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou, Guangdong 510640, PR China
| | - Yongyan Yang
- Applied Chemistry, College of Chemistry, Jilin University, Changchun, 2699 Qianjin Street, 130012, PR China
| | - Jiaxu Fu
- Shenyang Sinochem Agrochemicals R&D Co., Ltd. Shenyang, No. 8-1. PR China
| | - Lifeng Xu
- Institute of Health Sciences, China Medical University, Shenyang, Puhe Road, 110122, 77, PR China.
| |
Collapse
|
3
|
Ye C, Zhang H, Yang Y, Shan Y, Fu J, Gao W, Ren J, Cao L, Ling S. Sustainable Silk Fibroin Ionic Touch Screens for Flexible Biodegradable Electronics with Integrated AI and IoT Functionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412972. [PMID: 39648667 DOI: 10.1002/adma.202412972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/23/2024] [Indexed: 12/10/2024]
Abstract
The increasing prevalence of electronic devices has led to a significant rise in electronic waste (e-waste), necessitating the development of sustainable materials for flexible electronics. In this study, silk fibroin ionic touch screen (SFITS) is introduced, a new platform integrating natural silk fibroin (SF) with ionic conductors to create highly elastic, environmentally stable, and multifunctional touch interfaces. Through a humidity-induced crystallization strategy, the molecular structure of SF is precisely controlled to achieve a balanced combination of mechanical strength, electrical conductivity, and biodegradability. The assembly and operational reliability of SFITS are demonstrated under various environmental conditions, along with their reusability through green recycling methods. Additionally, the intelligent design and application of SFITS are explored by incorporating Internet of Things (IoT) and artificial intelligence (AI) technologies. This integration enables real-time touch sensing, handwriting recognition, and advanced human-computer interactions. The versatility of SFITS is further exemplified through applications in remote control systems, molecular model generation, and virtual reality interfaces. The findings highlight the potential of sustainable ionic conductors in next-generation flexible electronics, offering a path toward greener and more intelligent device designs.
Collapse
Affiliation(s)
- Chao Ye
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Hao Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Yunhao Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Yicheng Shan
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Junhao Fu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Wenli Gao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Leitao Cao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
4
|
Bai M, Chen Y, Zhu L, Li Y, Ma T, Li Y, Qin M, Wang W, Cao Y, Xue B. Bioinspired adaptive lipid-integrated bilayer coating for enhancing dynamic water retention in hydrogel-based flexible sensors. Nat Commun 2024; 15:10569. [PMID: 39632850 PMCID: PMC11618655 DOI: 10.1038/s41467-024-54879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
While hydrogel-based flexible sensors find extensive applications in fields such as medicine and robotics, their performance can be hindered by the rapid evaporation of water, leading to diminished sensitivity and mechanical durability. Despite the exploration of some effective solutions, such as introducing organic solvents, electrolytes, and elastomer composites, these approaches still suffer from problems including diminished conductivity, interface misalignment, and insufficient protection under dynamic conditions. Inspired by cell membrane structures, we developed an adaptive lipid-integrated bilayer coating (ALIBC) to enhance water retention in hydrogel-based sensors. Lipid layers and long-chain amphiphilic molecules are used as compact coating and anchoring agents on the hydrogel surface, mimicking the roles of lipids and membrane proteins in cell membranes, while spare lipids from aggregates within hydrogels can migrate to the surface to combat dehydration under deformation. This lipid-integrated bilayer coating prevents the water evaporation of hydrogels at both static and dynamic states without affecting the inherent flexibility, conductivity, and no cytotoxicity. Hydrogel-based sensors with ALIBC exhibited significantly enhanced performance in conditions of body temperature, extensive deformation, and long-term dynamic sensing. This work presents a general approach for precisely controlling the water-retaining capacity of hydrogels and hydrogel-based sensors without compromising their intrinsic physical properties.
Collapse
Affiliation(s)
- Ming Bai
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Yanru Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Liyang Zhu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 219 Ningliu road, Nanjing, China
| | - Tingting Ma
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Shen H, Li M, Cui W, Ran R. Temperature-Governed Microstructure of Poly(vinyl alcohol) Hydrogels Prepared through Mixed-Solvent-Induced Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62732-62742. [PMID: 39491477 DOI: 10.1021/acsami.4c14907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The formation of phase-separated structures in hydrogels plays a crucial role in determining their optical and mechanical properties. Traditionally, phase-separated hydrogels are prepared through a two-step process involving initial hydrogel synthesis followed by post-treatment. In this study, we present an approach for temperature-governed phase separation microstructure modulation in hydrogels, harnessing the cononsolvency effect. This method allows the phase-separated structure to develop during hydrogel synthesis, significantly simplifying the preparation process. Importantly, we found that the preparation temperature has a substantial effect on the internal structure of the phase-separated hydrogel. We systematically investigated how the temperature influences the phase structure, optical properties, and mechanical performance of these hydrogels. The resulting hydrogels demonstrate excellent moisturizing and antifreezing capabilities. Additionally, the incorporation of sodium chloride imparts remarkable electrical conductivity to the hydrogels, making them suitable for strain sensing applications across a wide temperature range.
Collapse
Affiliation(s)
- Huanwei Shen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Min Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rong Ran
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Zhu N, Teng Q, Xing Y, Wang X, Zhang Z, Wan X. Biomass Hydrogel Electrolytes toward Green and Durable Supercapacitors: Enhancing Flame Retardancy, Low-Temperature Self-Healing, Self-Adhesion, and Long-Term Cycling Stability. NANO LETTERS 2024; 24:12442-12451. [PMID: 39316758 DOI: 10.1021/acs.nanolett.4c02852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Hydrogels have shown promise as quasi-solid-state electrolytes for flexible supercapacitors but face challenges such as poor self-repair, unstable electrode adhesion, limited temperature range, and flammability. Herein, an all-round green hydrogel electrolyte (silk nanofibers (SNFs)/peach gum polysaccharide (PGP)/borax/glycerol (SPBG)-ZnSO4) addresses these issues through dynamic cross-linking of peach gum polysaccharide and silk nanofibers with borax, integrating varieties of key property including high water retention, broad temperature tolerance (-20 to 90 °C), excellent self-adhesion (60.7 kPa for carbon cloth electrodes), satisfactory flame retardancy (limited oxygen index of 51%), low-temperature self-healing (-20 °C), and good ionic conductivity (7.68 mS cm-1). The resulting supercapacitor exhibits excellent cycling stability with 98.2% capacitance retention after 40,000 long cycles at 25 °C. The specific capacitance retention remains above 90% even after 15,000 cycles at high/low temperatures (50 °C/-20 °C). Furthermore, the flexible supercapacitor demonstrates stable performance under mechanical stimuli (180° bending and perforation), highlighting the potential of biomass hydrogels in flexible energy storage devices.
Collapse
Affiliation(s)
- Nannan Zhu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qijin Teng
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yibin Xing
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiyao Wang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zuocai Zhang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xuejuan Wan
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
7
|
Yang Z, Zhao Z, Yang D, Zhu L, Qiu Z, Wu Y, Lan C, Jiang W, Li G, Zhong B, Wei J, Liu T, Xie H. High ion barrier hydrogel with excellent toughness achieved by directional structures. RSC Adv 2024; 14:27555-27564. [PMID: 39221123 PMCID: PMC11362914 DOI: 10.1039/d4ra04822a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Owing to their nontoxicity, environmental friendliness, and high biocompatibility, physically cross-linked hydrogels have become popular research materials; however, their high water content and high free volume, along with the weak bonding interactions inherent to ordinary physically cross-linked hydrogels, limit their application in fields such as flexible devices, packaging materials, and substance transport regulation. Here, a structural barrier approach based on directional freezing-assisted salting out was proposed, and the directional structure significantly enhanced the barrier performance of the hydrogel. When the direction of substance diffusion was perpendicular to the pore channel structure of the directional freezing-PVA hydrogel (DFPVA), the Cl- transmission rate was 57.2% for the uniform freezing-PVA hydrogel (UFPVA). By adjusting the concentration of the salting-out solution and the salting-out time, the crystallinity and crystal domain size of the hydrogel could be further changed, optimizing and regulating the barrier performance of the hydrogel, with the best Cl- unit permeability being 36.02 mg mm per cm2 per day. Additionally, DFPVA had excellent mechanical properties (stress of 6.47 ± 1.04 MPa, strain of 625.85 ± 61.58%, toughness of 25.77 ± 3.72 MPa). Due to the barrier and mechanical properties of the direct structure, DFPVA is suitable as a drug carrier for slow drug release in vitro.
Collapse
Affiliation(s)
- Zezhou Yang
- State Key Laboratory of Intelligent Construction and Healthy Operation, Maintenance of Deep Underground Engineering, Institute of New Energy and Low-Carbon Technology, Sichuan University Chengdu 610065 Sichuan China
| | - Zhiyu Zhao
- State Key Laboratory of Intelligent Construction and Healthy Operation, Maintenance of Deep Underground Engineering, Institute of New Energy and Low-Carbon Technology, Sichuan University Chengdu 610065 Sichuan China
| | - Dongsheng Yang
- College of Polymer Science and Engineering, Sichuan University Chengdu 610065 Sichuan China
| | - Liangyu Zhu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University Chengdu 610500 Sichuan China
| | - Zirou Qiu
- State Key Laboratory of Intelligent Construction and Healthy Operation, Maintenance of Deep Underground Engineering, Institute of New Energy and Low-Carbon Technology, Sichuan University Chengdu 610065 Sichuan China
| | - Yifan Wu
- State Key Laboratory of Intelligent Construction and Healthy Operation, Maintenance of Deep Underground Engineering, Institute of New Energy and Low-Carbon Technology, Sichuan University Chengdu 610065 Sichuan China
| | - Cheng Lan
- State Key Laboratory of Intelligent Construction and Healthy Operation, Maintenance of Deep Underground Engineering, Institute of New Energy and Low-Carbon Technology, Sichuan University Chengdu 610065 Sichuan China
| | - Wenchuan Jiang
- State Key Laboratory of Intelligent Construction and Healthy Operation, Maintenance of Deep Underground Engineering, Institute of New Energy and Low-Carbon Technology, Sichuan University Chengdu 610065 Sichuan China
| | - Geng Li
- Dongfang Electric Qineng (Shenzhen) Technology Co., Ltd Shenzhen 518000 Guangzhou China
| | - Bin Zhong
- Dongfang Electric Qineng (Shenzhen) Technology Co., Ltd Shenzhen 518000 Guangzhou China
| | - Jin Wei
- Dongfang Electric Qineng (Shenzhen) Technology Co., Ltd Shenzhen 518000 Guangzhou China
| | - Tao Liu
- State Key Laboratory of Intelligent Construction and Healthy Operation, Maintenance of Deep Underground Engineering, Institute of New Energy and Low-Carbon Technology, Sichuan University Chengdu 610065 Sichuan China
| | - Heping Xie
- State Key Laboratory of Intelligent Construction and Healthy Operation, Maintenance of Deep Underground Engineering, Institute of New Energy and Low-Carbon Technology, Sichuan University Chengdu 610065 Sichuan China
| |
Collapse
|
8
|
Liu X, Ostrovsky-Snider N, Lo Presti M, Kim T, Guidetti G, Omenetto FG. Use of Silk Fibroin Material Composites for Green, Flexible Supercapacitors. ACS Biomater Sci Eng 2024; 10:5390-5398. [PMID: 38991039 DOI: 10.1021/acsbiomaterials.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Within the context of seeking eco-friendly and readily available materials for energy storage, there is a pressing demand for energy storage solutions that employ environmentally sustainable, high-performance, and adaptable constituents. Specifically, such materials are essential for use in wearable technology, smart sensors, and implantable medical devices, whereas, more broadly, their use plays a pivotal role in shaping their efficiency and ecological footprint. Here, we demonstrate an entirely biopolymer-based supercapacitor with a remarkable performance, achieving a capacitance greater than 0.2 F cm-2 at a charge-discharge current of 10 mA cm-2 with 94% capacitance retention after 20,000 cycles. The supercapacitor is composed of three distinct silk fibroin (SF) composite materials, namely, photo-cross-linkable SF (Sil-MA) hydrogel, SF-polydopamine (SF-PDA), and SF bioplastic, to create a gel electrolyte, electrode binder, and encapsulation, respectively. Together, these elements form a mechanically and electrochemically robust skeleton for biofriendly energy storage devices. Moreover, these biomaterial-based supercapacitor devices show stretchability, flexibility, and compressibility while maintaining their electrochemical performance. The biomaterials and fabrication techniques presented can serve as a foundation for investigating various aqueous electrochemical energy storage systems, especially for emerging applications in wearable electronics and environmentally friendly material systems.
Collapse
Affiliation(s)
- Xuelian Liu
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Nicholas Ostrovsky-Snider
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Marco Lo Presti
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Taehoon Kim
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Giulia Guidetti
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Fiorenzo G Omenetto
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Department of Physics, Tufts University, Medford, Massachusetts 02155, United States
- Laboratory for Living Devices, Tufts University, Medford, Massachusetts 02155, United States
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
9
|
Oz Y, Roy A, Jain S, Zheng Y, Mahmood E, Baidya A, Annabi N. Designing a Naturally Inspired Conductive Copolymer to Engineer Wearable Bioadhesives for Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36002-36016. [PMID: 38954606 DOI: 10.1021/acsami.4c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The design of adhesive and conductive soft hydrogels using biopolymers with tunable mechanical properties has received significant interest in the field of wearable sensors for detecting human motions. These hydrogels are primarily fabricated through the modification of biopolymers to introduce cross-linking sites, the conjugation of adhesive components, and the incorporation of conductive materials into the hydrogel network. The development of a multifunctional copolymer that integrates adhesive and conductive properties within a single polymer chain with suitable cross-linking sites eliminates the need for biopolymer modification and the addition of extra conductive and adhesive components. In this study, we synthesized a copolymer based on poly([2-(methacryloyloxy)ethyl] trimethylammonium chloride-co-dopamine methacrylamide) (p(METAC-DMA)) using a controlled radical polymerization, allowing for the efficient conjugation of both adhesive and conductive units within a single polymer chain. Subsequently, our multifunctional hydrogel named Gel-MD was fabricated by mixing the p(METAC-DMA) copolymer with non-modified gelatin in which cross-linking took place in an oxidative environment. We confirmed the biocompatibility of the Gel-MD hydrogel through in vitro studies using NIH 3T3 cells as well as in vivo subcutaneous implantation in rats. Furthermore, the Gel-MD hydrogel was effective and sensitive in detecting various human motions, making it a promising wearable sensor for health monitoring and diagnosis.
Collapse
Affiliation(s)
- Yavuz Oz
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Edrees Mahmood
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
10
|
Wu S, Liu Z, Gong C, Li W, Xu S, Wen R, Feng W, Qiu Z, Yan Y. Spider-silk-inspired strong and tough hydrogel fibers with anti-freezing and water retention properties. Nat Commun 2024; 15:4441. [PMID: 38789409 PMCID: PMC11126733 DOI: 10.1038/s41467-024-48745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Ideal hydrogel fibers with high toughness and environmental tolerance are indispensable for their long-term application in flexible electronics as actuating and sensing elements. However, current hydrogel fibers exhibit poor mechanical properties and environmental instability due to their intrinsically weak molecular (chain) interactions. Inspired by the multilevel adjustment of spider silk network structure by ions, bionic hydrogel fibers with elaborated ionic crosslinking and crystalline domains are constructed. Bionic hydrogel fibers show a toughness of 162.25 ± 21.99 megajoules per cubic meter, comparable to that of spider silks. The demonstrated bionic structural engineering strategy can be generalized to other polymers and inorganic salts for fabricating hydrogel fibers with broadly tunable mechanical properties. In addition, the introduction of inorganic salt/glycerol/water ternary solvent during constructing bionic structures endows hydrogel fibers with anti-freezing, water retention, and self-regeneration properties. This work provides ideas to fabricate hydrogel fibers with high mechanical properties and stability for flexible electronics.
Collapse
Affiliation(s)
- Shaoji Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Zhao Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Caihong Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Wanjiang Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Sijia Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Rui Wen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Wen Feng
- Guangdong Medical Products Administration Key Laboratory for Quality Research and Evaluation of Medical Textile Products, Guangzhou, 511447, PR China.
| | - Zhiming Qiu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Yurong Yan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China.
- Key Lab of Guangdong High Property & Functional Polymer Materials, Guangzhou, 510640, PR China.
| |
Collapse
|
11
|
Zhou B, Luo F, Liu Y, Shao Z. Engineering a High-Strength and Superior-Electrolyte-Wettability Silk Fibroin-Based Gel Interface Achieving Dendrite-Free Zn Anode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18927-18936. [PMID: 38563418 DOI: 10.1021/acsami.4c01004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Zn metal anode is confronted with notorious Zn dendrite growth caused by inhomogeneous Zn2+ deposition, rampant dendrite growth, and serious interface side reactions, which significantly hinder their large-scale implication. Interface modification engineering is a powerful strategy to improve the Zn metal anode by regulating Zn2+ deposition behavior, suppressing dendrite formation, and protecting the anode from electrolyte corrosion. Herein, we have designed a high-strength and superior-electrolyte-wettability composite gel protective layer based on silk fibroin (SF) and ionic liquids (ILs) on the Zn anode surface by a straightforward spin-coating strategy. The Zn ion transport kinetics and mechanical properties were further improved by following the incubation process to construct a more well-ordered β-sheet structure. Consequently, the incubated composite gel coating serves as a command station, guiding the Zn ion's preferential growth along the (002) plane, resulting in a smooth and uniform deposition morphology. Driven by these improvements, the zinc anode modified with this composite gel exhibits a remarkably long-term cycling lifespan up to 2200 h at 2 mA cm-2, while also displaying superior rate capability. This study represents a landmark achievement in the realm of electrochemical science, delineating a clear pathway toward the realization of a highly reversible and enduring Zn anode.
Collapse
Affiliation(s)
- Bin Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Feiyu Luo
- Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yi Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
- Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
12
|
Yang G, Chen X, Shi W, Chen N, Liu Y, Zhang B, Shao Z. Facile Preparation of a Photo-Cross-Linked Silk Fibroin-Poly Ionic Liquid Hydrogel with Antifreezing and Ion Conductive Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1543-1552. [PMID: 38163251 DOI: 10.1021/acsami.3c15712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The silk fibroin (SF)/ionic liquid (IL) based hydrogel is a kind of remarkable substrate for flexible devices because of its subzero-temperature elasticity, electrical conductivity, and water retention, although the procedure of the gelation is considered complex and time-consuming. In this work, we introduced an approximate method for the development of novel photo-cross-linked SF/IL hydrogel, that is, SF-IMA/PIL hydrogel via the modification of silk fibroin chain with 2-isocyanatoethyl methacrylate (SF-IMA) in a certain ionic liquid with an unsaturated double bond. The chemical cross-linking between methacrylated SF and IL was triggered by UV light, while the physical cross-linking of the hydrogel was attributed to the β-sheet formation of SF in SF-IMA/IL mixed solution. In addition to being a UV-induced three-dimensional (3D) printable one, the SF-IMA/PIL hydrogel performed significant ionic conductivity between room temperature and -50 °C and water retention within a wide range of relative humidity, which were the featured advantages as the ionic liquid involved. Moreover, the static and dynamic mechanical tests demonstrated that the hydrogel reserved its great elasticity at -50 °C and displayed its stiffness transition temperatures between -100 and -70 °C.
Collapse
Affiliation(s)
- Gongwen Yang
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Xuyang Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Wenjuan Shi
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Ni Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Yi Liu
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Bo Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
13
|
Shang Z, Liu G, Sun Y, Li C, Zhao N, Chen Z, Guo R, Zheng Z, Zhou F, Liu W. Mussel-Inspired Wet-Adhesive Multifunctional Organohydrogel with Extreme Environmental Tolerance for Wearable Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44342-44353. [PMID: 37668314 DOI: 10.1021/acsami.3c10213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
As a flexible artificial material, the conductive hydrogel has broad application prospects in flexible wearable electronics, soft robotics, and biomedical monitoring. However, traditional hydrogels still face many challenges, such as long-term stability, availability in extreme environments, and long-lasting adhesion to the skin surface under sweaty or humid conditions. To circumvent the above issues, one kind of ionic conductive hydrogel was prepared by a simple one-pot method that dissolved chitosan (CS), 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), tannic acid (TA), and 2-methoxy-ethyl acrylate (MEA) into dimethyl sulfoxide (DMSO)/H2O solvent. The resulting hydrogel showed excellent tensile properties (1440%), extreme environmental tolerance (-40-60 °C), adhesion (72 KPa at porcine skin), ionic conductivity (0.87 S m-1), and high-efficiency antibacterial property. Furthermore, the produced organohydrogel strain sensor exhibited high strain sensitivity (GF = 4.07), excellent signal sensing capabilities (human joint movement, microexpression, and sound signals), and long-term cyclic stability (400 cycles). Looking beyond, this work provides a simple and promising strategy for using hydrogel sensors in extreme environments for e-skin, health monitoring, and wearable electronic devices.
Collapse
Affiliation(s)
- Zhenling Shang
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guoqiang Liu
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yue Sun
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chenghao Li
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Nan Zhao
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhuo Chen
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ruisheng Guo
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zijian Zheng
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 00000,SAR, China
| | - Feng Zhou
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Weimin Liu
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
14
|
Su X, Wei L, Xu Z, Qin L, Yang J, Zou Y, Zhao C, Chen L, Hu N. Evaluation and Application of Silk Fibroin Based Biomaterials to Promote Cartilage Regeneration in Osteoarthritis Therapy. Biomedicines 2023; 11:2244. [PMID: 37626740 PMCID: PMC10452428 DOI: 10.3390/biomedicines11082244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by cartilage damage and degeneration. Traditional treatments such as NSAIDs and joint replacement surgery only relieve pain and do not achieve complete cartilage regeneration. Silk fibroin (SF) biomaterials are novel materials that have been widely studied and applied to cartilage regeneration. By mimicking the fibrous structure and biological activity of collagen, SF biomaterials can promote the proliferation and differentiation of chondrocytes and contribute to the formation of new cartilage tissue. In addition, SF biomaterials have good biocompatibility and biodegradability and can be gradually absorbed and metabolized by the human body. Studies in recent years have shown that SF biomaterials have great potential in treating OA and show good clinical efficacy. Therefore, SF biomaterials are expected to be an effective treatment option for promoting cartilage regeneration and repair in patients with OA. This article provides an overview of the biological characteristics of SF, its role in bone and cartilage injuries, and its prospects in clinical applications to provide new perspectives and references for the field of bone and cartilage repair.
Collapse
Affiliation(s)
- Xudong Su
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Wei
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Jianye Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Yinshuang Zou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
15
|
Zhao W, Shao F, Sun F, Su Z, Liu S, Zhang T, Zhu M, Liu Z, Zhou X. Neuron-Inspired Sticky Artificial Spider Silk for Signal Transmission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300876. [PMID: 37327808 DOI: 10.1002/adma.202300876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/01/2023] [Indexed: 06/18/2023]
Abstract
Neurons exhibit excellent signal transmission capacity, which inspire artificial neuron materials for applications in the field of wearable electronics and soft robotics. In addition, the neuron fibers exhibit good mechanical robustness by sticking to the organs, which currently has rarely been studied. Here, a sticky artificial spider silk is developed by employing a proton donor-acceptor (PrDA) hydrogel fiber for application as artificial neuron fibers. Tuning the molecular electrostatic interactions by modulating the sequences of proton donors and acceptors, enables combination of excellent mechanical properties, stickiness, and ion conductivity. In addition, the PrDA hydrogel exhibits high spinning capacity for a wide range of donor-acceptor combinations. The PrDA artificial spider silk would shed light on the design of new generation of artificial neuron materials, bio-electrodes, and artificial synapses.
Collapse
Affiliation(s)
- Weiqiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Fei Shao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Fuqin Sun
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, China
| | - Zihao Su
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Shiyong Liu
- Department of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Ting Zhang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
16
|
Zhang J, Liang Y, Deng Z, Xu H, Zhang H, Guo B, Zhang J. Adhesive Ion-Conducting Hydrogel Strain Sensor with High Sensitivity, Long-Term Stability, and Extreme Temperature Tolerance. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37319345 DOI: 10.1021/acsami.3c03624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ion-conducting hydrogels with excellent flexibility and ductility have great potential in human movements monitoring. However, some obstacles, including a small detection range, low sensitivity, low electrical conductivity, and poor stability under extreme conditions, impede their use as sensors. Herein, an ion-conducting hydrogel comprising acrylamide (AM), lauryl methacrylate (LMA), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), and a water/glycerol binary solvent (named the AM-LMA-AMPS-LiCl (water/glycerol) hydrogel) is designed, which exhibits an enlarged detection range of 0%-1823% and improved transparency. Notably, the ion channel constructed using AMPS and LiCl significantly improves the sensitivity (gauge factor = 22.15 ± 2.86) of the hydrogel. The water/glycerol binary solvent endows the hydrogel with electrical and mechanical stability under extreme conditions (70 and -80 °C). Furthermore, the AM-LMA-AMPS-LiCl (water/glycerol) hydrogel exhibits antifatigue properties for 10 cycles (0%-1000%) because of noncovalent interactions such as hydrophobic interactions and hydrogen bonding. The hydrogel can be used to monitor human movements such as joint bending and perceive subtle discrepancies such as different joint bending speeds and angles, showing its great potential application in human movement monitoring, electronic skin, and wearable devices.
Collapse
Affiliation(s)
- Jiaodi Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuqing Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zexing Deng
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Huiru Xu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hualei Zhang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Zhang
- Institute of Preventive Medicine, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
17
|
Zhao Y, Yang N, Chu X, Sun F, Ali MU, Zhang Y, Yang B, Cai Y, Liu M, Gasparini N, Zheng J, Zhang C, Guo C, Meng H. Wide-Humidity Range Applicable, Anti-Freezing, and Healable Zwitterionic Hydrogels for Ion-Leakage-Free Iontronic Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211617. [PMID: 36921620 DOI: 10.1002/adma.202211617] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/12/2023] [Indexed: 06/02/2023]
Abstract
Hydrogels have entered the spotlight for applications in soft electronics. It is essential and challenging to obtain hydrogels that can function properly under varying environmental circumstances, that is, 30-90% relative humidity (RH) and -20 to 40 °C due to their intrinsic nature to lose and absorb water upon variations in humidity and temperature. In this work, a green solvent, solketal, is introduced into poly 3-dimethyl-2-(2-methylprop-2-enoyloxy)ethyl azaniumyl propane-1-sulfonate (poly(DMAPS)) zwitterionic hydrogels. Compared to glycerol, solketal endows hydrogels with greater possibility for further modification as well as improved water content and mechanical performance consistency over 30-90% RH. Encouragingly, the optimized hydrogel demonstrates its unique merits as a dielectric layer in iontronic sensors, featuring non-leaky ions, high sensitivity (1100 kPa-1 ), wide humidity, and temperature range applicability. A wide-humidity range healable and stretchable electrode is attained by combining the hydrogel substrate with Ag paste. A full-device healable and highly-sensitive sensor is developed. This study is a pioneering work that tackles the broad humidity range applicability issue of hydrogels, and demonstrates the ion-leakage-free ionic skins with zwitterionic dielectrics. The outcomes of the study will considerably promote advancements in the fields of hydrogel electronics and iontronic sensors.
Collapse
Affiliation(s)
- Yiqian Zhao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Na Yang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Xu Chu
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 430072, China
| | - Fuchang Sun
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Muhammad Umair Ali
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Yuan Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Biao Yang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Yulu Cai
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Manyu Liu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Jiaxin Zheng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Chaohong Zhang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Chuanfei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| |
Collapse
|
18
|
Chen M, Wang W, Fang J, Guo P, Liu X, Li G, Li Z, Wang X, Li J, Lei K. Environmentally adaptive polysaccharide-based hydrogels and their applications in extreme conditions: A review. Int J Biol Macromol 2023; 241:124496. [PMID: 37086763 DOI: 10.1016/j.ijbiomac.2023.124496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Polysaccharide hydrogels are one of the most promising hydrogel materials due to their inherent characteristics, including biocompatibility, biodegradability, renewability, and easy modification, and their structure and functional designs have been widely researched to adapt to different application scenarios as well as to broaden their application fields. As typical wet-soft materials, the high water content and water-absorbing ability of polysaccharide-based hydrogels (PHs) are conducive to their wide biomedical applications, such as wound healing, tissue repair, and drug delivery. In addition, along with technological progress, PHs have shown potential application prospects in some high-tech fields, including human-computer interaction, intelligent driving, smart dressing, flexible sensors, etc. However, in practical applications, due to the poor ability of PHs to resist freezing below zero, dehydration at high temperature, and acid-base/swelling-induced deformation in a solution environment, they are prone to lose their wet-soft peculiarities, including structural integrity, injectability, flexibility, transparency, conductivity and other inherent characteristics, which greatly limit their high-tech applications. Hence, reducing their freezing point, enhancing their high-temperature dehydration resistance, and improving their extreme solution tolerance are powerful approaches to endow PHs with multienvironmental adaptability, broadening their application areas. This report systematically reviews the study advances of environmentally adaptive polysaccharide-based hydrogels (EAPHs), comprising anti-icing hydrogels, high temperature/dehydration resistant hydrogels, and acid/base/swelling deformation resistant hydrogels in recent years. First, the construction methods of EAPHs are presented, and the mechanisms and properties of freeze-resistant, high temperature/dehydration-resistant, and acid/base/swelling deformation-resistant adaptations are simply demonstrated. Meanwhile, the features of different strategies to prepare EAPHs as well as the strategies of simultaneously attaining multienvironmental adaptability are reviewed. Then, the applications of extreme EAPHs are summarized, and some meaningful works are well introduced. Finally, the issues and future outlooks of PH environment adaptation research are elucidated.
Collapse
Affiliation(s)
- Meijun Chen
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Weiyi Wang
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Junjun Fang
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Pengshan Guo
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Xin Liu
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Guangda Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Zhao Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Xinling Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Jinghua Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Kun Lei
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China.
| |
Collapse
|
19
|
Xu R, She M, Liu J, Zhao S, Zhao J, Zhang X, Qu L, Tian M. Skin-Friendly and Wearable Iontronic Touch Panel for Virtual-Real Handwriting Interaction. ACS NANO 2023; 17:8293-8302. [PMID: 37074102 DOI: 10.1021/acsnano.2c12612] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Touch panels are deemed as a critical platform for the future of human-computer interaction and metaverse. Recently, stretchable iontronic touch panels have attracted attention due to their superior adhesivity to the human body. However, such adhesion can not be named "real wearable", leading to discomfort for the wearer, such as rashes or itching with long-time wearing. Herein, a skin-friendly and wearable iontronic textile-based touch panel with highly touch-sensing resolution and deformation insensitivity is designed based on an in-suit growing strategy. This textile-based touch panel endows excellent interfacial hydrophilic and biocompatibility with human skin by overcoming the bottlenecks of the hydrogel-based uncomfortable sticky touch interface and low mechanical behavior. The developed touch panel enables handwriting interaction with good mechanical capacity (114 MPa), nearly 4145 times higher than pure hydrogel. More importantly, our touch panel possesses intrinsic insensitivity to wide external loading from the silver fiber (<0.003 g) to even heavy metal block (>10 kg). As proof of concept, the textile-based iontronic touch panel is applied to handwriting interaction, such as a flexible keyboard and wearable sketchpad. This iontronic touch panel with skin-friendly and wearable qualitities is helpful for next-generation wearable interaction electronics.
Collapse
Affiliation(s)
- Ruidong Xu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Minghua She
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jiaxu Liu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shikang Zhao
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jisheng Zhao
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, Shandong 266071, PR China
| |
Collapse
|
20
|
Zhao Z, Hu YP, Liu KY, Yu W, Li GX, Meng CZ, Guo SJ. Recent Development of Self-Powered Tactile Sensors Based on Ionic Hydrogels. Gels 2023; 9:gels9030257. [PMID: 36975706 PMCID: PMC10048595 DOI: 10.3390/gels9030257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrogels are three-dimensional polymer networks with excellent flexibility. In recent years, ionic hydrogels have attracted extensive attention in the development of tactile sensors owing to their unique properties, such as ionic conductivity and mechanical properties. These features enable ionic hydrogel-based tactile sensors with exceptional performance in detecting human body movement and identifying external stimuli. Currently, there is a pressing demand for the development of self-powered tactile sensors that integrate ionic conductors and portable power sources into a single device for practical applications. In this paper, we introduce the basic properties of ionic hydrogels and highlight their application in self-powered sensors working in triboelectric, piezoionic, ionic diode, battery, and thermoelectric modes. We also summarize the current difficulty and prospect the future development of ionic hydrogel self-powered sensors.
Collapse
Affiliation(s)
- Zhen Zhao
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yong-Peng Hu
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Kai-Yang Liu
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Wei Yu
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Guo-Xian Li
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chui-Zhou Meng
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shi-Jie Guo
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
21
|
Mao J, Cao H, Liu J, Zhou X, Fan Q, Wang J. Templated freezing assembly precisely regulates molecular assembly for free-standing centimeter-scale microtextured nanofilms. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1476-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
22
|
Gonzalez-Obeso C, Jane Hartzell E, Albert Scheel R, Kaplan DL. Delivering on the promise of recombinant silk-inspired proteins for drug delivery. Adv Drug Deliv Rev 2023; 192:114622. [PMID: 36414094 PMCID: PMC9812964 DOI: 10.1016/j.addr.2022.114622] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Effective drug delivery is essential for the success of a medical treatment. Polymeric drug delivery systems (DDSs) are preferred over systemic administration of drugs due to their protection capacity, directed release, and reduced side effects. Among the numerous polymer sources, silks and recombinant silks have drawn significant attention over the past decade as DDSs. Native silk is produced from a variety of organisms, which are then used as sources or guides of genetic material for heterologous expression or engineered designs. Recombinant silks bear the outstanding properties of natural silk, such as processability in aqueous solution, self-assembly, drug loading capacity, drug stabilization/protection, and degradability, while incorporating specific properties beneficial for their success as DDS, such as monodispersity and tailored physicochemical properties. Moreover, the on-demand inclusion of sequences that customize the DDS for the specific application enhances efficiency. Often, inclusion of a drug into a DDS is achieved by simple mixing or diffusion and stabilized by non-specific molecular interactions; however, these interactions can be improved by the incorporation of drug-binding peptide sequences. In this review we provide an overview of native sources for silks and silk sequences, as well as the design and formulation of recombinant silk biomaterials as drug delivery systems in a variety of formats, such as films, hydrogels, porous sponges, or particles.
Collapse
Affiliation(s)
- Constancio Gonzalez-Obeso
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Emily Jane Hartzell
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Ryan Albert Scheel
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA.
| |
Collapse
|
23
|
Abdullah T, Su E, Memić A. Designing Silk-Based Cryogels for Biomedical Applications. Biomimetics (Basel) 2022; 8:5. [PMID: 36648791 PMCID: PMC9844337 DOI: 10.3390/biomimetics8010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
There is a need to develop the next generation of medical products that require biomaterials with improved properties. The versatility of various gels has pushed them to the forefront of biomaterials research. Cryogels, a type of gel scaffold made by controlled crosslinking under subzero or freezing temperatures, have great potential to address many current challenges. Unlike their hydrogel counterparts, which are also able to hold large amounts of biologically relevant fluids such as water, cryogels are often characterized by highly dense and crosslinked polymer walls, macroporous structures, and often improved properties. Recently, one biomaterial that has garnered a lot of interest for cryogel fabrication is silk and its derivatives. In this review, we provide a brief overview of silk-based biomaterials and how cryogelation can be used for novel scaffold design. We discuss how various parameters and fabrication strategies can be used to tune the properties of silk-based biomaterials. Finally, we discuss specific biomedical applications of silk-based biomaterials. Ultimately, we aim to demonstrate how the latest advances in silk-based cryogel scaffolds can be used to address challenges in numerous bioengineering disciplines.
Collapse
Affiliation(s)
| | - Esra Su
- Department of Chemistry, Istanbul Technical University, Istanbul 34467, Turkey
- Faculty of Aquatic Sciences, Aquatic Biotechnology, Istanbul University, Istanbul 34134, Turkey
| | - Adnan Memić
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Rong L, Zhao W, Fan Y, Zhou Z, Zhan M, He X, Yuan W, Qian C. Environmentally Stable, Stretchable, Adhesive, and Conductive Organohydrogels with Multiple Dynamic Interactions as High-Performance Strain and Temperature Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55075-55087. [PMID: 36455289 DOI: 10.1021/acsami.2c16919] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nowadays, with the rapid development of artificial intelligence, conductive hydrogel-based sensors play an increasingly vital role in health monitoring and temperature sensing. However, the perfect integration of the environmental stability and applied performance of the hydrogel has always been a challenging and significant problem. Herein, we report an environmentally tolerant, stretchable, adhesive, self-healing conductive gel through multiple dynamic interactions in the water/glycerol/ionic liquids medium, which can be used as a high-performance strain and temperature sensor. The random copolymer poly(acrylic acid-co-acetoacetoxyethyl methacrylate) interacts with the branched poly(ethylene imine) (PEI) and Zr4+ ions via the dynamic covalent enamine bonds, coordinations, and electrostatic interactions to improve stretchable (1300%), compressible, fatigue-resistant (1000 cycles at 50% strain), and self-healing performance (95%, 24 h). The combination of water/glycerol/ionic liquids imparts the resulting gel with excellent electrical conductivity, anti-drying, and anti-freezing performance. By means of the above excellent performance, the gel could be used as the flexible strain or pressure sensor with high sensitivity and stability for the detection of the movement, expression, handwriting, pronouncing, and electrocardiogram (ECG) signals in various models. Meanwhile, the resulting gel can be assembled as the temperature sensor to trace the change of temperature accurately and steadily, which has a wide operating window (0 to 100 °C), an ultralow detection limit (0.2 °C), and high sensitivity (2.1% °C-1). It is believed that the strategy for the multifunction and high-performance gel will blaze a new trail for the smart device in health management, temperature detection, and information transmission under various environmental conditions.
Collapse
Affiliation(s)
- Liduo Rong
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai519000, P. R. China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai519000, P. R. China
| | - Yu Fan
- School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China
| | - Zixuan Zhou
- School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai519000, P. R. China
| | - Xu He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai519000, P. R. China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China
| | - Chunhua Qian
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai200072, P. R. China
| |
Collapse
|
25
|
Haskew MJ, Nikman S, O'Sullivan CE, Galeb HA, Halcovitch NR, Hardy JG, Murphy ST. Mg/Zn metal‐air primary batteries using silk fibroin‐ionic liquid polymer electrolytes. NANO SELECT 2022. [DOI: 10.1002/nano.202200200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Mathew J. Haskew
- School of Engineering Lancaster University Bailrigg Lancaster UK
- Department of Chemistry Lancaster University Faraday Building Bailrigg Lancaster UK
| | - Shahin Nikman
- Department of Chemistry Lancaster University Faraday Building Bailrigg Lancaster UK
| | - Carys E. O'Sullivan
- Department of Chemistry Lancaster University Faraday Building Bailrigg Lancaster UK
| | - Hanaa A. Galeb
- Department of Chemistry Lancaster University Faraday Building Bailrigg Lancaster UK
- Department of Chemistry Science and Arts College, Rabigh Campus King Abdulaziz University Jeddah Saudi Arabia
| | - Nathan R. Halcovitch
- Department of Chemistry Lancaster University Faraday Building Bailrigg Lancaster UK
| | - John G. Hardy
- Department of Chemistry Lancaster University Faraday Building Bailrigg Lancaster UK
- Materials Science Institute Lancaster University Faraday Building, John Creed Avenue Bailrigg Lancaster UK
| | - Samuel T. Murphy
- School of Engineering Lancaster University Bailrigg Lancaster UK
- Materials Science Institute Lancaster University Faraday Building, John Creed Avenue Bailrigg Lancaster UK
| |
Collapse
|
26
|
Ye W, Guo M, Li Q, Wang L, Zhao C, Xiang D, Lai J, Li H, Li Z, Wu Y. High strength, anti‐freezing, and conductive poly(vinyl alcohol)/urea ionic hydrogels as soft sensor. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenhao Ye
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
| | - Meiling Guo
- The Collaborative Innovation Center of Functional Materials and Devices, School of Materials and Environmental Engineering Chengdu Technological University Chengdu China
| | - Qing Li
- School of New Energy and Materials Southwest Petroleum University Chengdu China
| | - Li Wang
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Chuanxia Zhao
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Dong Xiang
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Jingjuan Lai
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Hui Li
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Zhenyu Li
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Yuanpeng Wu
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| |
Collapse
|
27
|
Chen N, Zhang X, Lyu J, Zhao G, Gu K, Xia J, Chen Z, Shao Z. Preparation of a novel regenerated silk fibroin-based hydrogel for extrusion bioprinting. SOFT MATTER 2022; 18:7360-7368. [PMID: 36124911 DOI: 10.1039/d2sm00984f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Three-dimensional (3D) bioprinting technology, allowing rapid prototyping and personalized customization, has received much attention in recent years, while regenerated silk fibroin (RSF) has also been widely investigated for its excellent biocompatibility, processibility, and comprehensive mechanical properties. However, due to the difficulty in curing RSF aqueous solution and the tendency of conformational transition of RSF chains under shearing, it is rather complicated to fabricate RSF-based materials with high mechanical strength through extrusion bioprinting. To solve this problem, a printable hydrogel with thixotropy was prepared from regenerated silk fibroin with high-molecular-weight (HMWRSF) combined with a small amount of hydroxypropyl methylcellulose (HPMC) in urea containing aqueous solution. It was found that the introduction of urea could not only vary the solid content of the hydrogel to benefit the mechanical properties of the 3D-bioprinted pre-cured hydrogels or 3D-bioprinted sponges, but also expand the "printable window" of this system. Indeed, the printability and rheological properties could be modulated by varying the solid content, the heating time, the urea/HMWRSF weight ratio, etc. Moreover, the microstructure of nanospheres stacked in these lyophilized 3D-bioprinted sponges was interesting to observe, which indicated the existence of microhydrogels and both "the reversible network" and "the irreversible network" in this HMWRSF-based pre-cured hydrogel. Like other HMWRSF materials fabricated in other ways, these 3D-bioprinted HMWRSF-based sponges exhibited good cytocompatibility for dental pulp mesenchymal stem cells. This work may inspire the design of functional HMWRSF-based materials by regulating the relationship between structure and properties.
Collapse
Affiliation(s)
- Ni Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | - Xinbo Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Jinyang Lyu
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
| | - Guanglei Zhao
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
| | - Kai Gu
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| | - Jun Xia
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
| | - Zhongchun Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
28
|
Johari N, Khodaei A, Samadikuchaksaraei A, Reis RL, Kundu SC, Moroni L. Ancient fibrous biomaterials from silkworm protein fibroin and spider silk blends: Biomechanical patterns. Acta Biomater 2022; 153:38-67. [PMID: 36126911 DOI: 10.1016/j.actbio.2022.09.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
Silkworm silk protein fibroin and spider silk spidroin are known biocompatible and natural biodegradable polymers in biomedical applications. The presence of β-sheets in silk fibroin and spider spidroin conformation improves their mechanical properties. The strength and toughness of pure recombinant silkworm fibroin and spidroin are relatively low due to reduced molecular weight. Hence, blending is the foremost approach of recent studies to optimize silk fibroin and spidroin's mechanical properties. As summarised in the present review, numerous research investigations evaluate the blending of natural and synthetic polymers. The effects of blending silk fibroin and spidroin with natural and synthetic polymers on the mechanical properties are discussed in this review article. Indeed, combining natural and synthetic polymers with silk fibroin and spidroin changes their conformation and structure, fine-tuning the blends' mechanical properties. STATEMENT OF SIGNIFICANCE: Silkworm and spider silk proteins (silk fibroin and spidroin) are biocompatible and biodegradable natural polymers having different types of biomedical applications. Their mechanical and biological properties may be tuned through various strategies such as blending, conjugating and cross-linking. Blending is the most common method to modify fibroin and spidroin properties on demand, this review article aims to categorize and evaluate the effects of blending fibroin and spidroin with different natural and synthetic polymers. Increased polarity and hydrophilicity end to hydrogen bonding triggered conformational change in fibroin and spidroin blends. The effect of polarity and hydrophilicity of the blending compound is discussed and categorized to a combinatorial, synergistic and indirect impacts. This outlook guides us to choose the blending compounds mindfully as this mixing affects the biochemical and biophysical characteristics of the biomaterials.
Collapse
Affiliation(s)
- Narges Johari
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran.
| | - Azin Khodaei
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, The Netherlands.
| |
Collapse
|
29
|
Sun W, Xu Z, Qiao C, Lv B, Gai L, Ji X, Jiang H, Liu L. Antifreezing Proton Zwitterionic Hydrogel Electrolyte via Ionic Hopping and Grotthuss Transport Mechanism toward Solid Supercapacitor Working at -50 °C. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201679. [PMID: 35882629 PMCID: PMC9507348 DOI: 10.1002/advs.202201679] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Hydrogel electrolyte is widely used in solid energy storage devices because of its high ionic conductivity, environmental friendliness, and non-leakage property. However, hydrogel electrolyte is not resistant to freezing. Here, a high proton conductive zwitterionic hydrogel electrolyte with super conductivity of 1.51 mS cm-1 at -50 °C is fabricated by random copolymerization of acrylamide and zwitterionic monomer in the presence of 1 m H2 SO4 and ethylene glycol (EG). The antifreezing performance and low temperature conductivity are ascribed to hydrogen bonds and ionic bonds between the components and water molecules in the system and can be tuned by changing the monomer ratio and EG contents. The proton hopping migration on the ionic group of the polymer chains and Grotthuss proton transport mechanism are responsible for the high proton conductivity while Grotthuss transport is dominated at the glassy state of the polymer chains. The electrolyte-assembled supercapacitor (SC) offers high specific capacitance of 93.5 F g-1 at 25 °C and 62.0 F g-1 at -50 °C with a capacitance retention of 91.1% and 81.5% after 10 000 cycles, respectively. The SC can even work at -70 °C. The electrolyte outperforms most reported antifreezing hydrogel electrolytes and has high potential in low-temperature devices.
Collapse
Affiliation(s)
- Weigang Sun
- School of Chemistry and Chemical EngineeringState Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Zhen Xu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Congde Qiao
- School of Chemistry and Chemical EngineeringState Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Bingxi Lv
- School of Chemistry and Chemical EngineeringState Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Ligang Gai
- School of Chemistry and Chemical EngineeringState Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Xingxiang Ji
- School of Chemistry and Chemical EngineeringState Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Haihui Jiang
- School of Chemistry and Chemical EngineeringState Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Libin Liu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| |
Collapse
|
30
|
Wang Z, Valenzuela C, Wu J, Chen Y, Wang L, Feng W. Bioinspired Freeze-Tolerant Soft Materials: Design, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201597. [PMID: 35971186 DOI: 10.1002/smll.202201597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In nature, many biological organisms have developed the exceptional antifreezing ability to survive in extremely cold environments. Inspired by the freeze resistance of these organisms, researchers have devoted extensive efforts to develop advanced freeze-tolerant soft materials and explore their potential applications in diverse areas such as electronic skin, soft robotics, flexible energy, and biological science. Herein, a comprehensive overview on the recent advancement of freeze-tolerant soft materials and their emerging applications from the perspective of bioinspiration and advanced material engineering is provided. First, the mechanisms underlying the freeze tolerance of cold-enduring biological organisms are introduced. Then, engineering strategies for developing antifreezing soft materials are summarized. Thereafter, recent advances in freeze-tolerant soft materials for different technological applications such as smart sensors and actuators, energy harvesting and storage, and cryogenic medical applications are presented. Finally, future challenges and opportunities for the rapid development of bioinspired freeze-tolerant soft materials are discussed.
Collapse
Affiliation(s)
- Zhiyong Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Jianhua Wu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
31
|
Recent Research Progress of Ionic Liquid Dissolving Silks for Biomedicine and Tissue Engineering Applications. Int J Mol Sci 2022; 23:ijms23158706. [PMID: 35955840 PMCID: PMC9369158 DOI: 10.3390/ijms23158706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Ionic liquids (ILs) show a bright application prospect in the field of biomedicine and energy materials due to their unique recyclable, modifiability, structure of cation and anion adjustability, as well as excellent physical and chemical properties. Dissolving silk fibroin (SF), from different species silkworm cocoons, with ILs is considered an effective new way to obtain biomaterials with highly enhanced/tailored properties, which can significantly overcome the shortcomings of traditional preparation methods, such as the cumbersome, time-consuming and the organic toxicity caused by manufacture. In this paper, the basic structure and properties of SF and the preparation methods of traditional regenerated SF solution are first introduced. Then, the dissolving mechanism and main influencing factors of ILs for SF are expounded, and the fabrication methods, material structure and properties of SF blending with natural biological protein, inorganic matter, synthetic polymer, carbon nanotube and graphene oxide in the ILs solution system are introduced. Additionally, our work summarizes the biomedicine and tissue engineering applications of silk-based materials dissolved through various ILs. Finally, according to the deficiency of ILs for dissolving SF at a high melting point and expensive cost, their further study and future development trend are prospected.
Collapse
|
32
|
Shi W, Wang Z, Song H, Chang Y, Hou W, Li Y, Han G. High-Sensitivity and Extreme Environment-Resistant Sensors Based on PEDOT:PSS@PVA Hydrogel Fibers for Physiological Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35114-35125. [PMID: 35862578 DOI: 10.1021/acsami.2c09556] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rapid development of flexible electronic devices has caused a boom in researching flexible sensors based on hydrogels, but most of the flexible sensors can only work at room temperature, and they are difficult to adapt to extremely cold or dry environments. Here, the flexible hydrogel fibers (PEDOT:PSS@PVA) with excellent resistance to extreme environments have been prepared by adding glycerin (GL) to the mixture of poly(vinyl alcohol) (PVA) and poly 3,4-dioxyethylene thiophene:polystyrene sulfonic acid (PEDOT:PSS) because GL molecules can form dynamic hydrogen bonds with an elastic matrix of PVA molecules. It is found that the prepared sensor exhibits very good flexibility and mechanical strength, and the ultimate tensile strength can reach up to 13.76 MPa when the elongation at break is 519.9%. Furthermore, the hydrogel fibers possess excellent water retention performance and low-temperature resistance. After being placed in the atmospheric environment for 1 year, the sensor still shows good flexibility. At a low temperature of -60 °C, the sensor can stably endure 1000 repeated stretches and shrinks (10% elongation). In addition to the response to a large strain, this fiber sensor can also detect extremely small strains as low as 0.01%. It is proved that complex human movements such as knuckle bending, vocalization, pulse, and others can be monitored perfectly by this fiber sensor. The above results mean that the PEDOT:PSS@PVA fiber sensor has great application prospects in physiological monitoring.
Collapse
|
33
|
Zheng H, Guan R, Liu Q, Ou K, Li DS, Fang J, Fu Q, Sun Y. A flexible supercapacitor with high capacitance retention at an ultra-low temperature of -65.0°C. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Sepulveda-Medina PI, Wang C, Li R, Fukuto M, Vogt BD. Influence of the Nature of Aliphatic Hydrophobic Physical Crosslinks on Water Crystallization in Copolymer Hydrogels. J Phys Chem B 2022; 126:5544-5554. [PMID: 35833757 DOI: 10.1021/acs.jpcb.2c02438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The local environment within a hydrogel influences the properties of water, including the propensity for ice crystallization. Water-swollen amphiphilic copolymers produce tunable nanoscale environments, which are defined by hydrophobic associations, for the water molecules. Here, the antifreeze properties for equilibrium-swollen amphiphilic copolymers with a common hydrophilic component, hydroxyethyl acrylate (HEA), but associated through crystalline (octadecyl acrylate, ODA) or rubbery (ethylhexyl acrylate, EHA) hydrophobic segments, are examined. Differences in the efficacy of the associations can be clearly enunciated from compositional solubility limits for the copolymers in water (<2.6 mol % ODA vs ≤14 mol % EHA), and these differences can be attributed to the strength of the association. The equilibrium-swollen HEA-ODA copolymers are viscoelastic solids, while the swollen HEA-EHA copolymers are viscoelastic liquids. Cooling these swollen copolymers to nearly 200 K induces some crystallization of the water, where the fraction of water frozen depends on the details of the nanostructure. Decreasing the mean free path of water by increasing the ODA composition from 10 to 25 mol % leads to fractionally more unfrozen water (66-87%). The swollen HEA-EHA copolymers only marginally inhibit ice (<13%) except with 45 mol % EHA, where nearly 60% of the water remains amorphous on cooling to 200 K. In general, the addition of the EHA leads to less effective ice inhibition than analogous covalently crosslinked HEA hydrogels (19.9 ± 1.8%). These results illustrate that fluidity of confining surfaces can provide pathways for critical nuclei to form and crystal growth to proceed.
Collapse
Affiliation(s)
- Pablo I Sepulveda-Medina
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Chao Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Masafumi Fukuto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Bryan D Vogt
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
35
|
Chen L, Sun L, Yao J, Zhao B, Shao Z, Chen X. Robust Silk Protein Hydrogels Made by a Facile One-Step Method and Their Multiple Applications. ACS APPLIED BIO MATERIALS 2022; 5:3086-3094. [PMID: 35608071 DOI: 10.1021/acsabm.2c00354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Silk fibroin is a natural polymer that has various material forms and wide applications. Hydrogel is one of the most attractive silk materials because of its hydrophilicity, biocompatibility, and flexibility. However, its applications are still quite limited because they have a complicated preparation process and/or low mechanical strength. Herein, a simple way to prepare tough silk fibroin hydrogels via a solvent-exchange method is introduced. The degummed silk fiber was directly dissolved in a calcium chloride/formic acid solution and then water was used to replace the solvent. The silk fibroin hydrogel that was obtained using this facile method exhibited even better mechanical properties than most silk fibroin hydrogels that have been reported in the literature. Also, the silk fibroin hydrogel maintained biocompatibility that was as good as that prepared via other methods. Finally, the possibility of using this regenerated silk fibroin hydrogel as a multi-functional platform (such as a catalyst carrier, photothermal agent, and underwater adhesive) has been discussed. Therefore, such a natural, sustainable, robust, and good biocompatible silk fibroin hydrogel that is prepared by an improved method may have great potential for further applications.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Liangyan Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Bingjiao Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
36
|
Cai C, Wen C, Zhao W, Tian S, Long Y, Zhang X, Sui X, Zhang L, Yang J. Environment-Resistant Organohydrogel-Based Sensor Enables Highly Sensitive Strain, Temperature, and Humidity Responses. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23692-23700. [PMID: 35536163 DOI: 10.1021/acsami.2c02997] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conductive hydrogels have been extensively used in wearable skin sensors owing to their outstanding flexibility, tissuelike compliance, and biocompatibility. However, the dehydration and embrittlement of hydrogels can result in sensitivity loss or even invalidation, restraining their wearable applications in external environments, especially at low temperatures and in arid environments. Herein, an environment-resistant organohydrogel is developed for multifunctional sensors. A double-network organohydrogel based on hyaluronic acid and poly(acrylic acid-co-acrylamide) is developed, and glycerol is introduced into the organohydrogel network via a solvent displacement strategy. Owing to the water-locking effects of glycerol and tough polymeric backbone, the resultant organohydrogel not only exhibits stable tensibility but also maintains excellent flexibility and stable conductivity with the environment-resistant properties, including freezing resistance against -30 °C and moisture retention at 4% relative humidity in a high temperature of 60 °C. Moreover, a series of organohydrogel-based sensors and an array device are developed to achieve highly sensitive strain, temperature, and humidity responses and exhibit a high gauge factor of 10.79 in the strain-sensitive test. This work develops a universal ionic skin based on organohydrogels to be applied to wearable sensors for health monitoring.
Collapse
Affiliation(s)
- Chengcheng Cai
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Chiyu Wen
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Weiqiang Zhao
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Shu Tian
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - You Long
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Xiangyu Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Xiaojie Sui
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| |
Collapse
|
37
|
Ding Q, Wu Z, Tao K, Wei Y, Wang W, Yang BR, Xie X, Wu J. Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. MATERIALS HORIZONS 2022; 9:1356-1386. [PMID: 35156986 DOI: 10.1039/d1mh01871j] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiple stretchable materials have been successively developed and applied to wearable devices, soft robotics, and tissue engineering. Organohydrogels are currently being widely studied and formed by dispersing immiscible hydrophilic/hydrophobic polymer networks or only hydrophilic polymer networks in an organic/water solvent system. In particular, they can not only inherit and carry forward the merits of hydrogels, but also have some unique advantageous features, such as anti-freezing and water retention abilities, solvent resistance, adjustable surface wettability, and shape memory effect, which are conducive to the wide environmental adaptability and intelligent applications. This review first summarizes the structure, preparation strategy, and unique advantages of the reported organohydrogels. Furthermore, organohydrogels can be optimized for electro-mechanical properties or endowed with various functionalities by adding or modifying various functional components owing to their modifiability. Correspondingly, different optimization strategies, mechanisms, and advanced developments are described in detail, mainly involving the mechanical properties, conductivity, adhesion, self-healing properties, and antibacterial properties of organohydrogels. Moreover, the applications of organohydrogels in flexible sensors, energy storage devices, nanogenerators, and biomedicine have been summarized, confirming their unlimited potential in future development. Finally, the existing challenges and future prospects of organohydrogels are provided.
Collapse
Affiliation(s)
- Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yaoming Wei
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Weiyan Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
38
|
Highly mechanical properties, anti-freezing, and ionic conductive organohydrogel for wearable sensors. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Liu S, Tian X, Zhang X, Xu C, Wang L, Xia Y. A green MXene-based organohydrogel with tunable mechanics and freezing tolerance for wearable strain sensors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
One-step irradiation assisted fabrication of RGO/PAM hydrogel for air detritiation. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Zhang D, Liu Y, Liu Y, Peng Y, Tang Y, Xiong L, Gong X, Zheng J. A General Crosslinker Strategy to Realize Intrinsic Frozen Resistance of Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104006. [PMID: 34476856 DOI: 10.1002/adma.202104006] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Development and understanding of antifreezing materials are fundamentally and practically important for materials design and delivery. However, almost all of antifreezing materials are either organic/icephobic materials containing no water or hydrophilic hydrogels containing antifreezing additives. Here, a general crosslinking strategy to fabricate a family of EGINA-crosslinked double-network hydrogels with intrinsic, built-in antifreezing and mechanical properties, but without any antifreezing additives is proposed and demonstrated. The resultant hydrogels, despite large structural and compositional variations of hydrophilies, electrolytes, zwitterions, and macromolecules of polymer chains, achieved strong antifreezing and mechanical properties in different environments including solution state, gel state, and hydrogel/solid interfaces. Such general antifreezing property of EGINA-crosslinked hydrogels, regardless network compositions, is likely stemmed from their highly hydrophilic and tightly crosslinked DN structures for inducing strong water-network bindings to prevent ice crystal formation from free waters in hydrogel networks. EGINA-crosslinked hydrogels can also serve as a key component to be fabricated into smart windows with high optical transmittance and supercapacitors with excellent electrochemical stability at subzero temperatures. This work provides a simple, blueprint antifreezing design concept and a family of antifreezing hydrogels for the better understanding of the composite-structure-property relationship of antifreezing materials and the fundamentals of confined water in wet soft materials.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Yanghe Liu
- School of Polymer Science and Polymer Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Yipeng Peng
- Department of Aerospace Engineering, Iowa State University, Ames, IA, 50010, USA
| | - Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Liming Xiong
- Department of Aerospace Engineering, Iowa State University, Ames, IA, 50010, USA
| | - Xiong Gong
- School of Polymer Science and Polymer Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
42
|
Duan S, Wu S, Hua M, Wu D, Yan Y, Zhu X, He X. Tendon-inspired anti-freezing tough gels. iScience 2021; 24:102989. [PMID: 34505006 PMCID: PMC8417335 DOI: 10.1016/j.isci.2021.102989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Abstract
Hydrogels have gained tremendous attention due to their versatility in soft electronics, actuators, biomedical sensors, etc. Due to the high water content, hydrogels are usually soft, weak, and freeze below 0°C, which brings severe limitations to applications such as soft robotics and flexible electronics in harsh environments. Most existing anti-freezing gels suffer from poor mechanical properties and urgently need further improvements. Here, we took inspirations from tendon and coniferous trees and provided an effective method to strengthen polyvinyl alcohol (PVA) hydrogel while making it freeze resistant. The salting-out effect was utilized to create a hierarchically structured polymer network, which induced superior mechanical properties (Young's modulus: 10.1 MPa, tensile strength: 13.5 MPa, and toughness: 127.9 MJ/m3). Meanwhile, the cononsolvency effect was employed to preserve the structure and suppress the freezing point to -60°C. Moreover, we have demonstrated the broad applicability of our material by fabricating PVA hydrogel-based hydraulic actuators and ionic conductors.
Collapse
Affiliation(s)
- Sidi Duan
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Shuwang Wu
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mutian Hua
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dong Wu
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Yan
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ximin He
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
43
|
Liu Y, Wang W, Gu K, Yao J, Shao Z, Chen X. Poly(vinyl alcohol) Hydrogels with Integrated Toughness, Conductivity, and Freezing Tolerance Based on Ionic Liquid/Water Binary Solvent Systems. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29008-29020. [PMID: 34121382 DOI: 10.1021/acsami.1c09006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, ionic conductive hydrogels have shown great potential for application in flexible sensors, energy storage devices, and actuators. However, developing facile and effective methods for fabricating such hydrogels remains a great challenge, especially for hydrogels that retain their properties in extreme environmental conditions, such as at subzero temperatures or storage in open-air conditions. Herein, a water-miscible ionic liquid (IL), such as 1-ethyl-3-methylimidazolium acetate (EMImAc), was introduced to form an IL/water binary solvent system for poly(vinyl alcohol) (PVA) to create ionic conductive PVA hydrogels. The physically crosslinked PVA/EMImAc/H2O hydrogels showed better mechanical properties and transparency than the traditional PVA hydrogel prepared by the freeze-thaw method due to the formation of homogeneous and small PVA microcrystals in the EMImAc/H2O binary solvent system. More importantly, the PVA/EMImAc/H2O hydrogel exhibited significant anti-freezing and water-retaining properties because of the presence of the IL. The hydrogels remained flexible and conductive at temperatures as low as -50 °C and retained more than 90% of their weight after storage in open-air conditions for 2 weeks. In addition, the thermal stability of the hydrogel could be increased to 95 °C through the addition of Mg(II) ions. A multimodal sensor based on the PVA/EMImAc/H2O/Mg(II) hydrogel showed high sensitivity and a quick response to changes in pressure, strain, and temperature, with both long-term stability and a wide working temperature range. This study may open a new route for the fabrication of functional PVA-based hydrogel electrolytes and provide a practical pathway for their use in multifunctional electronic and sensory device applications.
Collapse
Affiliation(s)
- Yizhuo Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Wenqi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Kai Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
44
|
Han X, Li M, Fan Z, Zhang Y, Zhang H, Li Q. PVA/Agar Interpenetrating Network Hydrogel with Fast Healing, High Strength, Antifreeze, and Water Retention. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Han
- Department of Chemistry, School of Science North University of China Taiyuan 030051 China
| | - Mengyu Li
- State Key Laboratory of Tribology, Department of Mechanical Engineering Tsinghua University Beijing 100084 China
| | - Zewen Fan
- Department of Chemistry, School of Science North University of China Taiyuan 030051 China
| | - Yu Zhang
- Department of Chemistry, School of Science North University of China Taiyuan 030051 China
| | - Huihui Zhang
- Department of Chemistry, School of Science North University of China Taiyuan 030051 China
| | - Qiaoling Li
- Department of Chemistry, School of Science North University of China Taiyuan 030051 China
| |
Collapse
|