1
|
Lee B, Lee J, Lee HK, Park H, Kwack MJ, Kim DY, Park I, Lim S, Lee DS. Breath Analyzer for Real-Time Exercise Fat Burning Prediction: Oral and Alveolar Breath Insights with CNN. ACS Sens 2025; 10:2510-2519. [PMID: 39714435 DOI: 10.1021/acssensors.4c02502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The increasing prevalence of obesity and metabolic disorders has created a significant demand for personalized devices that can effectively monitor fat metabolism. In this study, we developed an advanced breath analyzer system designed to provide real-time monitoring of exercise-induced fat burning by analyzing volatile organic compounds (VOCs) present in both oral and alveolar breath. Acetone in exhaled breath and β-hydroxybutyric acid (BOHB) in the blood are both biomarkers closely linked to the metabolic fat burning process occurring in the liver, particularly after exercise. The breath analyzer utilizes a sensor array to detect VOC patterns, with the data analyzed using a one-dimensional convolutional neural network (1D CNN) for an accurate prediction of BOHB levels in the blood. We collected and analyzed 30 exhaled breath samples with our analyzer and blood samples for BOHB from participants before and after exercise. The results showed a strong correlation between sensor responses and BOHB levels, with Pearson correlation coefficients of 0.99 across different postexercise time points. The 1D CNN model effectively estimated BOHB concentrations, achieving Pearson coefficients of 0.96 for the training data set and 0.86 for the test data set. Additionally, our findings confirm that alveolar air samples, which contain metabolic byproducts from deeper in the lungs, offer more reliable data for fat burning analysis than oral air samples. This noninvasive, real-time breath monitoring tool offers a promising solution for individuals demanding to optimize their exercise routines and track metabolic health with high precision and accuracy.
Collapse
Affiliation(s)
- Byeongju Lee
- Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
- Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Junyeong Lee
- Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Hyung-Kun Lee
- Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - HyungJu Park
- Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Myung-Joon Kwack
- Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Do Yeob Kim
- Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Inkyu Park
- Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Dae-Sik Lee
- Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| |
Collapse
|
2
|
Chen H, Lv L, Xue K, Zhang P, Du L, Cui G. Oral Exhalation H 2S Sensor Based on Cu 2O/ZnO Heterostructures. ACS Sens 2025; 10:2579-2588. [PMID: 40172107 DOI: 10.1021/acssensors.4c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Developing a portable and compact sensor for room temperature detection of H2S in exhaled breath for health assessment presents considerable technical challenges. This work successfully synthesized Cu2O/ZnO heterostructures with excellent gas sensitivity to H2S at room and lower temperatures using a two-dimensional (2D) electrodeposition in situ assembly method with the application of a semisine wave voltage as well as CuZnO nanoarrays deposited under direct current voltage. The Cu2O/ZnO heterostructure sensors, with high response of 8.53 × 104 to 1 ppm of H2S and a minimum detection limit of 10 ppb at room temperature, exhibit a response of 42 for 10 ppm of H2S even at -20 °C, and its response to 50 ppm of H2S is approximately 3774 times greater than that of the CuZnO sensor, which is a significant challenge to achieve with sensors based on oxygen adsorption/desorption mechanisms. These outstanding gas-sensing properties are attributed to the formation of p-n heterojunctions in the Cu2O/ZnO heterostructures and the occurrence of the sulfuration reaction. In addition, we successfully employed the Cu2O/ZnO sensor to detect H2S in human exhaled breath, offering valuable insights for the monitoring of various chronic diseases and new directions for the development of portable room-temperature breath sensors.
Collapse
Affiliation(s)
- Huijuan Chen
- School of Physics and Electrical Engineering, Linyi University, Linyi 276000, China
| | - Li Lv
- School of Physics and Electrical Engineering, Linyi University, Linyi 276000, China
| | - Kaifeng Xue
- School of Physics and Electrical Engineering, Linyi University, Linyi 276000, China
| | - Pinhua Zhang
- School of Physics and Electrical Engineering, Linyi University, Linyi 276000, China
| | - Lulu Du
- School of Physics and Electrical Engineering, Linyi University, Linyi 276000, China
| | - Guangliang Cui
- School of Physics and Electrical Engineering, Linyi University, Linyi 276000, China
| |
Collapse
|
3
|
Ding J, Qiao J, Zheng Z, Song Z, Ding S, Luo J, Wang F, Li F, Li H. Assembling MOF on CNTs into 0D-1D heterostructures for enhanced volatile organic compounds detection. Talanta 2025; 285:127444. [PMID: 39721131 DOI: 10.1016/j.talanta.2024.127444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The rapid advancement of the Internet of Things has created a substantial demand for portable gas sensors. Nevertheless, the development of gas sensors that can fulfill the demanding criteria of high sensitivity and rapid response time continues to pose a considerable challenge. Herein, an in-situ anchoring strategy is proposed to construct CNTs@MOF heterostructure to establish strong electronic coupling and charge relocation for enhancing the monitoring capabilities of isopropanol (freshness markers for fruits) at room temperature. The in-situ anchoring process prevents Zn-MOF (ZIF-8) self-aggregation, ensuring efficient transport channels for target analytes and enhancing active site utilization. Moreover, the synergistic effect of each component in the composite is optimized. Consequently, the gas sensor based on the CNTs@ZIF-8 heterostructure achieved an ultrahigh isopropanol response of 57.87 (40 ppm, Ra/Rg) at room temperature and 60% relative humidity, exhibiting rapid response kinetics (38 s, 30 ppm) and durability. This study offers a fresh perspective on the structural design of oxygen-inert CNTs materials.
Collapse
Affiliation(s)
- Jiabao Ding
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Junlong Qiao
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Zichen Zheng
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Zihao Song
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Shumei Ding
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Junhao Luo
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Feihong Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Fengchao Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou, 234000, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Hongpeng Li
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China.
| |
Collapse
|
4
|
Guan Y, Li X, Yang H, Yang Y, Du Z, Hua Z, Wang X, Zeng D. Pore-edge high active sites of 2D WO 3 nanosheets enhancing acetone sensing performance. Talanta 2025; 282:127003. [PMID: 39406102 DOI: 10.1016/j.talanta.2024.127003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 11/20/2024]
Abstract
The precise and timely detection of acetone is crucial for ensuring industrial production safety and for clinical diagnosis of diabetes. Therefore, developing acetone sensors with high performance is increasingly important. This work successfully introduced nano-scale holes into two-dimensional (2D) WO3 nanosheets by topological transformation and in-situ oxidation. The porous 2D WO3 nanosheets exhibit a response value of 66.29 to 10 ppm acetone gas, which is 10.8 times higher than that of commercial WO3. Additionally, the detection limit is as low as 40 ppb. The introduction of pores provides more channels for the rapid diffusion and adsorption of acetone molecules. At the same time, density functional theory (DFT) calculations confirm that the W atoms exposed at the edge of the pores have higher charge activity and adsorption capacity, which provides more edge active sites for the adsorption of acetone molecules. This work proves the feasibility of the introduction of holes to improve the gas sensing performance of metal oxide semiconductors. This study offers a new approach to developing porous metal oxide semiconductor (MOS) sensors.
Collapse
Affiliation(s)
- Yawen Guan
- The State Key Laboratory of Materials Processing and Die & Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiang Li
- The State Key Laboratory of Materials Processing and Die & Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Huimin Yang
- The State Key Laboratory of Materials Processing and Die & Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Yazhou Yang
- The State Key Laboratory of Materials Processing and Die & Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zhenming Du
- The State Key Laboratory of Materials Processing and Die & Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zheng Hua
- The State Key Laboratory of Materials Processing and Die & Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiaoxia Wang
- The State Key Laboratory of Materials Processing and Die & Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Dawen Zeng
- The State Key Laboratory of Materials Processing and Die & Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
5
|
Kim M, Park S, Ahn J, Baek JW, Kim DH, Shin H, Ko J, Song L, Park C, Shin E, Kim ID. Vitalizing Perovskite Oxide-Based Acetone Sensors with Metal-Organic Framework-Derived Heterogeneous Oxide Catalysts. ACS Sens 2024; 9:6492-6501. [PMID: 39486042 DOI: 10.1021/acssensors.4c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Perovskite oxides are promising candidates for chemiresistive-type gas sensors owing to their exceptional thermal and chemical stability during solid-gas reactions. However, perovskites suffer from critical issues such as low surface area and poor surface activity, which negatively influence the sensing characteristics. While metal nanoparticles can be incorporated in perovskites to improve their reactivity, the fundamental incompatibility between catalytic metals and perovskite oxides often leads to substantial structural degradation as well as phase instability. Herein, we overcome this challenge through the introduction of an intermediary phase that forms coherent interfaces with both the perovskite phase and catalyst metals. Specifically, we present the case study of p-type La0.8Ca0.2Fe0.98Pt0.02O3 perovskite, whose hole accumulation layer was modulated by the incorporation of metal-organic framework (MOF)-derived n-type α-Fe2O3 nanoparticles decorated with highly dispersed Pt catalysts. The resulting composite exhibited significantly improved surface activity over the nonmodified La0.8Ca0.2FeO3 perovskite, leading to exceptional chemiresistive sensing performance toward acetone gas (Rg/Ra = 39.8 toward 10 ppm of acetone at 250 °C) with high cross-sensitivity against interfering gases. Importantly, our findings reaffirm the critical influence of interfacial engineering in facilitating surface chemical reactions on perovskite oxides and, by doing so, effectively provide a general synthetic guideline to the design of perovskite-based chemiresistors.
Collapse
Affiliation(s)
- Minhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seyeon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong Won Baek
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong-Ha Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hamin Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaehyun Ko
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Lu Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chungseong Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Euichul Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Thaibunnak A, Rungruang S, Pakdee U. Inkjet-Printed Graphene-PEDOT:PSS Decorated with Sparked ZnO Nanoparticles for Application in Acetone Detection at Room Temperature. Polymers (Basel) 2024; 16:3521. [PMID: 39771373 PMCID: PMC11677939 DOI: 10.3390/polym16243521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
This work presents a simple process for the development of flexible acetone gas sensors based on zinc oxide/graphene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). The gas sensors were prepared by inkjet printing, which was followed by a metal sparking process involving different sparking times. The successful decoration of ZnO nanoparticles (average size ~19.0 nm) on the surface of the graphene-PEDOT:PSS hybrid ink was determined by characterizations, including Raman spectroscopy, Fourier transform infrared spectroscopy, field-emission transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffractometry. The ZnO nanoparticle-decorated graphene-PEDOT:PSS with a sparking time of 2 min exhibited the highest response of 71.9% at 10 ppm of acetone, above those of samples treated with other sparking times and the undecorated control. In addition, the optimal sensor revealed high selectivity for acetone over several other kinds of gases, such as ammonia, toluene, dimethylformamide, ethanol, methanol, and benzene, at room temperature. The gas sensor also revealed a low limit of detection (0.4 ppm), high sensitivity (6.18 ppm-1), and high stability (5-week long-term) to acetone. The response and recovery times of the sensor were found to be 4.6 min and 4.2 min, respectively. The acetone-sensing mechanism was attributed to the formation of p-n heterojunctions, which were responsible for the significantly enhanced sensitivity.
Collapse
Affiliation(s)
- Ananya Thaibunnak
- Division of Printing Technology, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchi Road, Thungmahamek, Sathorn, Bangkok 10120, Thailand; (A.T.); (S.R.)
| | - Suvanna Rungruang
- Division of Printing Technology, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchi Road, Thungmahamek, Sathorn, Bangkok 10120, Thailand; (A.T.); (S.R.)
| | - Udomdej Pakdee
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchi Road, Thungmahamek, Sathorn, Bangkok 10120, Thailand
| |
Collapse
|
7
|
Gong H, Ni L, Chao H, Liu Z, Zhu H, Hu T, Guo Y, Cheng Z, Mu Y, Zhang D. Ammonia Sensing Performance at Room Temperature of Ca-Doped CNFs/Al 2O 3 Gas Sensor. ACS OMEGA 2024; 9:42932-42943. [PMID: 39464447 PMCID: PMC11500367 DOI: 10.1021/acsomega.4c05814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024]
Abstract
When NH3 in the environment exceeds a certain concentration, it may have adverse effects on human health. Ammonia gas sensors currently on the market usually work under high temperatures and are not only expensive but also have poor performance in terms of selectivity. Therefore, the preparation of an ammonia gas sensor that works at room temperature, is low cost, and has high sensitivity and selectivity is particularly important. This paper introduces a room temperature ammonia gas sensor based on a Ca-doped CNFs/Al2O3 nanocomposite material, prepared using electrospinning, pre-oxidation, and carbonization processes. The surface morphology, microstructure, and chemical composition of the materials have been characterized by scanning electron microscopy, Raman, and X-ray photoelectron spectroscopy. The Ca-doped CNFs/Al2O3 gas sensor has excellent selectivity for ammonia at room temperature and low sensitivity to other volatile gases such as ethanol, dimethylformamide, HCl, and methanol. At 100 ppm of NH3, the response value of the Ca-doped CNFs/Al2O3 gas sensor can reach 22.73, demonstrating excellent repeatability and long-term stability. Its performance is not affected by environmental temperature and humidity, providing great convenience for practical applications. In addition, we also discuss the sensing mechanism of the Ca-doped CNFs/Al2O3 gas sensor. This paper not only provides effective materials and methods for the development of high-performance room temperature ammonia gas sensors but is also expected to play a role in the field of environmental monitoring.
Collapse
Affiliation(s)
- He Gong
- College
of Information Technology, Jilin Agricultural
University, Changchun 130118, China
- College
of Electronic Science and Engineering, Jilin
University, Changchun 130012, China
- Jilin
Province Intelligent Environmental Engineering Research Center, Changchun 130118, China
| | - Lingyun Ni
- College
of Information Technology, Jilin Agricultural
University, Changchun 130118, China
| | - Hongli Chao
- College
of Information Technology, Jilin Agricultural
University, Changchun 130118, China
| | - Zeye Liu
- College
of Information Technology, Jilin Agricultural
University, Changchun 130118, China
| | - Hang Zhu
- College
of Information Technology, Jilin Agricultural
University, Changchun 130118, China
| | - Tianli Hu
- College
of Information Technology, Jilin Agricultural
University, Changchun 130118, China
- Jilin
Province Intelligent Environmental Engineering Research Center, Changchun 130118, China
| | - Ying Guo
- College
of Information Technology, Jilin Agricultural
University, Changchun 130118, China
- Jilin
Province Intelligent Environmental Engineering Research Center, Changchun 130118, China
| | - Zhiqiang Cheng
- College
of Resources and Environment, Jilin Agricultural
University, Changchun 130118, China
| | - Ye Mu
- College
of Information Technology, Jilin Agricultural
University, Changchun 130118, China
- Jilin
Province Intelligent Environmental Engineering Research Center, Changchun 130118, China
| | - Daming Zhang
- College
of Electronic Science and Engineering, Jilin
University, Changchun 130012, China
| |
Collapse
|
8
|
Hussain I, Zhang K. MOF-derived scaffolds as electrode materials: a mini-review. NANOSCALE 2024; 16:15515-15528. [PMID: 39118449 DOI: 10.1039/d4nr02305f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Metal-organic frameworks (MOFs) have unique properties but suffer from low conductivity and poor stability, limiting their use in energy storage. Transforming MOFs into other materials, like porous carbon or metal oxides/chalcogenides has been explored to overcome these limitations. However, these approaches still face issues such as dead volume and poor attachment due to insulating binders, causing high resistance and detachment. To address this, MOFs and their derived scaffolds directly on conductive substrates without binders have emerged. These electrodes offer simplified preparation, enhanced electron transfer, and improved interface contact. This mini-review focuses on MOF-derived scaffold electrodes using transition metal oxides, sulfides, selenides, and tellurides, which show promise in energy storage applications. Valuable insights, identified opportunities, and future suggestions in the field of MOF-derived scaffold electrodes and their applications in energy storage applications have been discussed.
Collapse
Affiliation(s)
- Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong.
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
9
|
Hussain A, Lou B, Bushira FA, Xia S, Liu F, Guan Y, Chen W, Xu G. Ultrafast Response and High Selectivity of Diethylamine Gas Sensors at Room Temperature Using MOF-Derived 1D CuO Nano-Ellipsoids. Anal Chem 2023; 95:17568-17576. [PMID: 37988575 DOI: 10.1021/acs.analchem.3c02890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Environmental and health monitoring requires low-cost, high-performance diethylamine (DEA) sensors. Materials based on metal-organic frameworks (MOFs) can detect hazardous gases due to their large specific surface area, many metal sites, unsaturated sites, functional connectivity, and easy calcination to remove the scaffold. However, developing facile materials with high sensitivity and selectivity in harsh environments for accurate DEA detection at a low detection limit (LOD) at room temperature (RT) is challenging. In this study, p-type semiconducting porous CuOx sensing materials were synthesized using a simple solvothermal process and annealed in an argon atmosphere at three different temperatures (x = 400, 600, and 800 °C). Significant variations in particle size, specific area, crystallite size, and shape were noticed when the annealing temperature was elevated. Cu-MIL-53 annealed at 400 °C (CuO-400) has a typical nanoellipsoid (NEs) shape with a length of 61.5 nm and a diameter of 33.2 nm. Surprisingly, CuO-400 NEs showed an excellent response to DEA with an ultra-LOD (Rg/Ra = 7.3 @ 100 ppb, 55% relative humidity), excellent selectivity and sensitivity (Rg/Ra = 236 @ 15 ppm), exceptional long-term stability and repeatability, and a fast response/recovery period at RT, outperforming most previously reported materials. CuO-400 NEs have outstanding gas-sensing characteristics due to their high porosity, 1D nanostructure, unsaturated Cu sites (Cu+ and Cu2+), large specific surface area, and numerous oxygen vacancies. This study presents a generic approach to produce future CuO derived from Cu-MOFs-sensitive materials, revealing new insights into the design of effective sensors for environmental monitoring at RT.
Collapse
Affiliation(s)
- Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Fuad Abduro Bushira
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Shiyu Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Fangshuo Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Yiran Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, P. R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
10
|
Freddi S, Rodriguez Gonzalez MC, Casotto A, Sangaletti L, De Feyter S. Machine-Learning-Aided NO 2 Discrimination with an Array of Graphene Chemiresistors Covalently Functionalized by Diazonium Chemistry. Chemistry 2023; 29:e202302154. [PMID: 37522257 DOI: 10.1002/chem.202302154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Boosted by the emerging need for highly integrated gas sensors in the internet of things (IoT) ecosystems, electronic noses (e-noses) are gaining interest for the detection of specific molecules over a background of interfering gases. The sensing of nitrogen dioxide is particularly relevant for applications in environmental monitoring and precision medicine. Here we present an easy and efficient functionalization procedure to covalently modify graphene layers, taking advantage of diazonium chemistry. Separate graphene layers were functionalized with one of three different aryl rings: 4-nitrophenyl, 4-carboxyphenyl and 4-bromophenyl. The distinct modified graphene layers were assembled with a pristine layer into an e-nose for NO2 discrimination. A remarkable sensitivity to NO2 was demonstrated through exposure to gaseous solutions with NO2 concentrations in the 1-10 ppm range at room temperature. Then, the discrimination capability of the sensor array was tested by carrying out exposure to several interfering gases and analyzing the data through multivariate statistical analysis. This analysis showed that the e-nose can discriminate NO2 among all the interfering gases in a two-dimensional principal component analysis space. Finally, the e-nose was trained to accurately recognize NO2 contributions with a linear discriminant analysis approach, thus providing a metric for discrimination assessment with a prediction accuracy above 95 %.
Collapse
Affiliation(s)
- Sonia Freddi
- Surface Science and Spectroscopy lab @ I-Lamp, Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Via della Garzetta, 48 25123, Brescia, Italy
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Miriam C Rodriguez Gonzalez
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
- Current affiliation: Área de Química Física, Departamento de Química, Instituto de Materiales y Nanotecnología (IMN), Universidad de La Laguna (ULL), 38200, La Laguna, Spain
| | - Andrea Casotto
- Surface Science and Spectroscopy lab @ I-Lamp, Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Via della Garzetta, 48 25123, Brescia, Italy
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Luigi Sangaletti
- Surface Science and Spectroscopy lab @ I-Lamp, Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Via della Garzetta, 48 25123, Brescia, Italy
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
11
|
Ramike MP, Ndungu PG, Mamo MA. Exploration of the Different Dimensions of Wurtzite ZnO Structure Nanomaterials as Gas Sensors at Room Temperature. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2810. [PMID: 37887959 PMCID: PMC10609452 DOI: 10.3390/nano13202810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023]
Abstract
In this work, we report on the synthesis of four morphologies of ZnO, namely, nanoparticles, nanorods, nanosheets, and nanoflowers, from a single precursor Zn(CH3COO)2·2H2O under different reaction conditions. The synthesised nanostructured materials were characterised using powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman spectroscopy, UV-Vis, XPS analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and nitrogen sorption at 77 K. The XRD, FTIR, and Raman analyses did not reveal any significant differences among the nanostructures, but differences in the electronic properties were noted among the different morphologies. The TEM and SEM analyses confirmed the four different morphologies of the ZnO nanostructures. The textural characteristics revealed that the specific surface areas were different, being 1.3, 6.7, 12.7, and 26.8 m2/g for the nanoflowers, nanoparticles, nanorods, and nanosheets, respectively. The ZnO nanostructures were then mixed with carbon nanoparticles (CNPs) and cellulose acetate (CA) to make nanocomposites that were then used as sensing materials in solid-state sensors to detect methanol, ethanol, and isopropanol vapour at room temperature. The sensors' responses were recorded in relative resistance. When detecting methanol, 6 out of 12 sensors were responsive, and the most sensitive sensor was the composite with a mass ratio of 1:1:1 of ZnO nanorods:CNPs:CA with a sensitivity of 0.7740 Ω ppm-1. Regarding the detection of ethanol vapour, 9 of the 12 sensors were responsive, and the 3:1:1 mass ratio with ZnO nanoparticles was the most sensitive at 4.3204 Ω ppm-1. Meanwhile, with isopropanol, 5 out of the 12 sensors were active and, with a sensitivity of 3.4539 Ω ppm-1, the ZnO nanoparticles in a 3:1:1 mass ratio were the most sensitive. Overall, the response of the sensors depended on the morphology of the nanostructured ZnO materials, the mass ratio of the sensing materials in the composites, and the type of analyte. The sensing mechanism was governed by the surface reaction on the sensing materials rather than pores hindering the analyte molecules from reaching the active site, since the pore size is larger than the kinetic diameter of the analyte molecules. Generally, the sensors responded well to the ethanol analyte, rather than methanol and isopropanol. This is due to ethanol molecules displaying a more enhanced electron-donating ability.
Collapse
Affiliation(s)
- Matshidiso P. Ramike
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Patrick G. Ndungu
- Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
| | - Messai A. Mamo
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
12
|
Dutta T, Noushin T, Tabassum S, Mishra SK. Road Map of Semiconductor Metal-Oxide-Based Sensors: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:6849. [PMID: 37571634 PMCID: PMC10422562 DOI: 10.3390/s23156849] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/22/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Identifying disease biomarkers and detecting hazardous, explosive, flammable, and polluting gases and chemicals with extremely sensitive and selective sensor devices remains a challenging and time-consuming research challenge. Due to their exceptional characteristics, semiconducting metal oxides (SMOxs) have received a lot of attention in terms of the development of various types of sensors in recent years. The key performance indicators of SMOx-based sensors are their sensitivity, selectivity, recovery time, and steady response over time. SMOx-based sensors are discussed in this review based on their different properties. Surface properties of the functional material, such as its (nano)structure, morphology, and crystallinity, greatly influence sensor performance. A few examples of the complicated and poorly understood processes involved in SMOx sensing systems are adsorption and chemisorption, charge transfers, and oxygen migration. The future prospects of SMOx-based gas sensors, chemical sensors, and biological sensors are also discussed.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, IIEST Shibpur, Howrah 711103, West Bengal, India;
| | - Tanzila Noushin
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Shawana Tabassum
- Department of Electrical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA;
| | - Satyendra K. Mishra
- Danish Offshore Technology Center, Technical University of Denmark, 2800 Lyngby, Denmark
- SRCOM, Centre Technologic de Telecomunicacions de Catalunya, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
13
|
Zheng Z, Jiang N, Liang R, Chi H, Wu J, Jiang J, Ye Z, Zhu L. Enhanced Acetone-Sensing Properties of Pt-Decorated In 2O 3 Hollow Microspheres Derived from Pt-Embedded Template. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10178-10188. [PMID: 37439034 DOI: 10.1021/acs.langmuir.3c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Pt-decorated In2O3 hollow microspheres were prepared using a template and reflux method. The size of the prepared carbon templates was adjusted from 200 nm to 1.3 μm by introducing chloroplatinic acid during the hydrothermal process. At the same time, Pt nanoparticles inside the carbon layer were protected from oxidation and agglomeration. Also, the folds created on the surface of the hollow sphere during shrinkage led to a substantial increase in specific surface area. The response of the In2O3-based sensor toward acetone was significantly enhanced by the addition of Pt decoration. This improvement can be attributed to the increased availability of active sites for the target gas and the consequential alteration of the energy band structure. In addition, high response sensitivity, rapid dynamic processes, long-term reliability, and selectivity have all been achieved. The detectable limit is less than 1 ppm, which might satisfy the 1.8 ppm threshold value in the exhaled breath of patients with diabetes. Consequently, the proposed sensor has great sensitivity and can detect low-concentration of acetone, making it an ideal choice for applications such as monitoring daily dietary intake, managing diabetes, and inspecting industrial production processes.
Collapse
Affiliation(s)
- Zicheng Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China
| | - Nan Jiang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China
| | - Rong Liang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China
| | - Hanwen Chi
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China
| | - Jingmin Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China
| | - Jie Jiang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China
| | - Zhizhen Ye
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China
| | - Liping Zhu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China
| |
Collapse
|
14
|
Yang L, Wang J, Li CY, Liu Q, Wang J, Wu J, Lv H, Ji XM, Liu JM, Wang S. Hollow-structured molecularly imprinted polymers enabled specific enrichment and highly sensitive determination of aflatoxin B1 and sterigmatocystin against complex sample matrix. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131127. [PMID: 36871463 DOI: 10.1016/j.jhazmat.2023.131127] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The biotoxins with high toxicity have the potential to be manufactured into biochemical weapons, seriously threatening international public security. Developing robust and applicable sample pretreatment platforms and reliable quantification methods has been recognized as the most promising and practical approach to solving these problems. Through the integration of the hollow-structured microporous organic networks (HMONs) as the imprinting carriers, we proposed a molecular imprinting platform (HMON@MIP) with enhanced adsorption performance in terms of specificity, imprinting cavity density as well as adsorption capacity. The HMONs core of MIPs provided a hydrophobic surface that enhanced the adsorption of biotoxin template molecules during the imprinting process, resulting in an increased imprinting cavity density. The HMON@MIP adsorption platform could produce a series of MIP adsorbents by changing the biotoxin template, such as aflatoxin and sterigmatocystin, and showed promising generalizability. The limits of detection (LOD) of the HMON@MIP-based preconcentration method for AFT B1 and ST were 4.4 and 6.7 ng L-1, respectively, and the method was applicable to food sample with satisfied recoveries of 81.2-95.1%. And the specific recognition and adsorption sites left on HMON@MIP by the imprinting process can achieve outstanding selectivity for AFT B1 and ST. The developed imprinting platforms hold great potential for application in the identification and determination of various food hazards in complex food sample matrices and contribute to precise food safety inspection.
Collapse
Affiliation(s)
- Lu Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Chun-Yang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qisijing Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xue-Meng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
15
|
Jung G, Shin H, Jeon SW, Lim YH, Hong S, Kim DH, Lee JH. Transducer-Aware Hydroxy-Rich-Surface Indium Oxide Gas Sensor for Low-Power and High-Sensitivity NO 2 Gas Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22651-22661. [PMID: 37115020 DOI: 10.1021/acsami.3c00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Low-power metal oxide (MOX)-based gas sensors are widely applied in edge devices. To reduce power consumption, nanostructured MOX-based sensors that detect gas at low temperatures have been reported. However, the fabrication process of these sensors is difficult for mass production, and these sensors are lack uniformity and reliability. On the other hand, MOX film-based gas sensors have been commercialized but operate at high temperatures and exhibit low sensitivity. Herein, commercially advantageous highly sensitive, film-based indium oxide sensors operating at low temperatures are reported. Ar and O2 gases are simultaneously injected during the sputtering process to form a hydroxy-rich-surface In2O3 film. Conventional indium oxide (In2O3) films (A0) and hydroxy-rich indium oxide films (A1) are compared using several analytical techniques. A1 exhibits a work function of 4.92 eV, larger than that of A0 (4.42 eV). A1 exhibits a Debye length 3.7 times longer than that of A0. A1 is advantageous for gas sensing when using field effect transistors (FETs) and resistors as transducers. Because of the hydroxy groups present on the surface of A1, A1 can react with NO2 gas at a lower temperature (∼100 °C) than A0 (180 °C). Operando diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) shows that NO2 gas is adsorbed to A1 as nitrite (NO2-) at 100 °C and nitrite and nitrate (NO3-) at 200 °C. After NO2 is adsorbed as nitrate, the sensitivity of the A1 sensor decreases and its low-temperature operability is compromised. On the other hand, when NO2 is adsorbed only as nitrite, the performance of the sensor is maintained. The reliable hydroxy-rich FET-type gas sensor shows the best performance compared to that of the existing film-based NO2 gas sensors, with a 2460% response to 500 ppb NO2 gas at a power consumption of 1.03 mW.
Collapse
Affiliation(s)
- Gyuweon Jung
- Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Hunhee Shin
- Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Se Won Jeon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong Hyun Lim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongbin Hong
- Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Do Heui Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Ho Lee
- Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Li C, Choi PG, Masuda Y. Large-lateral-area SnO 2 nanosheets with a loose structure for high-performance acetone sensor at the ppt level. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131592. [PMID: 37167866 DOI: 10.1016/j.jhazmat.2023.131592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Gas sensors with high sensitivity and high selectivity are required in practical applications to distinguish between target molecules in the detection of volatile organic compounds, real-time security alerts, and clinical diagnostics. Semiconducting tin oxide (SnO2) is highly regarded as a gas-sensing material due to its exceptional responsiveness to changes in gaseous environments and outstanding chemical stability. Herein, we successfully synthesized a large-lateral-area SnO2 nanosheet with a loose structure as a gas sensing material by a one-step facile aqueous solution process without a surfactant or template. The SnO2 sensor exhibited a remarkable sensitivity (Ra/Rg = 1.33) at 40 ppt for acetone, with a theoretical limit of detection of 1.37 ppt, which is the lowest among metal oxide semiconductor-based gas sensors. The anti-interference ability of acetone was higher than those of pristine SnO2 and commercial sensors. These sensors also demonstrated perfect reproducibility and long-term stability of 100 days. The ultrasensitive response of the SnO2 nanosheets toward acetone was attributed to the specific loose large lateral area structure, small grain size, and metastable (101) crystal facets. Considering these advantages, SnO2 nanosheets with larger lateral area sensors have great potential for the detection and monitoring of acetone.
Collapse
Affiliation(s)
- Chunyan Li
- National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakurazaka, Moriyama, Nagoya, Aichi 463-8560, Japan
| | - Pil Gyu Choi
- National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakurazaka, Moriyama, Nagoya, Aichi 463-8560, Japan
| | - Yoshitake Masuda
- National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakurazaka, Moriyama, Nagoya, Aichi 463-8560, Japan.
| |
Collapse
|
17
|
Chen B, Kiely J, Williams I, Luxton R. A non-faradaic impedimetric biosensor for monitoring of caspase 9 in mammalian cell culture. Bioelectrochemistry 2023; 153:108456. [PMID: 37247529 DOI: 10.1016/j.bioelechem.2023.108456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Lower yields and poorer quality of biopharmaceutical products result from cell death in bioreactors. Such cell death is commonly associated with programmed cell death or apoptosis. During apoptosis, caspases are activated and cause a cascade of events that eventually lead to cell destruction. We report on an impedance spectroscopy measurement technique for the detection of total caspase-9 in buffer and complex fluids, such as cell culture media. Enhanced sensitivity is achieved by leveraging the physiochemical properties of zinc oxide and copper oxide at the electrode-solution interface. Characterisation of the biosensor surface was performed using scanning electron microscopy and indirectly using an enzyme-linked immunosorbent assay. The characteristic biomolecular interactions between the target analyte and specific capture probe of the biosensor are quantified using non-faradaic electrical impedance spectroscopy (nfEIS). The proof-of-concept biosensor demonstrated a detection limit of 0.07 U/mL (0.032 µM) in buffer. The sensor requires a low sample volume of 50 μL without the need for sample dilution facilitating rapid analysis. Using a luminescence-based assay, the presence of active caspase-9 was detected in the culture media following exposure to a pro-apoptotic agent. We envision that the caspase-9 biosensor will be useful as a cell stress screening device for apoptosis monitoring.
Collapse
Affiliation(s)
- Boyang Chen
- Institute of Biosensing Technology, University of the West of England (UWE) Bristol, Frenchay Campus, Bristol BS16 1QY, UK.
| | - Janice Kiely
- Institute of Biosensing Technology, University of the West of England (UWE) Bristol, Frenchay Campus, Bristol BS16 1QY, UK.
| | - Ibidapo Williams
- Institute of Biosensing Technology, University of the West of England (UWE) Bristol, Frenchay Campus, Bristol BS16 1QY, UK.
| | - Richard Luxton
- Institute of Biosensing Technology, University of the West of England (UWE) Bristol, Frenchay Campus, Bristol BS16 1QY, UK.
| |
Collapse
|
18
|
Davis D, Narayanan SK, Ajeev A, Nair J, Jeeji J, Vijayan A, Viyyur Kuttyadi M, Nelliparambil Sathian A, Arulraj AK. Flexible Paper-Based Room-Temperature Acetone Sensors with Ultrafast Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37075219 DOI: 10.1021/acsami.2c21712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Paper-based lightweight, degradable, low-cost, and eco-friendly substrates are extensively used in wearable biosensor applications, albeit to a lesser extent in sensing acetone and other gas-phase analytes. Generally, rigid substrates with heaters have been employed to develop acetone sensors due to the high operating/recovery temperature (typically above 200 °C), limiting the use of papers as substrates in such sensing applications. In this work, we proposed fabricating the paper-based, room-temperature-operatable acetone sensor using ZnO-polyaniline-based acetone-sensing inks by a facile fabrication method. The fabricated paper-based electrodes showed good electrical conductivity (80 S/m) and mechanical stability (∼1000 bending cycles). The acetone sensors showed a sensitivity of 0.02/100 ppm and 0.6/10 μL with an ultrafast response (4 s) and recovery time (15 s) at room temperature. The sensors delivered a broad sensitivity over a physiological range of 260 to >1000 ppm with R2 > 0.98 under atmospheric conditions. Further, the role of the surface, interfacial, microstructure, electrical, and electromechanical properties of the paper-based sensor devices has been correlated with the sensitivity and room-temperature recovery observed in our system. These versatile, green, flexible electronic devices would be ideal for low-cost, highly regenerative, room-/low-temperature-operable wearable sensor applications.
Collapse
Affiliation(s)
- Disiya Davis
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Swathi Krishna Narayanan
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Arya Ajeev
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Jayashree Nair
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Jithin Jeeji
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Ananthu Vijayan
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Midhun Viyyur Kuttyadi
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Arun Nelliparambil Sathian
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Arul Kashmir Arulraj
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| |
Collapse
|
19
|
Iranmanesh R, Pourahmad A, Shabestani DS, Jazayeri SS, Sadeqi H, Akhavan J, Tounsi A. Wavelet-artificial neural network to predict the acetone sensing by indium oxide/iron oxide nanocomposites. Sci Rep 2023; 13:4266. [PMID: 36918606 PMCID: PMC10015010 DOI: 10.1038/s41598-023-29898-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
This study applies a hybridized wavelet transform-artificial neural network (WT-ANN) model to simulate the acetone detecting ability of the Indium oxide/Iron oxide (In2O3/Fe2O3) nanocomposite sensors. The WT-ANN has been constructed to extract the sensor resistance ratio (SRR) in the air with respect to the acetone from the nanocomposite chemistry, operating temperature, and acetone concentration. The performed sensitivity analyses demonstrate that a single hidden layer WT-ANN with nine nodes is the highest accurate model for automating the acetone-detecting ability of the In2O3/Fe2O3 sensors. Furthermore, the genetic algorithm has fine-tuned the shape-related parameters of the B-spline wavelet transfer function. This model accurately predicts the SRR of the 119 nanocomposite sensors with a mean absolute error of 0.7, absolute average relative deviation of 10.12%, root mean squared error of 1.14, and correlation coefficient of 0.95813. The In2O3-based nanocomposite with a 15 mol percent of Fe2O3 is the best sensor for detecting acetone at wide temperatures and concentration ranges. This type of reliable estimator is a step toward fully automating the gas-detecting ability of In2O3/Fe2O3 nanocomposite sensors.
Collapse
Affiliation(s)
- Reza Iranmanesh
- Faculty of Civil Engineering, K.N. Toosi University of Technology, No. 1346, Vali Asr Street, Mirdamad Intersection, Tehran, Iran
| | - Afham Pourahmad
- Department of Polymer Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | | | | | - Hamed Sadeqi
- Department of Internet and Wide Network, Iran Industrial Training Center Branch, University of Applied Science and Technology, Tehran, Iran
| | - Javid Akhavan
- Mechanical Engineering Department, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Abdelouahed Tounsi
- Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes, Sidi Bel Abbès, Algeria
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Eastern Province, Saudi Arabia
| |
Collapse
|
20
|
Taheri M, Naeimi H, Ghasemi AH. Preparation and characterization of doped hollow carbon spherical nanostructures with nickel and cobalt metals and their catalysis for the green synthesis of pyridopyrimidines. RSC Adv 2023; 13:3623-3634. [PMID: 36756581 PMCID: PMC9891082 DOI: 10.1039/d2ra07152e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Fused heterocyclic systems containing the pyrimidine ring structure perform a significant role in numerous biological and pharmaceutical processes. Their properties include antibacterial, antifungal, anti-fever, anti-tumor, and antihistamine. As pyridopyrimidines are important in the essential fields of pharmaceutical chemistry, efficient methods for preparing these heterocycles are presented. In this study, a method for producing improved hollow carbon sphere nanostructures with cobalt and nickel (Co-Ni@HCSs) is presented. The nanocatalyst was prepared and identified by applying Fourier-transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET), and elemental mapping techniques. The Co-Ni@HCSs nanocatalyst was proved to be highly efficient in synthesizing pyranopyrimidine derivatives. The sizeable active site, economic catalyst loading, easy workup, reusability, green reaction conditions, and excellent yields of all derivatives are some of the significant features of this process. Also, applying response surface methodology (RSM) and the Box-Behnken design (BBD) techniques allowed us to determine the influential factors of the laboratory variables and identify the optimum conditions for superior catalytic activity. Finally, synthesized organic compounds were identified by utilizing melting point, FT-IR, and hydrogen-1 nuclear magnetic resonance (1H NMR) analyses.
Collapse
Affiliation(s)
- Maryam Taheri
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan Kashan 87317-51167 Iran +983155912397 +983155912388
| | - Hossein Naeimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan Kashan 87317-51167 Iran +983155912397 +983155912388
| | - Amir Hossein Ghasemi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan Kashan 87317-51167 Iran +983155912397 +983155912388
| |
Collapse
|
21
|
Madvar HR, Kordrostami Z, Mirzaei A. Sensitivity Enhancement of Resistive Ethanol Gas Sensor by Optimized Sputtered-Assisted CuO Decoration of ZnO Nanorods. SENSORS (BASEL, SWITZERLAND) 2022; 23:s23010365. [PMID: 36616965 PMCID: PMC9823437 DOI: 10.3390/s23010365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 05/20/2023]
Abstract
In this study, sputtered-assisted CuO-decorated ZnO nanorod (NR) gas sensors were fabricated for ethanol gas sensing studies. CuO nanoparticles have been successfully formed on ZnO nanorods by means of a physical process as the decorative metallic element. The amount of decoration affecting the sensor's performance has been optimized. Cu layers with different thicknesses of 5, 10, and 20 nm were deposited on hydrothermally grown ZnO NRs using the sputtering technique. Upon subsequent annealing, Cu was oxidized to CuO. The gas sensing studies revealed that the sensor with an initial Cu layer of 5 nm had the highest response to ethanol at 350 °C. The sensor also showed good selectivity, repeatability, and long-term stability. The enhanced ethanol sensing response of the optimized gas sensor is related to the formation of p-n heterojunction between p-type CuO and n-type ZnO and the presence of the optimal amount of CuO on the surface of ZnO NRs. The results presented in this study highlight the need for optimizing the amount of Cu deposition on the surface of ZnO NRs in order to achieve the highest response to ethanol gas.
Collapse
Affiliation(s)
- Hadi Riyahi Madvar
- Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
- Research Center for Design and Fabrication of Advanced Electronic Devices, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Zoheir Kordrostami
- Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
- Research Center for Design and Fabrication of Advanced Electronic Devices, Shiraz University of Technology, Shiraz 71557-13876, Iran
- Correspondence:
| | - Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| |
Collapse
|
22
|
Qian X, Cheng J, Jin L, Wang Y, Huang B, Chen J. ZIF-8/Ketjen Black derived ZnO/N/KB composite for separator modification of lithium sulfur batteries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Li B, Zhang X, Huo L, Gao S, Guo C, Zhang Y, Major Z, Zhang F, Cheng X, Xu Y. Controllable construction of ZnFe 2O 4-based micro-nano heterostructure for the rapid detection and degradation of VOCs. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129005. [PMID: 35500342 DOI: 10.1016/j.jhazmat.2022.129005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Micro-nano heterogeneous oxides have received extensive attention due to their distinctive physicochemical properties. However, it is a challenge to prepare the hierarchical multicomponent metal oxide nanomaterials with abundant heterogeneous interfaces in a controllable way. In this work, the effective construction of the heterogeneous structure of the material is achieved by regulating the ratio of metal salts under thermal solvent condition. Three-dimensional spheres (ZnFe2O4) constructed by zero-dimensional ultra-small nanoparticles, in particular three-dimensional hollow sea urchin spheres (ZnO/ZnFe2O4) constructed by one-dimensional nanorods and three-dimensional hydrangeas (α-Fe2O3/ZnFe2O4) assembled by two-dimensional nanosheets were obtained. The two composite materials contain a large number of heterojunctions, which enhances the sensitivity of material to volatile organic compounds gas. Among them, the α-Fe2O3/ZnFe2O4 composite shows the best sensing performance for VOCs. For example, its response to 100 ppm acetone reaches 142 at 170 °C with the response time shortened to 3 s and the detection limit falling to 10 ppb. Meanwhile, the composite material presents a degradation rate of more than 90% for VOCs at a flow rate of 20 mL/min at 170 °C. In addition, the sensing and sensitivity mechanism of the composite material are studied in detail by combining GC-MS, XPS with UV diffuse reflectance tests.
Collapse
Affiliation(s)
- Baosheng Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xianfa Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Lihua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shan Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Chuanyu Guo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yu Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Zoltán Major
- Institute of Polymer Product Engineering, Johannes Kepler University Linz, Austria
| | - Fangdou Zhang
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoli Cheng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| | - Yingming Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
24
|
Abstract
Healthcare is undergoing large transformations, and it is imperative to leverage new technologies to support the advent of personalized medicine and disease prevention. It is now well accepted that the levels of certain biological molecules found in blood and other bodily fluids, as well as in exhaled breath, are an indication of the onset of many human diseases and reflect the health status of the person. Blood, urine, sweat, or saliva biomarkers can therefore serve in early diagnosis of diseases such as cancer, but also in monitoring disease progression, detecting metabolic disfunctions, and predicting response to a given therapy. For most point-of-care sensors, the requirement that patients themselves can use and apply them is crucial not only regarding the diagnostic part, but also at the sample collection level. This has stimulated the development of such diagnostic approaches for the non-invasive analysis of disease-relevant analytes. Considering these timely efforts, this review article focuses on novel, sensitive, and selective sensing systems for the detection of different endogenous target biomarkers in bodily fluids as well as in exhaled breath, which are associated with human diseases.
Collapse
|
25
|
Guo M, Luo N, Chen Y, Fan Y, Wang X, Xu J. Fast-response MEMS xylene gas sensor based on CuO/WO 3 hierarchical structure. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:127471. [PMID: 35236018 DOI: 10.1016/j.jhazmat.2021.127471] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 06/14/2023]
Abstract
CuO/WO3 hierarchical hollow microspheres, assembled from irregular two dimensional (2D) nanosheets, were prepared by ultrasonic-wet chemical etching and pyrolysis in this study. The sensing performance of Micro-Electro-Mechanical System (MEMS) xylene gas sensor based on CuO/WO3 hierarchical structure were evaluated. It was found that the CuO/WO3 MEMS sensors showed an enhanced gas sensing performance compared with pristine WO3 sensor. The CuO/WO3-3 (the mass ratio of CuO to WO3 is 3%) sensor exhibited faster response-recover speed and the highest response value to xylene. Moreover, the CuO/WO3-3 sensor possessed higher selectivity and long-term stability. The good sensing properties can be attributed to the unique three dimensional (3D) hierarchical structure and p-n heterojunction of CuO-WO3. Considering the above advantages, the CuO/WO3-3 sensor has a great potential for the rapid detection and monitoring of xylene.
Collapse
Affiliation(s)
- Mengmeng Guo
- NEST Lab., Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Na Luo
- NEST Lab., Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yang Chen
- NEST Lab., Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yu Fan
- NEST Lab., Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaohong Wang
- NEST Lab., Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Jiaqiang Xu
- NEST Lab., Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
26
|
Hussain I, Sahoo S, Sayed MS, Ahmad M, Sufyan Javed M, Lamiel C, Li Y, Shim JJ, Ma X, Zhang K. Hollow nano- and microstructures: Mechanism, composition, applications, and factors affecting morphology and performance. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214429] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Choi B, Shin D, Lee HS, Song H. Nanoparticle design and assembly for p-type metal oxide gas sensors. NANOSCALE 2022; 14:3387-3397. [PMID: 35103270 DOI: 10.1039/d1nr07561f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal oxide semiconductors have wide band gaps with tailorable electrical properties and high stability, suitable for chemiresistive gas sensors. p-Type oxide semiconductors generally have less sensitivity than their n-type counterparts but provide unique functionality with low humidity dependence. Among various approaches to enhance the p-type characteristics, nanostructuring of active materials is essential to exhibit high sensing performances comparable to n-type materials. Moreover, p-n heterojunction formation can achieve superior sensitivity at low operating temperatures. The representative examples are hollow and urchin-like particles, mesoporous structures, and nanowire networks. These morphologies can generate abundant active surface sites with a high surface area and induce rapid gas diffusion and facile charge transport. For growing interests in environmental and healthcare monitoring, p-type oxide semiconductors and their heterojunctions with well-designed nanostructures gain much attention as advanced gas sensing materials for practical applications. In addition to precise nanostructure design, the combination with other strategies, e.g. light activation and multiple gas sensing analysis using sensor arrays will be able to fabricate the desired gas sensors with exclusive gas detection at ultra-low concentrations operating even at room temperature.
Collapse
Affiliation(s)
- Byeonghoon Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Dongwoo Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Hee-Seung Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Hyunjoon Song
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
28
|
Chu Y, Tan H, Zhao C, Wu X, Ding SJ. Power-Efficient Gas-Sensing and Synaptic Diodes Based on Lateral Pentacene/a-IGZO PN Junctions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9368-9376. [PMID: 35147029 DOI: 10.1021/acsami.1c19771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Function convergence of gas sensing and neuromorphic computing is attracting much research attention due to the promising potential in electronic olfactory, artificial intelligence, and internet of everything systems. However, the current neuromorphic gas-sensing systems are either realized via integration of gas detectors and neuromorphic devices or operating with three-terminal synaptic transistors at high voltages, leading to a rather high system complexity or power consumption. Herein, gas-modulated synaptic diodes with lateral structures are developed to converge sensing, processing, and storage functions into a single device. The lateral synaptic diode is based on a p-n junction of an organic semiconductor (OSC) and amorphous In-Ga-Zn-O, in which the upper OSC layer can directly interact with the gas molecules in the atmosphere. Typical synaptic behaviors triggered by ammonia, including inhibitory postsynaptic current and paired-pulse depression, are successfully demonstrated. Meanwhile, a low power consumption of 6.3 pJ per synaptic event has been achieved, which benefits from the simple device structure, the decent chemosensitivity of the OSC, and the low operation voltage. A simulated ammonia analysis in human exhaled breath is further conducted to explore the practical application of the synaptic diode. Therefore, this work provides a gas-modulated synaptic diode for circuit-compact and power-efficient artificial olfactory systems.
Collapse
Affiliation(s)
- Yingli Chu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haotian Tan
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Chenyang Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Xiaohan Wu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Shi-Jin Ding
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
- National Integrated Circuit Innovation Center, Shanghai 201203, China
| |
Collapse
|
29
|
Optimization of Facile Synthesized ZnO/CuO Nanophotocatalyst for Organic Dye Degradation by Visible Light Irradiation Using Response Surface Methodology. Catalysts 2021. [DOI: 10.3390/catal11121509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we aimed to observe how different operating parameters influenced the photocatalytic degradation of rhodamine B (RhB, cationic dye) and bromophenol Blue (BPB, anionic dye) over ZnO/CuO under visible light irradiation. This further corroborated the optimization study employing the response surface methodology (RSM) based on central composite design (CCD). The synthesis of the ZnO/CuO nanocomposite was carried out using the co-precipitation method. The synthesized samples were characterized via the XRD, FT-IR, FE-SEM, Raman, and BET techniques. The characterization revealed that the nanostructured ZnO/CuO formulation showed the highest surface area (83.13 m2·g−1). Its surface area was much higher than that of pure ZnO and CuO, thereby inheriting the highest photocatalytic activity. To substantiate this photocatalytic action, the investigative analysis was carried out at room temperature, associating first-order kinetics at a rate constant of 0.0464 min−1 for BPB and 0.07091 min−1 for RhB. We examined and assessed the binary interactions of the catalyst dosage, concentration of dye, and irradiation time. The suggested equation, with a high regression R2 value of 0.99701 for BPB and 0.9977 for RhB, accurately matched the experimental results. Through ANOVA we found that the most relevant individual parameter was the irradiation time, followed by catalyst dose and dye concentration. In a validation experiment, RSM based on CCD was found to be suitable for the optimization of the photocatalytic degradation of BPB and RhB over ZnO/CuO photocatalysts, with 98% degradation efficiency.
Collapse
|
30
|
Zheng Y, Tang N, Omar R, Hu Z, Duong T, Wang J, Wu W, Haick H. Smart Materials Enabled with Artificial Intelligence for Healthcare Wearables. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202105482] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 08/30/2023]
Abstract
AbstractContemporary medicine suffers from many shortcomings in terms of successful disease diagnosis and treatment, both of which rely on detection capacity and timing. The lack of effective, reliable, and affordable detection and real‐time monitoring limits the affordability of timely diagnosis and treatment. A new frontier that overcomes these challenges relies on smart health monitoring systems that combine wearable sensors and an analytical modulus. This review presents the latest advances in smart materials for the development of multifunctional wearable sensors while providing a bird's eye‐view of their characteristics, functions, and applications. The review also presents the state‐of‐the‐art on wearables fitted with artificial intelligence (AI) and support systems for clinical decision in early detection and accurate diagnosis of disorders. The ongoing challenges and future prospects for providing personal healthcare with AI‐assisted support systems relating to clinical decisions are presented and discussed.
Collapse
Affiliation(s)
- Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Ning Tang
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Rawan Omar
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Zhipeng Hu
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
- School of Chemistry Xi'an Jiaotong University Xi'an 710126 P. R. China
| | - Tuan Duong
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Jing Wang
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology Interdisciplinary Research Center of Smart Sensors Xidian University Xi'an 710126 P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
- School of Advanced Materials and Nanotechnology Interdisciplinary Research Center of Smart Sensors Xidian University Xi'an 710126 P. R. China
| |
Collapse
|
31
|
Hematian H, Ukraintsev E, Rezek B. Strong Structural and Electronic Binding of Bovine Serum Albumin to ZnO via Specific Amino Acid Residues and Zinc Atoms. Chemphyschem 2021; 23:e202100639. [PMID: 34755930 DOI: 10.1002/cphc.202100639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/24/2021] [Indexed: 11/08/2022]
Abstract
ZnO biointerfaces with serum albumin have attracted noticeable attention due to the increasing interest in developing ZnO-based materials for biomedical applications. ZnO surface morphology and chemistry are expected to play a critical role on the structural, optical, and electronic properties of albumin-ZnO complexes. Yet there are still large gaps in the understanding of these biological interfaces. Herein we comprehensively elucidate the interactions at such interfaces by using atomic force microscopy and nanoshaving experiments to determine roughness, thickness, and adhesion properties of BSA layers adsorbed on the most typical polar and non-polar ZnO single-crystal facets. These experiments are corroborated by force field (FF) and density-functional tight-binding (DFTB) calculations on ZnO-BSA interfaces. We show that BSA adsorbs on all the studied ZnO surfaces while interactions of BSA with ZnO are found to be considerably affected by the atomic surface structure of ZnO. BSA layers on the ( 000 1 ‾ ) surface have the highest roughness and thickness, hinting at a specific upright BSA arrangement. BSA layers on ( 10 1 ‾ 0 ) surface have the strongest binding, which is well correlated with DFTB simulations showing atomic rearrangement and bonding between specific amino acids (AAs) and ZnO. Besides the structural properties, the ZnO interaction with these AAs also controls the charge transfer and HOMO-LUMO energy positions in the BSA-ZnO complexes. This ZnO facet-specific protein binding and related structural and electronic effects can be useful for improving the design and functionality of ZnO-based materials and devices.
Collapse
Affiliation(s)
- Hadi Hematian
- Department of Physics, Faculty of Electrical Engineering, CTU in Prague, Technická 2, 166 27, Prague 6, Czech Republic
| | - Egor Ukraintsev
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague 6, Czech Republic
| | - Bohuslav Rezek
- Department of Physics, Faculty of Electrical Engineering, CTU in Prague, Technická 2, 166 27, Prague 6, Czech Republic
| |
Collapse
|
32
|
Lee JE, Lim CK, Song H, Choi SY, Lee DS. A highly smart MEMS acetone gas sensors in array for diet-monitoring applications. MICRO AND NANO SYSTEMS LETTERS 2021. [DOI: 10.1186/s40486-021-00136-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractIn the present work, gas sensor arrays consisted of four different sensing materials based on CuO and their depositions on the MEMS microheaters were designed, fabricated and characterized. The sensor array is consisted with CuO, CuO with Pt NPs, ZnO–CuO and ZnO–CuO with Au NPs and their gas sensing properties are characterized for detection of exhaled breath-related VOCs. Through MEMS microheaters, power consumption is considered for application to healthcare devices which requires ultrasensitive acetone gas sensitivity. Also, using the principal component analysis, it enables to discriminate acetone gas, a biomarker for fat burning during diet, with other VOCs gases. The device would be applicable for on-site diet monitoring in the field of mobile healthcare.
Collapse
|
33
|
|
34
|
Xie J, Liu X, Jing S, Pang C, Liu Q, Zhang J. Chemical and Electronic Modulation via Atomic Layer Deposition of NiO on Porous In 2O 3 Films to Boost NO 2 Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39621-39632. [PMID: 34383462 DOI: 10.1021/acsami.1c11262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To achieve high sensitivity under low-temperature operation is currently a challenge for metal oxide semiconductor gas sensors. In this work, a unique NiO-functionalized macroporous In2O3 thin film is designed by atomic layer deposition (ALD), which demonstrates great potential in electronic sensors for detecting NO2 at low temperature. This strategy allows for efficient engineering of the oxygen vacancy concentration and the formation of p-n heterojunctions in the hybrid In2O3/NiO thin films, which has been found to greatly impact the surface chemical and electrical properties of the sensing films. The sensor based on the optimized In2O3/NiO films exhibits a very high response of 532.2 to 10 ppm NO2, which is 26 times higher than that of the In2O3, at a relatively low operating temperature of 145 °C. In addition, an ultralow detection limit of ca. 6.9 ppb has been obtained, which surpasses most reports based on metal oxide sensors. Mechanistic investigations disclose that the improved sensor properties are resultant from the paramount surface active sites and high carrier concentration enabled by the oxygen vacancies, while excessive NiO ALD leads to a decreased sensor response due to the formed p-n heterojunctions.
Collapse
Affiliation(s)
- Jiayue Xie
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
| | - Xianghong Liu
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Shuliang Jing
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
| | - Chao Pang
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
| | - Qingshan Liu
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
| | - Jun Zhang
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
35
|
Park J, Tabata H. Gas Sensor Array Using a Hybrid Structure Based on Zeolite and Oxide Semiconductors for Multiple Bio-Gas Detection. ACS OMEGA 2021; 6:21284-21293. [PMID: 34471733 PMCID: PMC8387996 DOI: 10.1021/acsomega.1c01435] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/19/2021] [Indexed: 05/05/2023]
Abstract
Semiconductor-type gas sensors, composed of metal-oxide semiconductors and porous zeolite materials, are attractive devices for bio-gas detection, particularly when used as bio-gas sensors such as electronic nose application. Previous studies have shown such detection can be obtained with a separate gas concentrator and a sensor device using zeolites and oxide semiconductors of WO3 nanoparticles. By applying the gas concentrator, porous molecular structures alter both the gas sensitivity and the selectivity, and even can be used to define the sensor characteristics. Based on such a gas sensor design, we investigated the properties of an array of three sensors made of a layer of WO3 nanoparticles coated with zeolites with different interactions between gas molecule adsorption and desorption. The array was tested with four volatile organic compounds, each measured at different concentrations. The results confirm that the features of individual zeolites combined with the hybrid gas sensor behavior, along with the differences among the sensors, are sufficient for enabling the discrimination of volatile compounds when disregarding their concentration.
Collapse
|
36
|
Chen X, Leishman M, Bagnall D, Nasiri N. Nanostructured Gas Sensors: From Air Quality and Environmental Monitoring to Healthcare and Medical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1927. [PMID: 34443755 PMCID: PMC8398721 DOI: 10.3390/nano11081927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
In the last decades, nanomaterials have emerged as multifunctional building blocks for the development of next generation sensing technologies for a wide range of industrial sectors including the food industry, environment monitoring, public security, and agricultural production. The use of advanced nanosensing technologies, particularly nanostructured metal-oxide gas sensors, is a promising technique for monitoring low concentrations of gases in complex gas mixtures. However, their poor conductivity and lack of selectivity at room temperature are key barriers to their practical implementation in real world applications. Here, we provide a review of the fundamental mechanisms that have been successfully implemented for reducing the operating temperature of nanostructured materials for low and room temperature gas sensing. The latest advances in the design of efficient architecture for the fabrication of highly performing nanostructured gas sensing technologies for environmental and health monitoring is reviewed in detail. This review is concluded by summarizing achievements and standing challenges with the aim to provide directions for future research in the design and development of low and room temperature nanostructured gas sensing technologies.
Collapse
Affiliation(s)
- Xiaohu Chen
- NanoTech Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Michelle Leishman
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Darren Bagnall
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Noushin Nasiri
- NanoTech Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| |
Collapse
|
37
|
Liu J, Chen Y, Zhang H. Study of Highly Sensitive Formaldehyde Sensors Based on ZnO/CuO Heterostructure via the Sol-Gel Method. SENSORS 2021; 21:s21144685. [PMID: 34300424 PMCID: PMC8309541 DOI: 10.3390/s21144685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
Formaldehyde (HCHO) gas sensors with high performance based on the ZnO/CuO heterostructure (ZC) were designed, and the sensing mechanism was explored. FTIR results show that more OH- and N-H groups appeared on the surface of ZC with an increase in Cu content. XPS results show that ZC has more free oxygen radicals (O*) on its surface compared with ZnO, which will react with more absorbed HCHO molecules to form CO2, H2O and, electrons, accelerating the oxidation-reduction reaction to enhance the sensitivity of the ZC sensor. Furthermore, electrons move from ZnO to CuO in the ZC heterostructure due to the higher Fermi level of ZnO, and holes move from CuO to ZnO until the Fermi level reaches an equilibrium, which means the ZC heterostructure facilitates more free electrons existing on the surface of ZC. Sensing tests show that ZC has a low detection limit (0.079 ppm), a fast response/recovery time (1.78/2.90 s), and excellent selectivity and sensitivity for HCHO detection at room temperature. In addition, ambient humidity has little effect on the ZC gas sensor. All results indicate that the performance of the ZnO sensor for HCHO detection can be improved effectively by ZC heterojunction.
Collapse
Affiliation(s)
- Jing Liu
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi 830046, China; (J.L.); (Y.C.)
- School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yan Chen
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi 830046, China; (J.L.); (Y.C.)
- School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Hongyan Zhang
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi 830046, China; (J.L.); (Y.C.)
- School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
- Correspondence:
| |
Collapse
|
38
|
Liu J, Zhang L, Cheng B, Fan J, Yu J. A high-response formaldehyde sensor based on fibrous Ag-ZnO/In 2O 3 with multi-level heterojunctions. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125352. [PMID: 33930945 DOI: 10.1016/j.jhazmat.2021.125352] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 05/14/2023]
Abstract
Timely detection of formaldehyde is pivotal because formaldehyde is slowly released from the indoor decorative materials, jeopardizing our healthy. Herein, a high-response formaldehyde gas sensor based on Ag-ZnO/In2O3 nanofibers was successfully fabricated. Compared with all the control samples, the hybrid exhibits superior sensitivity (0.65 ppm-1), excellent selectivity (≥ 12.5) and durable stability (the deviation value ≤ 3%). Particularly, an ultra-high response value of about 186 towards 100 ppm of formaldehyde at 260 °C was achieved, heading the list of outstanding candidates. Additionally, the limit of detection is as low as 9 ppb. The enhanced gas sensing properties can be mainly attributed to multi-level heterojunctions (n-n heterojunction and Ohmic junction) and the "spill-over" effect of Ag, ultimately increasing the adsorption of gas molecules on the surface of sensing material. This work verifies that proper design of multi-level heterojunctions significantly upgrade the sensing performance.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, PR China
| | - Liuyang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, PR China.
| |
Collapse
|
39
|
Dai T, Deng Z, Fang X, Lu H, He Y, Chang J, Wang S, Zhu N, Li L, Meng G. In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance Bifunctional Sensing Applications. SMALL METHODS 2021; 5:e2100202. [PMID: 34927905 DOI: 10.1002/smtd.202100202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2021] [Indexed: 05/18/2023]
Abstract
Seeking a facile approach to directly assemble bridged metal oxide nanowires on substrates with predefined electrodes without the need for complex postsynthesis alignment and/or device procedures will bridge the gap between fundamental research and practical applications for diverse biochemical sensing, electronic, optoelectronic, and energy storage devices. Herein, regularly bridged CuO microhemisphere nanowire arrays (RB-MNAs) are rationally designed on indium tin oxide electrodes via thermal oxidation of ordered Cu microhemisphere arrays obtained by solid-state dewetting of patterned Ag/Cu/Ag films. Both the position and spacing of CuO microhemisphere nanowires can be well controlled by as-used shadow mask and the thickness of Cu film, which allows homogeneous manipulation of the bridging of adjacent nanowires grown from neighboring CuO hemispheres, and thus benefits highly sensitive trimethylamine (TMA) sensors and broad band (UV-visible to infrared) photodetectors. The electrical response of 3.62 toward 100 ppm TMA is comparable to that of state-of-the-art CuO-based sensors. Together with the feasibility of in situ assembly of RB-MNAs device arrays via common lithographic technologies, this work promises commercial device applications of CuO nanowires.
Collapse
Affiliation(s)
- Tiantian Dai
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei, 230037, China
| | - Zanhong Deng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei, 230037, China
| | - Xiaodong Fang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, 518118, China
| | - Huadong Lu
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, 030006, China
| | - Yong He
- College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Junqing Chang
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Shimao Wang
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei, 230037, China
| | - Nengwei Zhu
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, 518118, China
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, China
| | - Gang Meng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei, 230037, China
| |
Collapse
|
40
|
Ling W, Jian W, Gao N, Zhu D. The 1,2-propanediol-sensing properties of one-dimension Tb 2O 3-modified ZnO nanowires synthesized by water-glycerol binary thermal route. Anal Chim Acta 2021; 1160:338454. [PMID: 33894970 DOI: 10.1016/j.aca.2021.338454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022]
Abstract
One-dimension Tb2O3-modified ZnO nanowires were synthesized via water-glycerol binary thermal route. The X-ray diffraction (XRD) patterns demonstrated that the Tb2O3-modified ZnO was pure phase with high crystallinity. The Energy Dispersive Spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS) confirmed the chemical compositions of Tb2O3-modified ZnO. The images of field-emission electron microscopy (FESEM) indicated that the Tb2O3-modified ZnO was one-dimension nanowires with a diameter of ∼40-100 nm. N2 adsorption/desorption measurements and BET analysis were used to revealed the specific surface area and pore size of Tb2O3-modified ZnO. The images of Transmission Electron Microscope (TEM) and High-Resolution Transmission Electron Microscopy (HRTEM) further showed that the highly uniform heterojunctions had been successfully obtained. The sensitivity and response/recovery time of 3 at% Tb2O3-modified ZnO tested at 200 °C were ∼123 and 73s/50s to 50 ppm 1,2-propanediol, respectively. In addition, the detection limit was as low as 1 ppm. Under UV irradiation, the sensitivity was further improved to 152 while the response/recovery time was shortened to 67s/23s. The morphology of one-dimension Tb2O3-modified ZnO nanowires, the increase of oxygen-deficient region in ZnO and the formation of p-n heterojunction enhanced the properties of 1,2-propanediol-sensing synergistically.
Collapse
Affiliation(s)
- Wanyi Ling
- College of Material Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Wang Jian
- College of Material Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Niu Gao
- College of Material Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Dachuan Zhu
- College of Material Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
41
|
Ahmmed S, Aktar A, Ismail ABM. Role of a Solution-Processed V 2O 5 Hole Extracting Layer on the Performance of CuO-ZnO-Based Solar Cells. ACS OMEGA 2021; 6:12631-12639. [PMID: 34056414 PMCID: PMC8154148 DOI: 10.1021/acsomega.1c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
In this research, a heterostructure of the CuO-ZnO-based solar cells has been fabricated using low-cost, earth-abundant, non-toxic metal oxides by a low-cost, low-temperature spin coating technique. The device based on CuO-ZnO without a hole transport layer (HTL) suffers from poor power conversion efficiency due to carrier recombination on the surface of CuO and bad ohmic contact between the metal electrode and the CuO absorber layer. The main focus of this research is to minimize the mentioned shortcomings by a novel idea of introducing a solution-processed vanadium pentoxide (V2O5) HTL in the heterostructure of the CuO-ZnO-based solar cells. A simple and low-cost spin coating technique has been investigated to deposit V2O5 onto the absorber layer of the solar cell. The influence of the V2O5 HTL on the performance of CuO-ZnO-based solar cells has been investigated. The photovoltaic parameters of the CuO-ZnO-based solar cells were dramatically enhanced after insertion of the V2O5 HTL. V2O5 was found to enhance the open-circuit voltage of the CuO-ZnO-based solar cells up to 231 mV. A detailed study on the effect of defect properties of the CuO absorber layer on the device performance was theoretically accomplished to provide future guidelines for the performance enhancement of the CuO-ZnO-based solar cells. The experimental results indicate that solution-processed V2O5 could be a promising HTL for the low-cost, environment-friendly CuO-ZnO-based solar cells.
Collapse
Affiliation(s)
- Shamim Ahmmed
- Solar
Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
- Department
of Electrical and Electronic Engineering, North Bengal International University, Rajshahi 6100, Bangladesh
| | - Asma Aktar
- Solar
Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Abu Bakar Md. Ismail
- Solar
Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
42
|
Drmosh QA, Olanrewaju Alade I, Qamar M, Akbar S. Zinc Oxide-Based Acetone Gas Sensors for Breath Analysis: A Review. Chem Asian J 2021; 16:1519-1538. [PMID: 33970556 DOI: 10.1002/asia.202100303] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/01/2021] [Indexed: 12/15/2022]
Abstract
Acetone is one of the toxic, explosive, and harmful gases. It may cause several health hazard issues such as narcosis and headache. Acetone is also regarded as a key biomarker to diagnose several diseases as well as monitor the disorders in human health. Based on clinical findings, acetone concentration in human breath is correlated with many diseases such as asthma, halitosis, lung cancer, and diabetes. Thus, its investigation can become a new approach for health monitoring. Better management at the early stages of such diseases has the potential not only to reduce deaths associated with the disease but also to reduce medical costs. ZnO-based sensors show great potential for acetone gas due to their high chemical stability, simple synthesis process, and low cost. The findings suggested that the acetone sensing performance of such sensors can be significantly improved by manipulating the microstructure (surface area, porosity, etc.), composition, and morphology of ZnO nanomaterials. This article provides a comprehensive review of the state-of-the-art research activities, published during the last five years (2016 to 2020), related to acetone gas sensing using nanostructured ZnO (nanowires, nanoparticles, nanorods, thin films, etc). It focuses on different types of nanostructured ZnO-based acetone gas sensors. Furthermore, several factors such as relative humidity, acetone concentrations, and operating temperature that affects the acetone gas sensing properties- sensitivity, long-term stability, selectivity as well as response and recovery time are discussed in this review. We hope that this work will inspire the development of high-performance acetone gas sensors using nanostructured materials.
Collapse
Affiliation(s)
- Qasem A Drmosh
- Center of Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Ibrahim Olanrewaju Alade
- Department of Physics, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad Qamar
- Center of Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Sheikh Akbar
- Materials Science and Engineering Department, The Ohio State University, Columbus, OH, 43212, United States
| |
Collapse
|
43
|
Americo S, Pargoletti E, Soave R, Cargnoni F, Trioni MI, Chiarello GL, Cerrato G, Cappelletti G. Unveiling the acetone sensing mechanism by WO3 chemiresistors through a joint theory-experiment approach. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Zhao Y, Wang S, Zhai X, Shao L, Bai X, Liu Y, Wang T, Li Y, Zhang L, Fan F, Meng F, Zhang X, Fu Y. Construction of Zn/Ni Bimetallic Organic Framework Derived ZnO/NiO Heterostructure with Superior N-Propanol Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9206-9215. [PMID: 33557516 DOI: 10.1021/acsami.0c21583] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bimetallic organic frameworks (Bi-MOFs) have been recognized as one of the most ideal precursors to construct metal oxide semiconductor (MOS) composites, owing to their high surface area, various chemical structures, and easy removal of the sacrificial MOF scaffolds through calcination. Herein, we synthesized Zn/Ni Bi-MOF for the first time via a facile ion exchange postsynthetic strategy, formed a three-dimensional framework consisting of infinite one-dimensional chains that is unattainable through the direct solvothermal approach, and then transformed the Zn/Ni Bi-MOF into a unique ZnO/NiO heterostructure through calcination. Notably, the obtained sensor based on a ZnO/NiO heterostructure exhibits an ultrahigh response of 280.2 toward 500 ppm n-propanol at 275 °C (17.2-fold enhancement compared with that of ZnO), remarkable selectivity, and a limit of detection of 200 ppb with a notable response (2.51), which outperforms state-of-the-art n-propanol sensors. The enhanced n-propanol sensing properties may be attributed to the synergistic effects of several points including the heterojunction at the interface between the NiO and ZnO nanoparticles, especially a one-dimensional chain MOF template structure as well as the chemical sensitization effect of NiO. This work provides a promising strategy for the development of a novel Bi-MOF-derived MOS heterostructure or homostructure with well-defined morphology and composition that can be applied to the fields of gas sensing, energy storage, and catalysis.
Collapse
Affiliation(s)
- Yuming Zhao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Sha Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xu Zhai
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Lei Shao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaojue Bai
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Tieqiang Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yunong Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Liying Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Fuqiang Fan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Fanbao Meng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xuemin Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
45
|
Wang C, Zhang Y, Zhao L, Wang C, Liu F, Sun X, Hu X, Lu G. Novel quaternary oxide semiconductor for the application of gas sensors with long-term stability. J Colloid Interface Sci 2021; 592:186-194. [PMID: 33662824 DOI: 10.1016/j.jcis.2021.02.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
In this paper, quaternary oxide semiconductor was applied as sensing material for the fabrication of gas sensors. One-step solvothermal method was utilized to synthesize the sensing material. Various characterization methods including XRD, XPS, SEM, HRTEM were employed to analyze the composition and structure of the sensing material. Composite composed of CuInW2O8 and CuWO4 was successfully prepared at last characterized by XRD result. The SEM result revealed the structure of the sensing material: nanoparticles assembled spindle-like nanostructure with ~200 nm long axis and ~60 nm short axis. Sensor based on the spindle-like nanostructures was systemically tested to acquire the information about the sensing properties. The sensor exhibited responses to acetone at the operating temperatures from 190 to 275 °C. The results showed that the sensor was more sensitive to acetone compared with other gases at the optimal operating temperature of 210 °C. The response of the sensor was also tested under the relative humidity from 25 RH% to 95 RH% at the operating temperature of 210 °C. The response variation was only 13.9%, demonstrating that the sensor possessed strong anti-humidity ability. It was worth noting that the sensor showed acceptable long-term stability compared with other acetone sensors. The gas sensing mechanism was also discussed here. This work might provide ideas for the development of novel sensitive materials for the application of gas sensors.
Collapse
Affiliation(s)
- Chong Wang
- College of Communication Engineering, Jilin University, Changchun 130022, Jilin, China
| | - Yiqun Zhang
- College of Communication Engineering, Jilin University, Changchun 130022, Jilin, China
| | - Lianjing Zhao
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, Jilin, China
| | - Chenguang Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, Jilin, China
| | - Fangmeng Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, Jilin, China
| | - Xiaoying Sun
- College of Communication Engineering, Jilin University, Changchun 130022, Jilin, China.
| | - Xiaolong Hu
- Shenzhen Oradar Technology Company Limited, Shenzhen 518063, Guangdong, China.
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, Jilin, China
| |
Collapse
|
46
|
Shellaiah M, Sun KW. Inorganic-Diverse Nanostructured Materials for Volatile Organic Compound Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:633. [PMID: 33477501 PMCID: PMC7831086 DOI: 10.3390/s21020633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022]
Abstract
Environmental pollution related to volatile organic compounds (VOCs) has become a global issue which attracts intensive work towards their controlling and monitoring. To this direction various regulations and research towards VOCs detection have been laid down and conducted by many countries. Distinct devices are proposed to monitor the VOCs pollution. Among them, chemiresistor devices comprised of inorganic-semiconducting materials with diverse nanostructures are most attractive because they are cost-effective and eco-friendly. These diverse nanostructured materials-based devices are usually made up of nanoparticles, nanowires/rods, nanocrystals, nanotubes, nanocages, nanocubes, nanocomposites, etc. They can be employed in monitoring the VOCs present in the reliable sources. This review outlines the device-based VOC detection using diverse semiconducting-nanostructured materials and covers more than 340 references that have been published since 2016.
Collapse
Affiliation(s)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan;
| |
Collapse
|
47
|
Pan MQ, Hao XM, Chen C, Zhang Y, Xing GJ, Wu YB, Guo WL, Muhammad Y, Wang H. Enhanced acetone sensing from Zn(II)-MOFs comprising tetranuclear metal clusters built with EDC and BDC ligands. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Yang Z, Kang T, Ji Y, Li J, Zhu Y, Liu H, Jiang X, Zhong Z, Su F. Architectural Cu 2O@CuO mesocrystals as superior catalyst for trichlorosilane synthesis. J Colloid Interface Sci 2020; 589:198-207. [PMID: 33472146 DOI: 10.1016/j.jcis.2020.12.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 11/27/2022]
Abstract
As compared with conventional nanocrystal systems, Cu-based mesocrystals have demonstrated distinct advantages in catalytic applications. Here, we report the preparation of a novel architectural Cu2O@CuO catalyst system integrated with the core/shell and mesocrystal structures (Cu2O@CuO MC) via a facile solvothermal process followed by calcination. The formation mechanism of the Cu2O@CuO MC with hexapod morphology was deciphered based on a series of time-dependent experiments and characterizations. When applied as a Cu-based catalyst to produce trichlorosilane (TCS) via Si hydrochlorination reaction, the Cu2O@CuO MC exhibited a much higher Si conversion, TCS selectivity, and stability than the catalyst-free industrial process and the Cu2O@CuO catalyst with a core-shell nanostructure. The enhanced catalytic efficiency of the former is attributed to the collective effects from its quite rough surface for providing abundant adsorption sites, the ordered nanoparticle arrangement in the core and shell for generating strong synergistic effects, and the micrometer size for the improved structural stability. This work demonstrates a practical route for designing sophisticated architectural structures that combine several structural functions within one catalyst system and their catalysis applications.
Collapse
Affiliation(s)
- Zhibin Yang
- School of Metallurgy and Materials Engineering, Jiangsu University of Science and Technology, Zhangjiagang, Changxinzhong Road 8, Zhangjiagang 215600, China
| | - Ting Kang
- School of Metallurgy and Materials Engineering, Jiangsu University of Science and Technology, Zhangjiagang, Changxinzhong Road 8, Zhangjiagang 215600, China; State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongjun Ji
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Jing Li
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongxia Zhu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hezhi Liu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingyu Jiang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ziyi Zhong
- College of Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou 515063, China; Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| | - Fabing Su
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang 110142, China.
| |
Collapse
|
49
|
Novel 1D/2D KWO/Ti3C2Tx Nanocomposite-Based Acetone Sensor for Diabetes Prevention and Monitoring. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The acetone content in the exhaled breath of individuals as a biomarker of diabetes has become widely studied as a non-invasive means of quantifying blood glucose levels. This calls for development of sensors for the quantitative analysis of trace concentration of acetone, which is presents in the human exhaled breath. Traditional gas detection systems, such as the Gas Chromatography/Mass Spectrometry and several types of chemiresistive sensors are currently being used for this purpose. However, these systems are known to have limitations of size, cost, response time, operating conditions, and consistent accuracy. An ideal breath acetone sensor should provide solutions to overcome the above limitations and provide good stability and reliability. It should be a simple and portable detection system of good sensitivity, selectivity that is low in terms of both cost and power consumption. To achieve this goal, in this paper, we report a new sensing nanomaterial made by nanocomposite, 1D KWO (K2W7O22) nanorods/2D Ti3C2Tx nanosheets, as the key component to design an acetone sensor. The preliminary result exhibits that the new nanocomposite has an improved response to acetone, with 10 times higher sensitivity comparing to KWO-based sensor, much better tolerance of humidity interference and enhanced stability for multiple months. By comparing with other nanomaterials: Ti3C2, KWO, and KWO/Ti3C2Tx nanocomposites with variable ratio of KWO and Ti3C2Tx from 1:1, 1:2, 1:5, 2:1, 4:1, and 9:1, the initial results confirm the potential of the novel KWO/Ti3C2 (2:1) nanocomposite to be an excellent sensing material for application in sensitive and selective detection of breath acetone for diabetics health care and prevention.
Collapse
|