1
|
Dang H, Guan B, Chen J, Ma Z, Chen Y, Zhang J, Guo Z, Chen L, Hu J, Yi C, Yao S, Huang Z. Research on carbon dioxide capture materials used for carbon dioxide capture, utilization, and storage technology: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33259-33302. [PMID: 38698095 DOI: 10.1007/s11356-024-33370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/13/2024] [Indexed: 05/05/2024]
Abstract
In recent years, climate change has increasingly become one of the major challenges facing mankind today, seriously threatening the survival and sustainable development of mankind. Dramatically increasing carbon dioxide concentrations are thought to cause a severe greenhouse effect, leading to severe and sustained global warming, associated climate instability and unwelcome natural disasters, melting glaciers and extreme weather patterns. The treatment of flue gas from thermal power plants uses carbon capture, utilization, and storage (CCUS) technology, one of the most promising current methods to accomplish significant CO2 emission reduction. In order to implement the technological and financial system of CO2 capture, which is the key technology of CCUS technology and accounts for 70-80% of the overall cost of CCUS technology, it is crucial to create more effective adsorbents. Nowadays, with the development and application of various carbon dioxide capture materials, it is necessary to review and summarize carbon dioxide capture materials in time. In this paper, the main technologies of CO2 capture are reviewed, with emphasis on the latest research status of CO2 capture materials, such as amines, zeolites, alkali metals, as well as emerging MOFs and carbon nanomaterials. More and more research on CO2 capture materials has used a variety of improved methods, which have achieved high CO2 capture performance. For example, doping of layered double hydroxides (LDH) with metal atoms significantly increases the active site on the surface of the material, which has a significant impact on improving the CO2 capture capacity and performance stability of LDH. Although many carbon capture materials have been developed, high cost and low technology scale remain major obstacles to CO2 capture. Future research should focus on designing low-cost, high-availability carbon capture materials.
Collapse
Affiliation(s)
- Hongtao Dang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Guan
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Junyan Chen
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zeren Ma
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yujun Chen
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinhe Zhang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zelong Guo
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Chen
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingqiu Hu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Yi
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shunyu Yao
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhen Huang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Chen M, Li M, Liang Y, Meng W, Zhang Z, Wu Y, Li X, Zhang F. Improvement in CO 2 Capture of Polyamine with Micro-Interfacial System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14451-14458. [PMID: 37773886 DOI: 10.1021/acs.langmuir.3c02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Polyamines have emerged as a promising class of CO2 absorbents due to their remarkable sequestration capacity. However, their potential industrial application as aqueous absorbents is significantly hindered by a low regeneration efficiency and high energy consumption. To address these issues, this study investigates the use of triethylenetetramine (TETA) and ethylene glycol (EG) to develop a nonaqueous absorbent. The incorporation of EG enhances absorption performance and reduces the regeneration energy needed for TETA, whereas the high viscosity of the absorbent impedes absorption rate, amine efficiency, and regeneration efficiency. In order to enhance CO2 capture, micron-sized reaction units (SiO2@TETA-EG) were developed by encapsulating TETA solution with nanosilica. The SiO2@TETA-EG composite exhibits a large specific surface area (99 m2/g), with a porous shell structure and improved fluidity, which effectively counteracts the negative effects caused by high viscosity. Notably, SiO2@TETA-EG indicates a noticeably higher apparent rate constant of 4.29 min-1 at 323.2 K compared to the TETA-EG solution. Furthermore, SiO2@TETA-EG displays a 28.4% boost in regeneration efficiency while maintaining favorable stability in pore size and shape after regeneration.
Collapse
Affiliation(s)
- Meisi Chen
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Mengjia Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Yinchun Liang
- Nantong Cellulose Fibers Co., Ltd., Nantong, Jiangsu 226008, China
| | - Weimin Meng
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Zhibing Zhang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Youting Wu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Xinyao Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Feng Zhang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| |
Collapse
|
3
|
Li H, Nasiman T. Highly efficient and selective CO 2 capture of Li 2CO 3- and (Li-K) 2CO 3-based porous carbon composites. RSC Adv 2023; 13:19881-19887. [PMID: 37409040 PMCID: PMC10318415 DOI: 10.1039/d3ra02607h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
In this study, Li2CO3- and (Li-K)2CO3-based porous carbon composites were synthesized from terephthalic acid, lithium hydroxide and sodium hydroxide through calcination at different temperatures. These materials were fully characterized through X-ray diffraction, Raman spectroscopy, and nitrogen adsorption and desorption. Results showed that the excellent CO2 capture capacities of LiC-700 °C and LiKC-600 °C were 140 and 82 mg CO2 g-1 at 0 °C and 25 °C, respectively. Additionally, it is calculated that the selectivity of LiC-600 °C and LiKC-700 °C with a CO2/N2 (15 : 85) mixture was about 27.41 and 15.04, respectively. Therefore, Li2CO3- and (Li-K)2CO3-based porous carbon materials could be used to effectively capture CO2 with high capacity and high selectivity.
Collapse
Affiliation(s)
- Honghao Li
- College of Chemistry and Chemical Engineering, Xinjiang Normal University Urumqi 830054 China
| | - Tuerxun Nasiman
- College of Chemistry and Chemical Engineering, Xinjiang Normal University Urumqi 830054 China
| |
Collapse
|
4
|
Lund A, Manohara GV, Song AY, Jablonka KM, Ireland CP, Cheah LA, Smit B, Garcia S, Reimer JA. Characterization of Chemisorbed Species and Active Adsorption Sites in Mg-Al Mixed Metal Oxides for High-Temperature CO 2 Capture. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:3893-3901. [PMID: 35573112 PMCID: PMC9097159 DOI: 10.1021/acs.chemmater.1c03101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Mg-Al mixed metal oxides (MMOs), derived from the decomposition of layered double hydroxides (LDHs), have been purposed as adsorbents for CO2 capture of industrial plant emissions. To aid in the design and optimization of these materials for CO2 capture at 200 °C, we have used a combination of solid-state nuclear magnetic resonance (ssNMR) and density functional theory (DFT) to characterize the CO2 gas sorption products and determine the various sorption sites in Mg-Al MMOs. A comparison of the DFT cluster calculations with the observed 13C chemical shifts of the chemisorbed products indicates that mono- and bidentate carbonates are formed at the Mg-O sites with adjacent Al substitution of an Mg atom, while the bicarbonates are formed at Mg-OH sites without adjacent Al substitution. Quantitative 13C NMR shows an increase in the relative amount of strongly basic sites, where the monodentate carbonate product is formed, with increasing Al/Mg molar ratios in the MMOs. This detailed understanding of the various basic Mg-O sites presented in MMOs and the formation of the carbonate, bidentate carbonate, and bicarbonate chemisorbed species yields new insights into the mechanism of CO2 adsorption at 200 °C, which can further aid in the design and capture capacity optimization of the materials.
Collapse
Affiliation(s)
- Alicia Lund
- Materials
Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - G. V. Manohara
- Research
Center for Carbon Solutions (RCCS), School of Engineering and Physical
Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Ah-Young Song
- Materials
Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Kevin Maik Jablonka
- Laboratory
of Molecular Simulation (LSMO), Institut
des Sciences et Ingénierie Chimiques, École Polytechnique
Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Switzerland
| | - Christopher P. Ireland
- Laboratory
of Molecular Simulation (LSMO), Institut
des Sciences et Ingénierie Chimiques, École Polytechnique
Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Switzerland
| | - Li Anne Cheah
- Research
Center for Carbon Solutions (RCCS), School of Engineering and Physical
Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Berend Smit
- Laboratory
of Molecular Simulation (LSMO), Institut
des Sciences et Ingénierie Chimiques, École Polytechnique
Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, Sion CH-1951, Switzerland
| | - Susana Garcia
- Research
Center for Carbon Solutions (RCCS), School of Engineering and Physical
Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Jeffrey A. Reimer
- Materials
Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Hashemi SM, Karami D, Mahinpey N. CaO-Based Nanomaterials Promoted with CaZrO 3 for High-Temperature Carbon Capture. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Seyed Mojtaba Hashemi
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Davood Karami
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Nader Mahinpey
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
6
|
Chang RW, Lin CJ, Liou YH. Multicycle Performance of CaTiO 3 Decorated CaO-Based CO 2 Adsorbent Prepared by a Versatile Aerosol Assisted Self-Assembly Method. NANOMATERIALS 2021; 11:nano11123188. [PMID: 34947536 PMCID: PMC8703767 DOI: 10.3390/nano11123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022]
Abstract
Calcium oxide (CaO) is a promising adsorbent to separate CO2 from flue gas. However, with cycling of carbonation/decarbonation at high temperature, the serious sintering problem causes its capture capacity to decrease dramatically. A CaTiO3-decorated CaO-based CO2 adsorbent was prepared by a continuous and simple aerosol-assisted self-assembly process in this work. Results indicated that CaTiO3 and CaO formed in the adsorbent, whereas CaO gradually showed a good crystalline structure with increased calcium loading. Owing to the high thermal stability of CaTiO3, it played a role in suppressing the sintering effect and maintaining repeated high-temperature carbonation and decarbonation processes. When the calcium and titanium ratio was 3, the CO2 capture capacity was as large as 7 mmol/g with fast kinetics. After 20 cycles under mild regeneration conditions (700 °C, N2), the performance of CO2 capture of CaTiO3-decorated CaO-based adsorbent nearly unchanged. Even after 10 cycles under severe regeneration conditions (920 °C, CO2), the performance of CO2 capture still remained nearly 70% compared to the first cycle. The addition of CaTiO3 induced good and firm CaO dispersion on its surface. Excellent kinetics and stability were evident.
Collapse
Affiliation(s)
- Ren-Wei Chang
- Department of Geosciences, National Taiwan University, Taipei 106, Taiwan;
- Research Center for Future Earth, National Taiwan University, Taipei 106, Taiwan
| | - Chin-Jung Lin
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan
- Correspondence: (C.-J.L.); (Y.-H.L.)
| | - Ya-Hsuan Liou
- Department of Geosciences, National Taiwan University, Taipei 106, Taiwan;
- Research Center for Future Earth, National Taiwan University, Taipei 106, Taiwan
- Correspondence: (C.-J.L.); (Y.-H.L.)
| |
Collapse
|
7
|
Dunstan MT, Donat F, Bork AH, Grey CP, Müller CR. CO 2 Capture at Medium to High Temperature Using Solid Oxide-Based Sorbents: Fundamental Aspects, Mechanistic Insights, and Recent Advances. Chem Rev 2021; 121:12681-12745. [PMID: 34351127 DOI: 10.1021/acs.chemrev.1c00100] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbon dioxide capture and mitigation form a key part of the technological response to combat climate change and reduce CO2 emissions. Solid materials capable of reversibly absorbing CO2 have been the focus of intense research for the past two decades, with promising stability and low energy costs to implement and operate compared to the more widely used liquid amines. In this review, we explore the fundamental aspects underpinning solid CO2 sorbents based on alkali and alkaline earth metal oxides operating at medium to high temperature: how their structure, chemical composition, and morphology impact their performance and long-term use. Various optimization strategies are outlined to improve upon the most promising materials, and we combine recent advances across disparate scientific disciplines, including materials discovery, synthesis, and in situ characterization, to present a coherent understanding of the mechanisms of CO2 absorption both at surfaces and within solid materials.
Collapse
Affiliation(s)
- Matthew T Dunstan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Felix Donat
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Alexander H Bork
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christoph R Müller
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| |
Collapse
|
8
|
The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture: Analysis review. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|