1
|
Goldberg I, Elkhouly K, Annavarapu N, Hamdad S, Gonzalez MC, Genoe J, Gehlhaar R, Heremans P. Toward Thin-Film Laser Diodes with Metal Halide Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314193. [PMID: 39177182 DOI: 10.1002/adma.202314193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/17/2024] [Indexed: 08/24/2024]
Abstract
Metal halide perovskite semiconductors hold a strong promise for enabling thin-film laser diodes. Perovskites distinguish themselves from other non-epitaxial media primarily through their ability to maintain performance at high current densities, which is a critical requirement for achieving injection lasing. Coming in a wide range of varieties, numerous perovskites delivered low-threshold optical amplified spontaneous emission and optically pumped lasing when combined with a suitable optical cavity. A progression toward electrically pumped lasing requires the development of efficient light-emitting structures with reduced optical losses and high radiative efficiency at lasing-level current densities. This involves a set of important trade-offs in terms of material choice, stack and waveguide design, as well as resonator integration. In this Perspective, the key milestones are highlighted that have been achieved in the study of passive optical waveguides and light-emitting diodes, and these learnings are translated toward more complex laser diode architectures. Finally, a novel resonator integration route is proposed that is capable of relaxing optical and electrical design constraints.
Collapse
Affiliation(s)
- Iakov Goldberg
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Karim Elkhouly
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Nirav Annavarapu
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Sarah Hamdad
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Maider Calderon Gonzalez
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Jan Genoe
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | | | - Paul Heremans
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| |
Collapse
|
2
|
Moon J, Mehta Y, Gundogdu K, So F, Gu Q. Metal-Halide Perovskite Lasers: Cavity Formation and Emission Characteristics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211284. [PMID: 36841548 DOI: 10.1002/adma.202211284] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Hybrid metal-halide perovskites (MHPs) have shown remarkable optoelectronic properties as well as facile and cost-effective processability. With the success of MHP solar cells and light-emitting diodes, MHPs have also exhibited great potential as gain media for on-chip lasers. However, to date, stable operation of optically pumped MHP lasers and electrically driven MHP lasers-an essential requirement for MHP laser's insertion into chip-scale photonic integrated circuits-is not yet demonstrated. The main obstacles include the instability of MHPs in the atmosphere, rudimentary MHP laser cavity patterning methods, and insufficient understanding of emission mechanisms in MHP materials and cavities. This review aims to provide a detailed overview of different strategies to improve the intrinsic properties of MHPs in the atmosphere and to establish an optimal MHP cavity patterning method. In addition, this review discusses different emission mechanisms in MHP materials and cavities and how to distinguish them.
Collapse
Affiliation(s)
- Jiyoung Moon
- Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yash Mehta
- Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Kenan Gundogdu
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
- Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Franky So
- Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Qing Gu
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
- Physics, North Carolina State University, Raleigh, NC, 27695, USA
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
3
|
Chen J, Jiang G, Hamann E, Mescher H, Jin Q, Allegro I, Brenner P, Li Z, Gaponik N, Eychmüller A, Lemmer U. Organosilicon-Based Ligand Design for High-Performance Perovskite Nanocrystal Films for Color Conversion and X-ray Imaging. ACS NANO 2024; 18:10054-10062. [PMID: 38527458 PMCID: PMC11008364 DOI: 10.1021/acsnano.3c11991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/27/2024]
Abstract
Perovskite nanocrystals (PNCs) bear a huge potential for widespread applications, such as color conversion, X-ray scintillators, and active laser media. However, the poor intrinsic stability and high susceptibility to environmental stimuli including moisture and oxygen have become bottlenecks of PNC materials for commercialization. Appropriate barrier material design can efficiently improve the stability of the PNCs. Particularly, the strategy for packaging PNCs in organosilicon matrixes can integrate the advantages of inorganic-oxide-based and polymer-based encapsulation routes. However, the inert long-carbon-chain ligands (e.g., oleic acid, oleylamine) used in the current ligand systems for silicon-based encapsulation are detrimental to the cross-linking of the organosilicon matrix, resulting in performance deficiencies in the nanocrystal films, such as low transparency and large surface roughness. Herein, we propose a dual-organosilicon ligand system consisting of (3-aminopropyl)triethoxysilane (APTES) and (3-aminopropyl)triethoxysilane with pentanedioic anhydride (APTES-PA), to replace the inert long-carbon-chain ligands for improving the performance of organosilicon-coated PNC films. As a result, strongly fluorescent PNC films prepared by a facile solution-casting method demonstrate high transparency and reduced surface roughness while maintaining high stability in various harsh environments. The optimized PNC films were eventually applied in an X-ray imaging system as scintillators, showing a high spatial resolution above 20 lp/mm. By designing this promising dual organosilicon ligand system for PNC films, our work highlights the crucial influence of the molecular structure of the capping ligands on the optical performance of the PNC film.
Collapse
Affiliation(s)
- Junchi Chen
- Light
Technology Institute, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Guocan Jiang
- Zhejiang
Institute of Photoelectronics, Department of Physics, Zhejiang Normal University, Jinhua, 321004 Zhejiang, P. R. China
- Physical
Chemistry, Technische Universität
Dresden (TUD), Zellescher
Weg 19, 01069 Dresden, Germany
| | - Elias Hamann
- Institute
for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein Leopoldshafen, Germany
| | - Henning Mescher
- Light
Technology Institute, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Qihao Jin
- Light
Technology Institute, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Isabel Allegro
- Light
Technology Institute, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Philipp Brenner
- ZEISS
Innovation Hub @ KIT, Hermann-von-Helmholtz-Platz 6, 76344 Eggenstein-Leopoldshafen, Germany
| | - Zhengquan Li
- Zhejiang
Institute of Photoelectronics, Department of Physics, Zhejiang Normal University, Jinhua, 321004 Zhejiang, P. R. China
| | - Nikolai Gaponik
- Physical
Chemistry, Technische Universität
Dresden (TUD), Zellescher
Weg 19, 01069 Dresden, Germany
| | - Alexander Eychmüller
- Physical
Chemistry, Technische Universität
Dresden (TUD), Zellescher
Weg 19, 01069 Dresden, Germany
| | - Uli Lemmer
- Light
Technology Institute, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| |
Collapse
|
4
|
Zhang H, Wang X, Ai N, Wang J. Highly luminescent and stable CsPbBr 3 perovskite nanocrystals coated with polyethersulfone for white light-emitting diode applications. LUMINESCENCE 2024; 39:e4734. [PMID: 38576335 DOI: 10.1002/bio.4734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Simultaneously improving the stability and photoluminescence quantum yield (PLQY) of all inorganic perovskite nanocrystals (NCs) is crucial for their practical utilization in various optoelectronic devices. Here, CsPbBr3 NCs coated with polyethersulfone (PES) were prepared via an in-situ co-precipitation method. The sulfone groups in PES bind to undercoordinated lead ion (Pb2+) on the CsPbBr3 NCs, resulting in significant reduction of surface defects, thus enhancing the PLQY from 74.2% to 88.3%. Meanwhile, the PES-coated NCs exhibit high water resistance and excellent heat and light stability, maintaining over 85% of the initial PL intensity under thermal aging (70°C, 4 h) and continuous 365 nm ultraviolet (UV) light irradiation (24 W, 8 h) conditions. By contrast, the PL intensity of the control NCs dramatically dropped to less than 40%. Finally, a diode emitting bright white light was fabricated utilizing the PES-coated CsPbBr3 NCs, which exhibits a color gamut of ~110% NTSC standard.
Collapse
Affiliation(s)
- Hao Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xuemei Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ning Ai
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, P. R. China
| | - Jianli Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
5
|
Kim S, Hwang S, Bang J. Enhancement of Optical Gain in Colloidal CdSe/CdS/ZnS Quantum Dots through Nanosecond Optical Pumping. J Phys Chem Lett 2024; 15:1741-1747. [PMID: 38324378 DOI: 10.1021/acs.jpclett.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Optical gain and lasing in colloidal nanocrystals are often hindered by sub-nanosecond rapid Auger non-radiative recombination, especially under continuous wave optical or electrical excitation. This study demonstrates amplified spontaneous emission (ASE) from CdSe/CdS/ZnS quantum dot (QD) solids through prolonged pulsed optical pumping over 10 ns. The incorporation of CdS and ZnS double shells on CdSe QDs effectively decelerates the Auger process in multiexcitonic states by extending the electron wave function and enhancing dielectric screening. Furthermore, we engineer smooth, densely packed QD solid films that efficiently guide the optical mode, achieving substantial net gain values under nanosecond pumping. The proposed approach helps observe ASE with gain thresholds of 0.84 and 1.5 mJ/cm2 under optical pumping pulse widths of 6 and 15 ns, respectively. This advancement can promote continuous pumping in colloidal QD gain systems, opening new avenues for optoelectronic applications.
Collapse
Affiliation(s)
- Suhyeon Kim
- Department of Chemistry, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Suhyeon Hwang
- Department of Chemistry, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Jiwon Bang
- Department of Chemistry, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
6
|
Gunnarsson WB, Roh K, Zhao L, Murphy JP, Grede AJ, Giebink NC, Rand BP. Toward Nonepitaxial Laser Diodes. Chem Rev 2023. [PMID: 37219995 DOI: 10.1021/acs.chemrev.2c00721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Thin-film organic, colloidal quantum dot, and metal halide perovskite semiconductors are all being pursued in the quest for a wavelength-tunable diode laser technology that does not require epitaxial growth on a traditional semiconductor substrate. Despite promising demonstrations of efficient light-emitting diodes and low-threshold optically pumped lasing in each case, there are still fundamental and practical barriers that must be overcome to reliably achieve injection lasing. This review outlines the historical development and recent advances of each material system on the path to a diode laser. Common challenges in resonator design, electrical injection, and heat dissipation are highlighted, as well as the different optical gain physics that make each system unique. The evidence to date suggests that continued progress for organic and colloidal quantum dot laser diodes will likely hinge on the development of new materials or indirect pumping schemes, while improvements in device architecture and film processing are most critical for perovskite lasers. In all cases, systematic progress will require methods that can quantify how close new devices get with respect to their electrical lasing thresholds. We conclude by discussing the current status of nonepitaxial laser diodes in the historical context of their epitaxial counterparts, which suggests that there is reason to be optimistic for the future.
Collapse
Affiliation(s)
- William B Gunnarsson
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Kwangdong Roh
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Lianfeng Zhao
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - John P Murphy
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alex J Grede
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Noel C Giebink
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Barry P Rand
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
7
|
Lou X, Yao L, Zhang J, Sui N, Wu M, Zhang W, Kang Z, Chi X, Zhou Q, Zhang H, Wang Y. Competition of Carrier Kinetics Contributes to Amplified Spontaneous Emission in Quasi-2D/3D (PBA) 2MA n-1Pb nBr 3n+1 Thin Films under Strip Light Mode. J Phys Chem Lett 2023; 14:4050-4057. [PMID: 37093818 DOI: 10.1021/acs.jpclett.3c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Quasi-2D halide perovskites have potential in lasing due to their amplified spontaneous emission (ASE) properties. The ASE of (PBA)2MAn-1PbnBr3n+1 thin films has been confirmed by photoluminescence (PL) testing using stripe light excitation (SLE). The ASE threshold decreases with decreasing environmental temperature (TE) or increasing number of inorganic layers (n). Using the transient absorption technique, the Auger recombination and the cooling process of the high-activity carrier are accelerated with the decrease of n or TE. A new ASE mechanism is proposed where high-activity carriers directly emit photons under photon perturbation from adjacent sites, leading to the accumulation and amplification of emitted photons only in the SLE region for ASE to occur. In addition, the reduction of n promotes light scattering between nano-thin layers, which supports a rapid increase in the ASE signal after the ASE threshold is crossed.
Collapse
Affiliation(s)
- Xue Lou
- Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Lianfei Yao
- Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Jiaqi Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Ning Sui
- Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Min Wu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou, 510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou 510006, China
| | - Zhihui Kang
- Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Xiaochun Chi
- Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Qiang Zhou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Hanzhuang Zhang
- Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Yinghui Wang
- Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
8
|
Qin J, Tang Y, Zhang J, Shen T, Karlsson M, Zhang T, Cai W, Shi L, Ni WX, Gao F. From optical pumping to electrical pumping: the threshold overestimation in metal halide perovskites. MATERIALS HORIZONS 2023; 10:1446-1453. [PMID: 36789680 DOI: 10.1039/d2mh01382g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The threshold carrier density, conventionally evaluated from optical pumping, is a key reference parameter towards electrically pumped lasers with the widely acknowledged assumption that optically excited charge carriers relax to the band edge through an ultrafast process. However, the characteristically slow carrier cooling in perovskites challenges this assumption. Here, we investigate the optical pumping of state-of-the-art bromide- and iodine-based perovskites. We find that the threshold decreases by one order of magnitude with decreasing excitation energy from 3.10 eV to 2.48 eV for methylammonium lead bromide perovskite (MAPbBr3), indicating that the low-energy photon excitation facilitates faster cooling and hence enables efficient carrier accumulation for population inversion. Our results are then interpreted due to the coupling of phonon scattering in connection with the band structure of perovskites. This effect is further verified in the two-photon pumping process, where the carriers relax to the band edge with a smaller difference in phonon momentum that speeds up the carrier cooling process. Furthermore, by extrapolating the optical pumping threshold to the band edge excitation as an analog of the electrical carrier injection to the perovskite, we obtain a critical threshold carrier density of ∼1.9 × 1017 cm-3, which is one order of magnitude lower than that estimated from the conventional approach. Our work thus highlights the feasibility of metal halide perovskites for electrically pumped lasers.
Collapse
Affiliation(s)
- Jiajun Qin
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433, China.
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-58183, Sweden.
| | - Yang Tang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433, China.
| | - Jia Zhang
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-58183, Sweden.
| | - Tangyao Shen
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433, China.
| | - Max Karlsson
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-58183, Sweden.
| | - Tiankai Zhang
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-58183, Sweden.
| | - Weidong Cai
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-58183, Sweden.
| | - Lei Shi
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433, China.
| | - Wei-Xin Ni
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-58183, Sweden.
| | - Feng Gao
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-58183, Sweden.
| |
Collapse
|
9
|
Morello G, Milanese S, De Giorgi ML, Calisi N, Caporali S, Biccari F, Falsini N, Vinattieri A, Anni M. Temperature-Dependent Amplified Spontaneous Emission in CsPbBr 3 Thin Films Deposited by Single-Step RF-Magnetron Sputtering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:306. [PMID: 36678059 PMCID: PMC9866928 DOI: 10.3390/nano13020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Due to their high optical efficiency, low-cost fabrication and wide variety in composition and bandgap, halide perovskites are recognized nowadays as real contenders for the development of the next generation of optoelectronic devices, which, among others, often require high quality over large areas which is readily attainable by vacuum deposition. Here, we report the amplified spontaneous emission (ASE) properties of two CsPbBr3 films obtained by single-step RF-magnetron sputtering from a target containing precursors with variable compositions. Both the samples show ASE over a broad range of temperatures from 10 K up to 270 K. The ASE threshold results strongly temperature dependent, with the best performance occurring at about 50 K (down to 100 µJ/cm2), whereas at higher temperatures, there is evidence of thermally induced optical quenching. The observed temperature dependence is consistent with exciton detrapping up to about 50 K. At higher temperatures, progressive free exciton dissociation favors higher carrier mobility and increases trapping at defect states with consequent emission reduction and increased thresholds. The reported results open the way for effective large-area, high quality, organic solution-free deposited perovskite thin films for optoelectronic applications, with a remarkable capability to finely tune their physical properties.
Collapse
Affiliation(s)
- Giovanni Morello
- CNR-IMM, Institute for Microelectronic and Microsystems Unit of Lecce, Via per Monteroni, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano (LE), Italy
| | - Stefania Milanese
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Maria Luisa De Giorgi
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Nicola Calisi
- Department of Industrial Engineering, University of Florence, Via di S. Marta 3, 50139 Firenze, Italy
- Research Unit of Firenze, National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Stefano Caporali
- Department of Industrial Engineering, University of Florence, Via di S. Marta 3, 50139 Firenze, Italy
- Research Unit of Firenze, National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Francesco Biccari
- Department of Physics and Astronomy and LENS, University of Florence, Via G. Sansone1, 50125 Sesto Fiorentino (FI), Italy
| | - Naomi Falsini
- Nuclear Safety, Security and Sustainability Division, Fusion and Technology for Nuclear Safety and Security Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| | - Anna Vinattieri
- Department of Physics and Astronomy and LENS, University of Florence, Via G. Sansone1, 50125 Sesto Fiorentino (FI), Italy
| | - Marco Anni
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via per Arnesano, 73100 Lecce, Italy
| |
Collapse
|
10
|
Tian H, Jiang X, Li T, Yan M, Xu L, Lu G, Zhang Y, Zhu H, He H, Yang D, Fang Y. Vacuum-Vapor-Deposited 0D/3D All-Inorganic Perovskite Composite Films toward Low-Threshold Amplified Spontaneous Emission and Lasing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204752. [PMID: 36156416 DOI: 10.1002/smll.202204752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Vacuum vapor deposition (VVD) is a promising way to advancing the commercialization of perovskite light sources owing to its convenience for wafer-scale mass production and compatibility with silicon photonics manufacturing infrastructure. However, the light emission performance of VVD-grown perovskites still lags far behind that of the conventional solution-processed counterparts due to their inferior luminescence properties. Here, a 0D/3D cesium-lead-bromide perovskite composite film is prepared on Si/SiO2 substrates through composition modulation with the VVD method, which exhibits an ultralow amplified spontaneous emission (ASE) threshold down to 14.3 µJ cm-2 in the optimal films, which is on par with that of the solution-processed counterparts. Meanwhile, they also display intriguing operational stability with negligible emission intensity decay under continuous excitation above ASE threshold for 4 h in the air. The outstanding ASE performance mainly originates from the reduced trap density and weakened electron-phonon coupling in the 3D CsPbBr3 phase enabled by the incorporation of the 0D Cs4 PbBr6 phase. Finally, by integrating the composite film with the distributed feedback (DFB) cavity, DFB lasing is achieved with a low threshold of 18.2 µJ cm-2 under nanosecond-pulsed laser pumping, which highlights the potential of VVD-processed perovskites for developing high-performance lasers.
Collapse
Affiliation(s)
- Hongjun Tian
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xinyi Jiang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tianjing Li
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Minxing Yan
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Li Xu
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guochao Lu
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yao Zhang
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haiping He
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yanjun Fang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
11
|
Antrack T, Kroll M, Sudzius M, Cho C, Imbrasas P, Albaladejo‐Siguan M, Benduhn J, Merten L, Hinderhofer A, Schreiber F, Reineke S, Vaynzof Y, Leo K. Optical Properties of Perovskite-Organic Multiple Quantum Wells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200379. [PMID: 35780500 PMCID: PMC9403629 DOI: 10.1002/advs.202200379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
A comprehensive study of the optical properties of CsPbBr3 perovskite multiple quantum wells (MQW) with organic barrier layers is presented. Quantum confinement is observed by a blue-shift in absorption and emission spectra with decreasing well width and agrees well with simulations of the confinement energies. A large increase of emission intensity with thinner layers is observed, with a photoluminescence quantum yield up to 32 times higher than that of bulk layers. Amplified spontaneous emission (ASE) measurements show very low thresholds down to 7.3 µJ cm-2 for a perovskite thickness of 8.7 nm, significantly lower than previously observed for CsPbBr3 thin-films. With their increased photoluminescence efficiency and low ASE thresholds, MQW structures with CsPbBr3 are excellent candidates for high-efficiency perovskite-based LEDs and lasers.
Collapse
Affiliation(s)
- Tobias Antrack
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Martin Kroll
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Markas Sudzius
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Changsoon Cho
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Paulius Imbrasas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Miguel Albaladejo‐Siguan
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Lena Merten
- Institut für Angewandte PhysikUniversität TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Alexander Hinderhofer
- Institut für Angewandte PhysikUniversität TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Frank Schreiber
- Institut für Angewandte PhysikUniversität TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Yana Vaynzof
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| |
Collapse
|
12
|
Ghaithan HM, Qaid SMH, AlHarbi KK, Bin Ajaj AF, Al-Asbahi BA, Aldwayyan AS. Amplified Spontaneous Emission from Thermally Evaporated High-Quality Thin Films of CsPb(Br 1-xY x) 3 (Y = I, Cl) Perovskites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8607-8613. [PMID: 35777070 DOI: 10.1021/acs.langmuir.2c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a wavelength-tunable lasing material, perovskites are now generating a lot of scientific attention. Conventional solution-processed CsPbX3 perovskite films sometimes suffer unavoidable pinhole defects and poor surface morphology, severely limiting their performance on amplified spontaneous emission (ASE) and lasing application. Herein, a thermal evaporation approach is explored in our work to achieve a uniform and high-coverage CsPb(Br1-xYx)3 (Y = I, Cl) perovskites polycrystalline thin film. The ASE of these films was studied using a picosecond laser system. The ASE profile increases rapidly over the narrow peak in relation to the laser pump intensity, confirming the development of stimulated emission. ASE began when the energy density threshold was reached and ranged between 25 and 170 μJ/cm2 per pulse for perovskite materials when replacing I with Br and then Cl. This work emphasizes the notable optical properties of high-quality perovskite thin films, leading to possible accessible uses in optoelectronic applications.
Collapse
Affiliation(s)
- Hamid M Ghaithan
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saif M H Qaid
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Physics, Faculty of Science, Ibb University, Ibb 70270, Yemen
| | - Khulod K AlHarbi
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abrar F Bin Ajaj
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bandar Ali Al-Asbahi
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Physics, Faculty of Science, Sana'a University, Sana'a 12544, Yemen
| | - Abdullah S Aldwayyan
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Achieving Up-Conversion Amplified Spontaneous Emission through Spin Alignment between Coherent Light-Emitting Excitons in Perovskite Microstructures. PHOTONICS 2022. [DOI: 10.3390/photonics9050353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metal hybrid perovskites have presented interesting infrared-to-visible up-conversion light-emitting lasing properties through multi-photon absorption. Here, when the optical pumping switches between circular and linear polarization, up-conversion amplified spontaneous emission (ASE) intensity exhibits large and small amplitudes, respectively, leading to a positive up-conversion ΔASE in the CsPbBr3 perovskite microrods. This observed phenomenon demonstrates that the coherent interaction between coherent light-emitting excitons is indeed established at the up-conversion ASE regime in the CsPbBr3 perovskite microrods. In addition, the positive up-conversion ΔASE indicates the orbital magnetic dipoles between coherent light-emitting excitons are conserved during up-conversion ASE action. Essentially, the up-conversion ΔASE results provide evidence that shows up-conversion ASE can be realized by the orbit−orbit polarization interaction between light-emitting excitons. Moreover, up-conversion ASE proportionally increased as the pumping fluence increased, which shows that orbit–orbit polarization interaction can be gradually enhanced between coherent light-emitting excitons by increasing pumping density in the CsPbBr3 perovskite microrods. Substantially, our studies provide a fundamental understanding of the spin alignment between coherent light-emitting excitons towards developing spin-dependent nonlinear lasing actions in metal halide perovskites.
Collapse
|
14
|
Yan C, Wang Y, Zhu L, Jiang J, Hu Y, Cui Q, Lou Z, Hou Y, Teng F. Metal oxide nanoparticle-modified ITO electrode for high-performance solution-processed perovskite photodetectors. RSC Adv 2022; 12:5638-5647. [PMID: 35425538 PMCID: PMC8981377 DOI: 10.1039/d1ra08764a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/30/2022] [Indexed: 11/21/2022] Open
Abstract
Low dark current density plays a key role in determining the overall performance of perovskite photodetectors (PPDs). To achieve this goal, a hole transport layer (HTL) on the ITO side and a hole blocking layer (HBL) on the metal electrode side are commonly introduced in PPDs. Unlike traditional approaches, we realized a high-performance solution-processed broadband PPD using metal oxide (MO) nanoparticles (NPs) as the HBL on the ITO electrode and PC61BM as another HBL on the metal electrode side to reduce the device dark current. The PPDs based on TiO2 and SnO2 NP-modified layers show similar device performances at -0.5 V: a greater than 105 on/off ratio; over 100 dB linear dynamic range (LDR) under different visible light illumination; around 0.2 A W-1 responsivity (R); greater than 1012 jones detectivity (D*); and ∼20 μs rise time of the device. The MO NP interfacial layer can significantly suppress charge injection in the dark, while the accumulated photogenerated charges at the interface between the MO layer and the perovskite layer introduce band bending, leading to dramatically increased current under illumination. Therefore, the dark current density of the devices is significantly reduced and the optical gain is drastically enhanced. However, after UV illumination, the dark current of the TiO2 device dramatically increases while the dark current of the SnO2 device can stay the same as before since the UV illumination-induced conductivity and barrier height changes in the TiO2 layer cannot recover after removing the UV irradiation. These results indicate that the TiO2 NP layer is suitable for making a vis-NIR photodetector, while the SnO2 NP layer is a good candidate for UV-vis-NIR photodetectors. The facile solution-processed high-performance perovskite photodetector using MO NP-modified ITO is highly compatible with low cost, flexible, and large-area electronics.
Collapse
Affiliation(s)
- Chao Yan
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University Beijing 100044 P. R. China
| | - Yue Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University Beijing 100044 P. R. China
| | - Lijie Zhu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University Beijing 100044 P. R. China
| | - Jingzan Jiang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University Beijing 100044 P. R. China
| | - Yufeng Hu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University Beijing 100044 P. R. China
| | - Qiuhong Cui
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University Beijing 100044 P. R. China
| | - Zhidong Lou
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University Beijing 100044 P. R. China
| | - Yanbing Hou
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University Beijing 100044 P. R. China
| | - Feng Teng
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University Beijing 100044 P. R. China
| |
Collapse
|
15
|
Wu ZY, Zhuang JH, Lin YT, Chou YH, Wu PC, Wu CL, Chen P, Hsu HC. One- and Two-Photon Excited Photoluminescence and Suppression of Thermal Quenching of CsSnBr 3 Microsquare and Micropyramid. ACS NANO 2021; 15:19613-19620. [PMID: 34784180 DOI: 10.1021/acsnano.1c06762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thermal photoluminescence (PL) quenching is fundamentally important for perovskite optoelectronic applications. Herein, we investigated PL characteristics of CsSnBr3 microsquares and micropyramids synthesized by chemical vapor deposition (CVD) and their PL quenching behavior at high temperature. These microstructures have favorable PL performances in ambient atmosphere. Under two-photon excitation, we observed whispering gallery modes (WGMs) in microsquares and amplified spontaneous emission (ASE) in micropyramids. Reversible PL losses due to thermal effect were observed for both samples. Monotonic blue shifts in PL emission upon temperature increase suggest a band gap widening associated with an emphanisis effect. Temperature-dependent spectral line width analysis reveals that a line width broadening is attributed to the dominant electron-longitudinal optical phonon interaction. The estimated activation energy of thermally assisted nonradiative recombination for CsSnBr3 microsquares and micropyramids is over 310 meV by the Arrhenius equation, which is higher than CsPbBr3. These results prove that CsSnBr3 exhibits better thermal stability than Pb-based perovskites.
Collapse
Affiliation(s)
- Zong Yu Wu
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jie-Hao Zhuang
- Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Tsung Lin
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Hsun Chou
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chung-Lin Wu
- Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Peter Chen
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsu-Cheng Hsu
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
16
|
Cho C, Jang YW, Lee S, Vaynzof Y, Choi M, Noh JH, Leo K. Effects of photon recycling and scattering in high-performance perovskite solar cells. SCIENCE ADVANCES 2021; 7:eabj1363. [PMID: 34936442 PMCID: PMC8694589 DOI: 10.1126/sciadv.abj1363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Efficient external radiation is essential for solar cells to achieve high power conversion efficiency (PCE). The classical limit of 1/2n2 (n, refractive index) for electroluminescence quantum efficiency (ELQE) has recently been approached by perovskite solar cells (PSCs). Photon recycling (PR) and light scattering can provide an opportunity to surpass this limit. We investigate the role of PR and scattering in practical device operation using a radiative PSC with an ELQE (13.7% at 1 sun) that significantly surpasses the classical limit (7.4%). We experimentally analyze the contributions of PR and scattering to this strong radiation. A novel optical model reveals an increase of 39 mV in the voltage of our PSC. This analysis can provide design principles for future PSCs to approach the Shockley-Queisser efficiency limit.
Collapse
Affiliation(s)
- Changsoon Cho
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden, Germany
- Corresponding author. (C.C.); (J.H.N.); (K.L.)
| | - Yeoun-Woo Jang
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seungmin Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
| | - Yana Vaynzof
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden, Germany
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jun Hong Noh
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
- Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, Republic of Korea
- Corresponding author. (C.C.); (J.H.N.); (K.L.)
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden, Germany
- Corresponding author. (C.C.); (J.H.N.); (K.L.)
| |
Collapse
|
17
|
Cho C, Antrack T, Kroll M, An Q, Bärschneider TR, Fischer A, Meister S, Vaynzof Y, Leo K. Electrical Pumping of Perovskite Diodes: Toward Stimulated Emission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101663. [PMID: 34240575 PMCID: PMC8425921 DOI: 10.1002/advs.202101663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/10/2021] [Indexed: 05/05/2023]
Abstract
The success of metal halide perovskites in photovoltaic and light-emitting diodes (LEDs) motivates their application as a solid-state thin-film laser. Various perovskites have shown optically pumped stimulated emission of lasing and amplified spontaneous emission (ASE), yet the ultimate goal of electrically pumped stimulated emission has not been achieved. As an essential step toward this goal, here, a perovskite diode structure that simultaneously exhibits stable operation at high current density (≈1 kA cm-2 ) and optically excited ASE (with a threshold of 180 µJ cm-2 ) is reported. This diode structure achieves an electroluminescence quantum efficiency of 0.8% at 850 A cm-2 , which is estimated to be ≈3% of the charge carrier population required to reach ASE in the same device. It is shown that the formation of a large angle waveguide mode and the reduction of parasitic absorption losses are two major design principles for diodes to obtain a positive gain for stimulated emission. In addition to its prospect as a perovskite laser, a new application of electrically pumped ASE is proposed as an ideal perovskite LED architecture allowing 100% external radiation efficiency.
Collapse
Affiliation(s)
- Changsoon Cho
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP)Technische Universität DresdenNöthnizer straße 61Dresden01187Germany
- Present address:
Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ.J. Thomson AvenueCambridgeCB3 0HEUK
| | - Tobias Antrack
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP)Technische Universität DresdenNöthnizer straße 61Dresden01187Germany
| | - Martin Kroll
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP)Technische Universität DresdenNöthnizer straße 61Dresden01187Germany
| | - Qingzhi An
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP)Technische Universität DresdenNöthnizer straße 61Dresden01187Germany
- Centre for Advancing Electronics Dresden (cfaed)Technische Universität DresdenHelmholtzstraße 18Dresden01069Germany
| | - Toni R. Bärschneider
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP)Technische Universität DresdenNöthnizer straße 61Dresden01187Germany
| | - Axel Fischer
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP)Technische Universität DresdenNöthnizer straße 61Dresden01187Germany
| | - Stefan Meister
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP)Technische Universität DresdenNöthnizer straße 61Dresden01187Germany
| | - Yana Vaynzof
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP)Technische Universität DresdenNöthnizer straße 61Dresden01187Germany
- Centre for Advancing Electronics Dresden (cfaed)Technische Universität DresdenHelmholtzstraße 18Dresden01069Germany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP)Technische Universität DresdenNöthnizer straße 61Dresden01187Germany
| |
Collapse
|
18
|
Li A, Liu Q, Chu W, Liang W, Prezhdo OV. Why Hybrid Tin-Based Perovskites Simultaneously Improve the Structural Stability and Charge Carriers' Lifetime: Ab Initio Quantum Dynamics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16567-16575. [PMID: 33793206 DOI: 10.1021/acsami.1c03145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Much effort has been dedicated to boost the development of lead-free perovskite solar cells. However, their performance and stability are still much less competitive to the lead-bearing counterparts. By exploiting a mixed Sn-Ge cation strategy for the development of lead-free perovskites, we perform ab initio electronic structure calculations and quantum dynamics simulations on MASn0.5Ge0.5I3 and compare them to MASnI3. The calculations demonstrate that the hybrid cation strategy can improve simultaneously the perovskite stability and the lifetime of charge carriers. The stability increases due to a larger space of possible structures within the favorable range of the structural parameters, such as the Goldschmidt tolerance and octahedron factors. By exploring the larger structure space, mixed perovskites find stable configurations with lower free energies and better fitting components that exhibit reduced fluctuations around the equilibrium geometries. Charge carriers live longer in mixed perovskites because cation mixing results in an additional and moderate disorder that separates electrons and holes, reducing their interactions while still maintaining efficient band-like charge transport. These general and fundamental principles established by the analysis of the simulation results are useful for the design of advanced materials for solar energy and construction of optoelectronic devices.
Collapse
Affiliation(s)
- Akang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Qi Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - WeiBin Chu
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Oleg V Prezhdo
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
19
|
Cho C, Greenham NC. Computational Study of Dipole Radiation in Re-Absorbing Perovskite Semiconductors for Optoelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003559. [PMID: 33643807 PMCID: PMC7887589 DOI: 10.1002/advs.202003559] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/29/2020] [Indexed: 05/06/2023]
Abstract
Compared to organic emitters, perovskite materials generally have a small Stokes shift and correspondingly large re-absorption of dipole emission. Classical optical modelling methods ignoring re-absorption do not provide an adequate description of the observed light emission properties. Here, optical modelling methods and design rules for perovskite light-emitting diodes are presented. The transfer-matrix formalism is used to quantify the Poynting vectors generated by a dipole radiating inside a perovskite optoelectronic device. A strategy is presented to deal with non-radiative coupling to nearby emissive material that can otherwise lead to non-physical divergence in the calculation. Stability issues are also investigated regarding coherence of the light propagating in the substrate and the absence of a light absorber in the system. The benefit of the photon recycling effect is taken into account by recursive calculation of the dipole generation profile. The simulation results predict that a high external quantum efficiency of ≈40% is achievable in formamidinium lead triiodide-based perovskite light-emitting diodes, by optimization of microcavity, dipole orientation, and photon recycling effects. Contrary to conventional device structures currently reported, this work highlights the benefits of thick charge transport layers and thick perovskite with small Stokes shift.
Collapse
Affiliation(s)
- Changsoon Cho
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP)Technische Universität DresdenDresden01187Germany
| | - Neil C. Greenham
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ.J. Thomson AvenueCambridgeCB3 0HEUK
| |
Collapse
|