1
|
Jiang D, Tan VGW, Gong Y, Shao H, Mu X, Luo Z, He S. Semiconducting Covalent Organic Frameworks. Chem Rev 2025. [PMID: 40366230 DOI: 10.1021/acs.chemrev.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Semiconductors form the foundational bedrock of modern electronics and numerous cutting-edge technologies. Particularly, semiconductors crafted from organic building blocks hold immense promise as next-generation pioneers, thanks to their vast array of chemical structures, customizable frontier orbital energy levels and bandgap structures, and easily adjustable π electronic properties. Over the past 50 years, advancements in chemistry and materials science have facilitated extensive investigations into small organic π compounds, oligomers, and polymers, resulting in a rich library of organic semiconductors. However, a longstanding challenge persists: how to organize π building units or chains into well-defined π structures, which are crucial for the performance of organic semiconductors. Consequently, the pursuit of methodologies capable of synthesizing and/or fabricating organic semiconductors with ordered structures has emerged as a frontier in organic and polymeric semiconductor research. In this context, covalent organic frameworks (COFs) stand out as unique platforms allowing for the covalent integration of organic π units into periodically ordered π structures, thus facilitating the development of semiconductors with extended yet precisely defined π architectures. Since their initial report in 2008, significant strides have been made in exploring various chemistries to develop semiconducting COFs, resulting in a rich library of structures, properties, functions, and applications. This review provides a comprehensive yet focused exploration of the general structural features of semiconducting COFs, outlining the basic principles of structural design, illustrating the linkage chemistry and synthetic strategies based on typical one-pot polymerization reactions to demonstrate the growth of bulk materials, nanosheets, films, and membranes. By elucidating the interactions between COFs and various entities such as photons, phonons, electrons, holes, ions, molecules, and spins, this review categorizes semiconducting COFs into nine distinct sections: semiconductors, photoconductors, light emitters, sensors, photocatalysts, photothermal conversion materials, electrocatalysts, energy storage electrodes, and radical spin materials, focusing on disclosing structure-originated properties and functions. Furthermore, this review scrutinizes structure-function correlations and highlights the unique features, breakthroughs, and challenges associated with semiconducting COFs. Furnished with foundational knowledges and state-of-the-art insights, this review predicts the fundamental issues to be addressed and outlines future directions for semiconducting COFs, offering a comprehensive overview of this rapidly evolving and remarkable field.
Collapse
Affiliation(s)
- Donglin Jiang
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Vincent Guan Wu Tan
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yifan Gong
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Haipei Shao
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xinyu Mu
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhangliang Luo
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shuyue He
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
2
|
Ranjeesh KC, Javaregowda BH, Gaber S, Bhauriyal P, Kumar S, Skorjanc T, Finšgar M, Heine T, Krishnamoorthy K, Shetty D. Heteroatom-Synergistic Effect on Anchoring Polysulfides In Chalcone-Linked Nanographene Covalent Organic Frameworks for High-Performance Li─S Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415897. [PMID: 39998312 PMCID: PMC12021064 DOI: 10.1002/advs.202415897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/29/2025] [Indexed: 02/26/2025]
Abstract
Lithium-sulfur (Li─S) batteries are an attractive option for future energy storage devices because they offer higher theoretical specific capacity, energy density, and cost-effectiveness than commercial lithium-ion batteries. However, the practical applications of Li─S batteries are significantly limited by the shuttle effect caused by intermediate lithium polysulfides (LiPSs) and slow redox kinetics. In this study, the molecular engineering of chalcone-linked, sp2-bonded nanographene-type covalent organic frameworks (COFs) as sulfur hosts is reported to enhance interactions with LiPSs, thereby effectively suppressing the shuttle effect. The developed sulfur-hosting cathode material demonstrated outstanding battery performance, surpassing most reported materials by achieving a specific capacity of 1228 mA h g-1 at 0.5C, with 80% retention after 500 cycles and an average Coulombic Efficiency (C.E.) of 99%. Additionally, the mechanisms of sulfur immobilization, the subsequent conversion into lithium polysulfides (LiPSs), and their binding energies with COFs are investigated using density functional theory (DFT) calculations. These findings offer valuable insights into the structure-property relationships essential for developing more efficient sulfur-hosting cathodes.
Collapse
Affiliation(s)
| | | | - Safa Gaber
- Department of ChemistryKhalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
| | - Preeti Bhauriyal
- Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Sushil Kumar
- Department of ChemistryKhalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
| | - Tina Skorjanc
- Materials Research LaboratoryUniversity of Nova GoricaVipavska cesta 11cAjdovscina5270Slovenia
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical EngineeringUniversity of MariborSmetanova ulica 17Maribor2000Slovenia
| | - Thomas Heine
- Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Helmholtz‐Zentrum Dresden‐RossendorfCenter for Advanced Systems Understanding, CASUSUntermarkt 2002826GörlitzGermany
- Department of Chemistry and ibs for NanomedicineYonsei UniversitySeodaemun‐guSeoul120‐749South Korea
| | - Kothandam Krishnamoorthy
- Polymer Science and Engineering Division, CSIR‐National Chemical Laboratory (CSIR‐NCL)Pune411008India
| | - Dinesh Shetty
- Department of ChemistryKhalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
- Center for Catalysis & Separations (CeCaS)Khalifa University Science & TechnologyAbu DhabiP.O. Box 127788UAE
| |
Collapse
|
3
|
Sun H, Wang J, Hu H, Duan F, Du M, Lu S. Interface engineering of supported palladium electrocatalyst with covalent organic polymer towards oxygen reduction reaction. J Colloid Interface Sci 2025; 682:157-164. [PMID: 39615135 DOI: 10.1016/j.jcis.2024.11.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025]
Abstract
Interface engineering is an important strategy to improve the oxygen reduction reaction (ORR) performance of metal-based electrocatalysts. However, how to develop efficient and abundant interface is still a challenge. Herein, the three-dimensional mesoporous metal oxide-supported Pd-based catalyst was prepared and its ORR activity was further improved through the interfacial modification with microporous covalent organic polymer. Due to the meso/microporous structure and optimized organic-inorganic interface, the as-obtained catalyst could provide abundant active sites and suitable electronic structure, which makes it as a superior catalyst toward alkaline ORR. The surface modified Pd catalyst shows an improved half-wave potential (E1/2) from 0.84 V to 0.86 V and an improved limiting current density (JL) from 5.8 mA cm-2 to 6.0 mA cm-2. Moreover, the developed catalyst has excellent methanol tolerance and stability during the long-time cycling. When it was used as cathodic electrocatalyst in zinc-air battery, a peak power density of 106 mW cm-2 could be achieved and the battery maintains excellent stability during cycling tests over 45 h, which is better than the benchmarked commercial Pt/C catalyst. This study provides an efficient interface engineering strategy for constructing active and stable electrocatalysts, which may be useful in ORR and other energy-related conversions.
Collapse
Affiliation(s)
- Huimin Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jinyan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Hailong Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
4
|
Xiao Y, Wei S, Wang X, Liu J, Wu X, Xie Y, Lu CZ. Two-dimensional carbazole-based COFs for high-performance lithium-sulfur batteries. Chem Commun (Camb) 2024; 60:12762-12765. [PMID: 39400243 DOI: 10.1039/d4cc03563a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Carbazole-based COFs were synthesized and applied as the sulfur-host in cathode materials for lithium-sulfur batteries (LSBs), which effectively mitigate the shuttle effect of lithium polysulfides. A high initial capacity of 1232 mAh g-1 at 0.1C is achieved, while also showing excellent capacity retention and stability in cyclic experiments. This work highlights the potential application of carbazole-based COFs for LSBs.
Collapse
Affiliation(s)
- Yuchen Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shanyue Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
- Engineering Research Center of Environment-Friendly Function Materials, Ministry of Education, College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Xuan Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
- Engineering Research Center of Environment-Friendly Function Materials, Ministry of Education, College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Jia Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Xiaowei Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Yiming Xie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Engineering Research Center of Environment-Friendly Function Materials, Ministry of Education, College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Can-Zhong Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
5
|
Xu Y, Gong J, Li Q, Guo X, Wan X, Xu L, Pang H. Covalent organic frameworks and their composites for rechargeable batteries. NANOSCALE 2024; 16:11429-11456. [PMID: 38855977 DOI: 10.1039/d4nr01092b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Covalent organic frameworks (COFs), characterized by well-ordered pores, large specific surface area, good stability, high precision, and flexible design, are a promising material for batteries and have received extensive attention from researchers in recent years. Compared with inorganic materials, COFs can construct elastic frameworks with better structural stability, and their chemical compositions and structures can be precisely adjusted and functionalized at the molecular level, providing an open pathway for the convenient transfer of ions. In this review, the energy storage mechanism and unique superiority of COFs and COF composites as electrodes, separators and electrolytes for rechargeable batteries are discussed in detail. Special emphasis is placed on the relationship between the establishment of COF structures and their electrochemical performance in different batteries. Finally, this review summarizes the challenges and prospects of COFs and COF composites in battery equipment.
Collapse
Affiliation(s)
- Yuxia Xu
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Jiayue Gong
- School of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Qing Li
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| | - Xin Wan
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Lin Xu
- School of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
6
|
Song Z, Jiang W, Li B, Qu Y, Mao R, Jian X, Hu F. Advanced Polymers in Cathodes and Electrolytes for Lithium-Sulfur Batteries: Progress and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308550. [PMID: 38282057 DOI: 10.1002/smll.202308550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Indexed: 01/30/2024]
Abstract
Lithium-sulfur (Li-S) batteries, which store energy through reversible redox reactions with multiple electron transfers, are seen as one of the promising energy storage systems of the future due to their outstanding advantages. However, the shuttle effect, volume expansion, low conductivity of sulfur cathodes, and uncontrollable dendrite phenomenon of the lithium anodes have hindered the further application of Li-S batteries. In order to solve the problems and clarify the electrochemical reaction mechanism, various types of materials, such as metal compounds and carbon materials, are used in Li-S batteries. Polymers, as a class of inexpensive, lightweight, and electrochemically stable materials, enable the construction of low-cost, high-specific capacity Li-S batteries. Moreover, polymers can be multifunctionalized by obtaining rich structures through molecular design, allowing them to be applied not only in cathodes, but also in binders and solid-state electrolytes to optimize electrochemical performance from multiple perspectives. The most widely used areas related to polymer applications in Li-S batteries, including cathodes and electrolytes, are selected for a comprehensive overview, and the relevant mechanisms of polymer action in different components are discussed. Finally, the prospects for the practical application of polymers in Li-S batteries are presented in terms of advanced characterization and mechanistic analysis.
Collapse
Affiliation(s)
- Zihui Song
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High-Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China
| | - Wanyuan Jiang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Technology Innovation Center of High-Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China
| | - Borui Li
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High-Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China
| | - Yunpeng Qu
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High-Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China
| | - Runyue Mao
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High-Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Technology Innovation Center of High-Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China
| | - Fangyuan Hu
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High-Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
7
|
Lv S, Ma X, Ke S, Wang Y, Ma T, Yuan S, Jin Z, Zuo JL. Metal-Coordinated Covalent Organic Frameworks as Advanced Bifunctional Hosts for Both Sulfur Cathodes and Lithium Anodes in Lithium-Sulfur Batteries. J Am Chem Soc 2024; 146:9385-9394. [PMID: 38512124 DOI: 10.1021/jacs.4c01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The shuttling of polysulfides on the cathode and the uncontrollable growth of lithium dendrites on the anode have restricted the practical application of lithium-sulfur (Li-S) batteries. In this study, a metal-coordinated 3D covalent organic framework (COF) with a homogeneous distribution of nickel-bis(dithiolene) and N-rich triazine centers (namely, NiS4-TAPT) was designed and synthesized, which can serve as bifunctional hosts for both sulfur cathodes and lithium anodes in Li-S batteries. The abundant Ni centers and N-sites in NiS4-TAPT can greatly enhance the adsorption and conversion of the polysulfides. Meanwhile, the presence of Ni-bis(dithiolene) centers enables uniform Li nucleation at the Li anode, thereby suppressing the growth of Li dendrites. This work demonstrated the effectiveness of integrating catalytic and adsorption sites to optimize the chemical interactions between host materials and redox-active intermediates, potentially facilitating the rational design of metal-coordinated COF materials for high-performance secondary batteries.
Collapse
Affiliation(s)
- Sen Lv
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xingkai Ma
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Siwen Ke
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yaoda Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tianrui Ma
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Sun B, Sun Z, Yang Y, Huang XL, Jun SC, Zhao C, Xue J, Liu S, Liu HK, Dou SX. Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries. ACS NANO 2024; 18:28-66. [PMID: 38117556 DOI: 10.1021/acsnano.3c08240] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Covalent organic frameworks (COFs) have attracted considerable interest in the field of rechargeable batteries owing to their three-dimensional (3D) varied pore sizes, inerratic porous structures, abundant redox-active sites, and customizable structure-adjustable frameworks. In the context of metal-ion batteries, these materials play a vital role in electrode materials, effectively addressing critical issues such as low ionic conductivity, limited specific capacity, and unstable structural integrity. However, the electrochemical characteristics of the developed COFs still fall short of practical battery requirements due to inherent issues such as low electronic conductivity, the tradeoff between capacity and redox potential, and unfavorable micromorphology. This review provides a comprehensive overview of the recent advancements in the application of COFs, COF-based composites, and their derivatives in rechargeable metal-ion batteries, including lithium-ion, lithium-sulfur, sodium-ion, sodium-sulfur, potassium-ion, zinc-ion, and other multivalent metal-ion batteries. The operational mechanisms of COFs, COF-based composites, and their derivatives in rechargeable batteries are elucidated, along with the strategies implemented to enhance the electrochemical properties and broaden the range of their applications.
Collapse
Affiliation(s)
- Bowen Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Yi Yang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Xiang Long Huang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Chongchong Zhao
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, People's Republic of China
| | - Jiaojiao Xue
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Hua Kun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Institute for Superconducting and Electronic Materials, University of Wollongong,Wollongong, New South Wales 2522, Australia
| | - Shi Xue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Institute for Superconducting and Electronic Materials, University of Wollongong,Wollongong, New South Wales 2522, Australia
| |
Collapse
|
9
|
Haldar S, Khan AH, De A, Reichmayr F, Morag A, Yu M, Schneemann A, Kaskel S. Fluorinated Benzimidazole-Linked Highly Conjugated Polymer Enabling Covalent Polysulfide Anchoring for Stable Sulfur Batteries. Chemistry 2024; 30:e202302779. [PMID: 37877583 DOI: 10.1002/chem.202302779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Sulfur is one of the most abundant and economical elements in the p-block family and highly redox active, potentially utilizable as a charge-storing electrode with high theoretical capacities. However, its inherent good solubility in many electrolytes inhibits its accessibility as an electrode material in typical metal-sulfur batteries. In this work, the synthetically designed fluorinated porous polymer, when treated with elemental sulfur through a well-known nucleophilic aromatic substitution mechanism (SN Ar), allows for the covalent integration of polysulfides into a highly conjugated benzimidazole polymer by replacing the fluorine atoms. Chemically robust benzimidazole linkages allow such harsh post-synthetic treatment and facilitate the electronic activation of the anchored polysulfides for redox reactions under applied potential. The electrode amalgamated with sulfurized polymer mitigates the so-called polysulfide shuttle effect in the lithium-sulfur (Li-S) battery and also enables a reversible, more environmentally friendly, and more economical aluminum-sulfur (Al-S) battery that is configured with mostly p-block elements as cathode, anode, and electrolytes. The improved cycling stabilities and reduction of the overpotential in both cases pave the way for future sustainable energy storage solutions.
Collapse
Affiliation(s)
- Sattwick Haldar
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Arafat H Khan
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Ankita De
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Fanny Reichmayr
- Chair of Electrochemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Ahiud Morag
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Minghao Yu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
- Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, 01277, Dresden, Germany
| |
Collapse
|
10
|
Liu L, Meng Y, Ge Y, Xiao D. Regulating Polysulfide Transformation and Deposition Kinetics in Lithium-Sulfur Batteries Based on 3D Conductive Framework. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37414417 DOI: 10.1021/acsami.3c03801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The polysulfide shuttle effect and slow liquid-solid conversion are supposed to be the main bottlenecks limiting lithium-sulfur battery practicality. Although a great deal of research has been devoted to the nucleation and transformation kinetics of polysulfides, many implicit details cannot be captured. In this work, we design a conducting network, FeNx-NPC, derived from hemin, and induce a 3D nucleation mode. Different from the control group with the 2D nucleation mode, a higher Li2S deposition and earlier nucleation are observed. Here, in situ impedance is applied to further understand the potential relationship between nucleation mode and liquid-solid transformation, and DRT results from impedance data are systematically compared from two aspects: (1) single battery under different voltages and (2) different batteries under the same voltage. It reveals that the 3D nucleation mode ensures more growth sites, on which a covered thin Li2S layer exhibits no charge transfer limitation. What is more, the porous structure with in situ-derived nanotubes favors Li+ faster diffusion. Hence, these advantages allow Li-S cells to deliver high capacity (about 1423 mA h g-1 at 0.1 C), low capacity attenuation (0.029% per cycle at 2 C), and excellent rate performance (620 mA h g-1 at 5 C).
Collapse
Affiliation(s)
- Lin Liu
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Meng
- Institute of New Energy and Low-Carbon Technology (INELT), Sichuan University, Chengdu 610207, China
| | - Yunchen Ge
- Institute of New Energy and Low-Carbon Technology (INELT), Sichuan University, Chengdu 610207, China
| | - Dan Xiao
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute of New Energy and Low-Carbon Technology (INELT), Sichuan University, Chengdu 610207, China
| |
Collapse
|
11
|
Jia C, Duan A, Liu C, Wang WZ, Gan SX, Qi QY, Li Y, Huang X, Zhao X. One-Dimensional Covalent Organic Framework as High-Performance Cathode Materials for Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300518. [PMID: 36918750 DOI: 10.1002/smll.202300518] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Indexed: 06/15/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as a new class of cathode materials for energy storage in recent years. However, they are limited to two-dimensional (2D) or three-dimensional (3D) framework structures. Herein, this work reports designed synthesis of a redox-active one-dimensional (1D) COF and its composites with 1D carbon nanotubes (CNTs) via in situ growth. Used as cathode materials for Li-ion batteries, the 1D COF@CNT composites with unique dendritic core-shell structure can provide abundant and easily accessible redox-active sites, which contribute to improve diffusion rate of lithium ions and the corresponding specific capacity. This synergistic structural design enables excellent electrochemical performance of the cathodes, giving rise to 95% utilization of redox-active sites, high rate capability (81% capacity retention at 10 C), and long cycling stability (86% retention after 600 cycles at 5 C). As the first example to explore the application of 1D COFs in the field of energy storage, this study demonstrates the great potential of this novel type of linear crystalline porous polymers in battery technologies.
Collapse
Affiliation(s)
- Chao Jia
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - An Duan
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Chao Liu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wen-Zhuang Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Shi-Xian Gan
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yongjun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xin Zhao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
12
|
Chen J, Wang Y, Yu Y, Wang J, Liu J, Ihara H, Qiu H. Composite materials based on covalent organic frameworks for multiple advanced applications. EXPLORATION (BEIJING, CHINA) 2023; 3:20220144. [PMID: 37933382 PMCID: PMC10624394 DOI: 10.1002/exp.20220144] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Covalent organic frameworks (COFs) stand for a class of emerging crystalline porous organic materials, which are ingeniously constructed with organic units through strong covalent bonds. Their excellent design capabilities, and uniform and tunable pore structure make them potential materials for various applications. With the continuous development of synthesis technique and nanoscience, COFs have been successfully combined with a variety of functional materials to form COFs-based composites with superior performance than individual components. This paper offers an overview of the development of different types of COFs-based composites reported so far, with particular focus on the applications of COFs-based composites. Moreover, the challenges and future development prospects of COFs-based composites are presented. We anticipate that the review will provide some inspiration for the further development of COFs-based composites.
Collapse
Affiliation(s)
- Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
| | - Yuting Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Yongliang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioCanada
| | - Hirotaka Ihara
- Department of Applied Chemistry and BiochemistryKumamoto UniversityChuo‐kuKumamotoJapan
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
| |
Collapse
|
13
|
Tomer VK, Malik R, Tjong J, Sain M. State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
14
|
Liu W, Wang K, Zhan X, Liu Z, Yang X, Jin Y, Yu B, Gong L, Wang H, Qi D, Yuan D, Jiang J. Highly Connected Three-Dimensional Covalent Organic Framework with Flu Topology for High-Performance Li-S Batteries. J Am Chem Soc 2023; 145:8141-8149. [PMID: 36989190 DOI: 10.1021/jacs.3c01102] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lithium-sulfur batteries (LSBs) have been considered as a promising candidate for next-generation energy storage devices, which however still suffer from the shuttle effect of the intermediate lithium polysulfides (LiPSs). Covalent-organic frameworks (COFs) have exhibited great potential as sulfur hosts for LSBs to solve such a problem. Herein, a pentiptycene-based D2h symmetrical octatopic polyaldehyde, 6,13-dimethoxy-2,3,9,10,18,19,24,25-octa(4'-formylphenyl)pentiptycene (DMOPTP), was prepared and utilized as a building block toward preparing COFs. Condensation of DMOPTP with 4-connected tetrakis(4-aminophenyl)methane affords an expanded [8 + 4] connected network 3D-flu-COF, with a flu topology. The non-interpenetrated nature of the flu topology endows 3D-flu-COF with a high Brunauer-Emmett-Teller surface area of 2860 m2 g-1, large octahedral cavities, and cross-linked tunnels in the framework, enabling a high loading capacity of sulfur (∼70 wt %), strong LiPS adsorption capability, and facile ion diffusion. Remarkably, when used as a sulfur host for LSBs, 3D-flu-COF delivers a high capacity of 1249 mA h g-1 at 0.2 C (1.0 C = 1675 mA g-1), outstanding rate capability (764 mA h g-1 at 5.0 C), and excellent stability, representing one of the best results among the thus far reported COF-based sulfur host materials for LSBs and being competitive with the state-of-the-art inorganic host materials.
Collapse
Affiliation(s)
- Wenbo Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoning Zhan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhixin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
15
|
Chen C, Zhang M, Chen Q, Duan H, Liu S. Recent Progress in Framework Materials for High-Performance Lithium-Sulfur Batteries. CHEM REC 2023:e202200278. [PMID: 36807712 DOI: 10.1002/tcr.202200278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/26/2023] [Indexed: 02/23/2023]
Abstract
Lithium-Sulfur batteries (LSBs) have been considered as a promising candidate for the next generation of energy storage systems due to their high theoretical capacity. However, there are still lots of pending scientific and technological issues to be solved. Framework materials show great potential to address the above-mentioned issues due to the highly ordered distribution of pore sizes, effective catalytic activity, and periodically arranged aperture. In addition, good tunability gives framework materials unlimited possibilities to achieve satisfying performance for LSBs. In this review, the recent advances in pristine framework materials, their derivatives, and composites have been summarized. And a short conclusion and outlook regard to future prospects for guiding the development of framework materials and LSBs.
Collapse
Affiliation(s)
- Changyun Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PRC
| | - Mengfei Zhang
- High School Affiliated to Nanjing Normal University Qinhuai Campus, Nanjing, 211126, Jiangsu, PRC
| | - Quanzhan Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PRC
| | - Haibao Duan
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PRC
| | - Suli Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PRC
| |
Collapse
|
16
|
Wang Z, Pan F, Zhao Q, Lv M, Zhang B. The application of covalent organic frameworks in Lithium-Sulfur batteries: A mini review for current research progress. Front Chem 2022; 10:1055649. [DOI: 10.3389/fchem.2022.1055649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, how to enhance the energy density of rechargeable batteries dramatically is becoming a driving force in the field of energy storage research. Among the current energy storage technologies, the lithium-sulfur (Li-S) batteries are one of the most promising candidates for achieving high-capacity and commercial batteries. The theoretical energy density of Li-S batteries reaches to 2,600 Wh kg−1 with the theoretical capacity of 1,675 mA h g−1. Therefore, Li-S batteries are considered as the great potential for developing future energy storage technology. However, some of problems such as Li dendrites growth, the shuttle effect of sulfides and the electronic insulation feature of sulfur, have brought obstacles to the development of Li-S batteries. The covalent organic frameworks (COFs) are a series of porous materials with different topological structures, which show the versatile characteristics of high specific surface area, permanent pores, ordered porous channels and tunable internal structure. Potentially, their ordered channels and extended conjugated frameworks could facilitate rapid Li-ion diffusion and electron transport for the remarkable rate capability. On the basis of these merits, the COFs become the potential electrode materials to solve the above serious problems of Li-S batteries. In this mini review, we summarize the research progress of COFs utilized as electrode materials in the Li-S batteries, including the cathode, separator and anode materials. Accordingly, the outlook of COFs as electrodes for future development in Li-S batteries is also given.
Collapse
|
17
|
Liu W, Gong L, Liu Z, Jin Y, Pan H, Yang X, Yu B, Li N, Qi D, Wang K, Wang H, Jiang J. Conjugated Three-Dimensional High-Connected Covalent Organic Frameworks for Lithium-Sulfur Batteries. J Am Chem Soc 2022; 144:17209-17218. [PMID: 36084308 DOI: 10.1021/jacs.2c07596] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing conjugated three-dimensional (3D) covalent organic frameworks (COFs) still remains an extremely difficult task due to the lack of enough conjugated 3D building blocks. Herein, condensation between an 8-connected pentiptycene-based D2h building block (DMOPTP) and 4-connected square-planar linkers affords two 3D COFs (named 3D-scu-COF-1 and 3D-scu-COF-2). A combination of the 3D homoaromatic conjugated structure of the former building block with the 2D conjugated structure of the latter linking units enables the π-electron delocalization over the whole frameworks of both COFs, endowing them with excellent conductivities of 3.2-3.5 × 10-5 S cm-1. In particular, the 3D rigid quadrangular prism shape of DMOPTP guides the formation of a twofold interpenetrated scu 3D topology and high-connected permanent porosity with a large Brunauer-Emmett-Teller (BET) surface area of 2340 and 1602 m2 g-1 for 3D-scu-COF-1 and 3D-scu-COF-2, respectively, ensuring effective small molecule storage and mass transport characteristics. This, in combination with their good charge transport properties, renders them promising sulfur host materials for lithium-sulfur batteries (LSBs) with high capacities (1035-1155 mA h g-1 at 0.2 C, 1 C = 1675 mA g-1), excellent rate capabilities (713-757 mA h g-1 at 5.0 C), and superior cycling stability (71-83% capacity retention at 2.0 C after 500 cycles), surpassing the most of organic LSB cathodes reported thus far.
Collapse
Affiliation(s)
- Wenbo Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhixin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Houhe Pan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
18
|
Study of the separation ability differences of three covalent organic frameworks as coated materials in capillary electrochromatography. J Chromatogr A 2022; 1677:463289. [DOI: 10.1016/j.chroma.2022.463289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022]
|
19
|
Zhang Y, Wu Y, An Y, Wei C, Tan L, Xi B, Xiong S, Feng J. Ultrastable and High-Rate 2D Siloxene Anode Enabled by Covalent Organic Framework Engineering for Advanced Lithium-Ion Batteries. SMALL METHODS 2022; 6:e2200306. [PMID: 35478385 DOI: 10.1002/smtd.202200306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Siloxene as a new type of 2D material has wide potential applications due to its special structure. Especially, as anode for lithium-ion batteries, siloxene shows promising prospect due to its small volume change and low diffusion pathway. However, the unstable solid electrolyte interphase and low electronic conductivity lead to the low Coulombic efficiency, poor rate capability, and limited cycling performance. To settle the problems, a thin porous covalent organic framework (COF) coating layer is designed by in situ growth on micro-sized siloxene. With the inherent ionic conductive and electrolyte compatible advantages of COF, the engineered siloxene demonstrates superior electrochemical performance with 96% capacity retention at 8 A g-1 for 1500 cycles.
Collapse
Affiliation(s)
- Yuchan Zhang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Yang Wu
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Yongling An
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Chuanliang Wei
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Liwen Tan
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jinkui Feng
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| |
Collapse
|
20
|
Haldar S, Wang M, Bhauriyal P, Hazra A, Khan AH, Bon V, Isaacs MA, De A, Shupletsov L, Boenke T, Grothe J, Heine T, Brunner E, Feng X, Dong R, Schneemann A, Kaskel S. Porous Dithiine-Linked Covalent Organic Framework as a Dynamic Platform for Covalent Polysulfide Anchoring in Lithium-Sulfur Battery Cathodes. J Am Chem Soc 2022; 144:9101-9112. [PMID: 35543441 DOI: 10.1021/jacs.2c02346] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dithiine linkage formation via a dynamic and self-correcting nucleophilic aromatic substitution reaction enables the de novo synthesis of a porous thianthrene-based two-dimensional covalent organic framework (COF). For the first time, this organo-sulfur moiety is integrated as a structural building block into a crystalline layered COF. The structure of the new material deviates from the typical planar interlayer π-stacking of the COF to form undulated layers caused by bending along the C-S-C bridge, without loss of aromaticity and crystallinity of the overall COF structure. Comprehensive experimental and theoretical investigations of the COF and a model compound, featuring the thianthrene moiety, suggest partial delocalization of sulfur lone pair electrons over the aromatic backbone of the COF decreasing the band gap and promoting redox activity. Postsynthetic sulfurization allows for direct covalent attachment of polysulfides to the carbon backbone of the framework to afford a molecular-designed cathode material for lithium-sulfur (Li-S) batteries with a minimized polysulfide shuttle. The fabricated coin cell delivers nearly 77% of the initial capacity even after 500 charge-discharge cycles at 500 mA/g current density. This novel sulfur linkage in COF chemistry is an ideal structural motif for designing model materials for studying advanced electrode materials for Li-S batteries on a molecular level.
Collapse
Affiliation(s)
- Sattwick Haldar
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Preeti Bhauriyal
- Chair of Theoretical Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Arpan Hazra
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Arafat H Khan
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Mark A Isaacs
- Department of Chemistry, University College London, London WC1H 0AJ, U.K.,HarwellXPS, Rutherford Appleton Laboratories, Research Complex at Harwell, Didcot OX11 0FA, U.K
| | - Ankita De
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Leonid Shupletsov
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Tom Boenke
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany.,Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, Dresden 01277, Germany
| | - Julia Grothe
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Thomas Heine
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, Dresden 01069, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Leipzig Research Branch, Permoser Str. 15, 04316 Leipzig, Germany.,Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Korea
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany.,Max Planck Institute of Microstructure Physics, Halle (Saale) 06120, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany.,Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany.,Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, Dresden 01277, Germany
| |
Collapse
|
21
|
Qiao H, Yang L, Yang X, Wang J, Chen Y, Zhang L, Sun W, Zhai L, Mi L. Design of Photoactive Covalent Organic Frameworks as Heterogeneous Catalyst for Preparation of Thiophosphinates from Phosphine Oxides and Thiols. Chemistry 2022; 28:e202200600. [DOI: 10.1002/chem.202200600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Huijie Qiao
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Liting Yang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Xiubei Yang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Jialin Wang
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Ya Chen
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Lin Zhang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| | - Wuxuan Sun
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| |
Collapse
|
22
|
Lin T, Wang H, Du X, Zhang D, Zhang Z, Liu G. A COF-coated MOF framework polysulfide barrier design for enhanced performance in lithium-sulfur batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Guo C, Liu M, Gao G, Tian X, Zhou J, Dong L, Li Q, Chen Y, Li S, Lan Y. Anthraquinone Covalent Organic Framework Hollow Tubes as Binder Microadditives in Li−S Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Can Guo
- School of Chemistry National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs Engineering Research Center of MTEES (Ministry of Education) Key Lab. of ETESPG(GHEI) South China Normal University Guangzhou 510006 P. R. China
| | - Ming Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Guang‐Kuo Gao
- School of Chemistry National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs Engineering Research Center of MTEES (Ministry of Education) Key Lab. of ETESPG(GHEI) South China Normal University Guangzhou 510006 P. R. China
| | - Xi Tian
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Jie Zhou
- School of Chemistry National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs Engineering Research Center of MTEES (Ministry of Education) Key Lab. of ETESPG(GHEI) South China Normal University Guangzhou 510006 P. R. China
| | - Long‐Zhang Dong
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Qi Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Yifa Chen
- School of Chemistry National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs Engineering Research Center of MTEES (Ministry of Education) Key Lab. of ETESPG(GHEI) South China Normal University Guangzhou 510006 P. R. China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Shun‐Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Ya‐Qian Lan
- School of Chemistry National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs Engineering Research Center of MTEES (Ministry of Education) Key Lab. of ETESPG(GHEI) South China Normal University Guangzhou 510006 P. R. China
| |
Collapse
|
24
|
Zhang Q, Huang Q, Hao S, Deng S, He Q, Lin Z, Yang Y. Polymers in Lithium-Sulfur Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103798. [PMID: 34741443 PMCID: PMC8805586 DOI: 10.1002/advs.202103798] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/29/2021] [Indexed: 05/15/2023]
Abstract
Lithium-sulfur batteries (LSBs) hold great promise as one of the next-generation power supplies for portable electronics and electric vehicles due to their ultrahigh energy density, cost effectiveness, and environmental benignity. However, their practical application has been impeded owing to the electronic insulation of sulfur and its intermediates, serious shuttle effect, large volume variation, and uncontrollable formation of lithium dendrites. Over the past decades, many pioneering strategies have been developed to address these issues via improving electrodes, electrolytes, separators and binders. Remarkably, polymers can be readily applied to all these aspects due to their structural designability, functional versatility, superior chemical stability and processability. Moreover, their lightweight and rich resource characteristics enable the production of LSBs with high-volume energy density at low cost. Surprisingly, there have been few reviews on development of polymers in LSBs. Herein, breakthroughs and future perspectives of emerging polymers in LSBs are scrutinized. Significant attention is centered on recent implementation of polymers in each component of LSBs with an emphasis on intrinsic mechanisms underlying their specific functions. The review offers a comprehensive overview of state-of-the-art polymers for LSBs, provides in-depth insights into addressing key challenges, and affords important resources for researchers working on electrochemical energy systems.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceHubei Engineering Technology Research Centre of Energy Polymer MaterialsSouth‐Central University for NationalitiesWuhan430074China
| | - Qihua Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceHubei Engineering Technology Research Centre of Energy Polymer MaterialsSouth‐Central University for NationalitiesWuhan430074China
| | - Shu‐Meng Hao
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Shuyi Deng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceHubei Engineering Technology Research Centre of Energy Polymer MaterialsSouth‐Central University for NationalitiesWuhan430074China
| | - Qiming He
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceHubei Engineering Technology Research Centre of Energy Polymer MaterialsSouth‐Central University for NationalitiesWuhan430074China
| | - Zhiqun Lin
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Yingkui Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceHubei Engineering Technology Research Centre of Energy Polymer MaterialsSouth‐Central University for NationalitiesWuhan430074China
| |
Collapse
|
25
|
Li C, Yu G. Controllable Synthesis and Performance Modulation of 2D Covalent-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100918. [PMID: 34288393 DOI: 10.1002/smll.202100918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Covalent-organic frameworks (COFs) are especially interesting and unique as their highly ordered topological structures entirely built from plentiful π-conjugated units through covalent bonds. Arranging tailorable organic building blocks into periodically reticular skeleton bestows predictable lattices and various properties upon COFs in respect of topology diagrams, pore size, properties of channel wall interfaces, etc. Indeed, these peculiar features in terms of crystallinity, conjugation degree, and topology diagrams fundamentally decide the applications of COFs including heterogeneous catalysis, energy conversion, proton conduction, light emission, and optoelectronic devices. Additionally, this research field has attracted widespread attention and is of importance with a major breakthrough in recent year. However, this research field is running with the lack of summaries about tailorable construction of 2D COFs for targeted functionalities. This review first covers some crucial polymeric strategies of preparing COFs, containing boron ester condensation, amine-aldehyde condensation, Knoevenagel condensation, trimerization reaction, Suzuki CC coupling reaction, and hybrid polycondensation. Subsequently, a summary is made of some representative building blocks, and then underlines how the electronic and molecular structures of building blocks can strongly influence the functional performance of COFs. Finally, conclusion and perspectives on 2D COFs for further study are proposed.
Collapse
Affiliation(s)
- Chenyu Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
26
|
Guo C, Liu M, Gao GK, Tian X, Zhou J, Dong LZ, Li Q, Chen Y, Li SL, Lan YQ. Anthraquinone Covalent Organic Framework Hollow Tubes as Binder Microadditives in Li-S Batteries. Angew Chem Int Ed Engl 2021; 61:e202113315. [PMID: 34716649 DOI: 10.1002/anie.202113315] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 11/06/2022]
Abstract
The exploration of new application forms of covalent organic frameworks (COFs) in Li-S batteries that can overcome drawbacks like low conductivity or high loading when typically applied as sulfur host materials (mostly ≈20 to ≈40 wt % loading in cathode) is desirable to maximize their low-density advantage to obtain lightweight, portable, or high-energy-density devices. Here, we establish that COFs could have implications as microadditives of binders (≈1 wt % in cathode), and a series of anthraquinone-COF based hollow tubes have been prepared as model microadditives. The microadditives can strengthen the basic properties of the binder and spontaneously immobilize and catalytically convert lithium polysulfides, as proved by density functional calculations, thus showing almost doubly enhanced reversible capacity compared with that of the bare electrode.
Collapse
Affiliation(s)
- Can Guo
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Ming Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Guang-Kuo Gao
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Xi Tian
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jie Zhou
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Long-Zhang Dong
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Qi Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yifa Chen
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China.,Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shun-Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
27
|
Gao G, Jia Y, Gao H, Shi W, Yu J, Yang Z, Dong Z, Zhao Y. New Covalent Triazine Framework Rich in Nitrogen and Oxygen as a Host Material for Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50258-50269. [PMID: 34637260 DOI: 10.1021/acsami.1c15269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium-sulfur (Li-S) batteries have been widely considered as the next-generation energy storage system but hindered by the soluble polysulfide intermediate-induced shuttle effect. Doping heteroatoms was confirmed to enhance the affinity of polysulfide and the carbon host, release the shuttle effect, and improve the battery performance. To enhance the Lewis acidity and reinforce the interaction between polysulfide and the carbon skeleton, a novel covalent triazine framework (CTFO) was designed and fabricated by copolymerizing 2,4,6-triphenoxy-s-triazine and 2,4,6-trichloro-1,3,5-triazine through Friedel-Crafts alkylation. Polymerization led to triazine substitution on the para-position of the phenoxy groups of 2,4,6-triphenoxy-triazine and produced two-dimensional three-connected honeycomb nanosheets. These nanosheets were confirmed to exhibit packing in the AB style through the intralayer π-π interaction to form a three-dimensional layered network with micropores of 0.5 nm. The practical and simulated results manifested the enhanced polysulfide capture capability due to the abundant N and O heteroatoms in CTFO. The unique porous polar network endowed CTFO with improved Li-S battery performance with high Coulombic efficiency, rate capability, and cycling stability. The S@CTFO cathode delivered an initial discharge capacity of 791 mAh g-1 at 1C and retained a residual capacity of 512 mAh g-1 after 300 charge-discharge cycles with an attenuation rate of 0.117%. The present results confirmed that multiple heteroatom doping enhances the interaction between the porous polar CTF skeleton and polysulfide intermediates to improve the Li-S battery performance.
Collapse
Affiliation(s)
- Guowei Gao
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yunling Jia
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haiyan Gao
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Wenxiong Shi
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jianguo Yu
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zitao Yang
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Department of College of Ecology and Resource Engineering, Wuyi University, Fujian 354300, China
| | - Zhenghong Dong
- Tianjin Sinoma Engineering Research Center Co. Ltd., Tianjin 300400, China
| | - Yongnan Zhao
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Department of College of Ecology and Resource Engineering, Wuyi University, Fujian 354300, China
| |
Collapse
|
28
|
Wang X, Hao Y, Wang G, Deng N, Wei L, Yang Q, Cheng B, Kang W. YF 3/CoF 3 co-doped 1D carbon nanofibers with dual functions of lithium polysulfudes adsorption and efficient catalytic activity as a cathode for high-performance Li-S batteries. J Colloid Interface Sci 2021; 607:922-932. [PMID: 34571313 DOI: 10.1016/j.jcis.2021.09.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022]
Abstract
Lithium-sulfur (Li-S) batteries have attracted extensive attention in the field of energy storage due to their high energy density and low cost. However, conundrums such as severe polarization, poor cyclic performance originating from shuttle effect of lithium polysulfides and sluggish sulfur redox kinetics are stumbling blocks for their practical application. Herein, a novel sulfur cathode integrating sulfur and polyvinylpyrrolidone(PVP)-derived N-doped porous carbon nanofibers (PCNFs) with embedded CoF3 and YF3 nanoparticles are designed and prepared though the electrostatic blowing technology and carbonization process. The unique flexible PCNFs with embedded polar CoF3 and YF3 nanoparticles not only offer enough voids for volume expansion to maintain the structural stability during the electrochemical process, but also promote the physical encapsulation and chemical entrapment of all sulfur species. Moreover, the uniform distribution of YF3/CoF3 nanoparticles also can expose more binding active sites to lithium polysulfide and present more catalytic sites to the greatest extent. Therefore, the assembled cells with the prepared cathode exhibited stable performances with an outstanding initial capacity of 1055.2 mAh g-1 and an extended cycling stability of 0.029% per cycle during the 300 cycles at 0.5C. Even at a high sulfur loading of 2.1 mg cm-2, The YF3/CoF3 doped-PCNFs exhibited a high discharge specific capacity of 1038 mAh g-1, and the decay rate is also as low as 0.05% over 1000 cycles. This work shares a convenient and safe strategy for the synthesis of multi-dimension, dual-functional and stable superstructure electrode for advanced Li-S batteries.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yan Hao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Gang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Liying Wei
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qi Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
29
|
Functionalized triazine-based covalent organic frameworks containing quinoline via aza-Diels-Alder reaction for enhanced lithium-sulfur batteries performance. J Colloid Interface Sci 2021; 608:652-661. [PMID: 34628324 DOI: 10.1016/j.jcis.2021.09.150] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022]
Abstract
The development of functional covalent organic frameworks (COFs) with specific properties is an emerging research field. In the current work, COF-SQ-Ph was synthesized through the aza-Diels-Alder reaction between phenylacetylene and the matrix COF-SQ (triazine-based COF) generated from the organic monomers 2, 4, 6-tris(4-aminophenyl)-1, 3, 5-triazine and 2, 5-dimethoxyterephthalaldehyde in flask. The functionalized COF-SQ-Ph with an extended π-conjugated structure and enhanced structural stability was used as the sulfur loading recipient to prepare sulfur cathodes for lithium-sulfur batteries. Sulfur-impregnated COF-SQ-Ph marked as COF-SQ-Ph-S displayed better cycling stability with a specific capacity of 618 mA h g-1 after 150 cycles due to the lithiophilic interaction between lithium polysulfides and nitrogen atoms from quinoline and triazine moieties in COF-SQ-Ph-S. The functionalization of triazine-based COFs through a cycloaddition reaction in flask could promote the large-scale preparation of tailored COFs and the post-synthesis modification of COF-SQ.
Collapse
|
30
|
Dong Y, Li T, Cai D, Yang S, Zhou X, Nie H, Yang Z. Progress and Prospect of Organic Electrocatalysts in Lithium-Sulfur Batteries. Front Chem 2021; 9:703354. [PMID: 34336789 PMCID: PMC8322034 DOI: 10.3389/fchem.2021.703354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
Lithium-sulfur (Li-S) batteries featured by ultra-high energy density and cost-efficiency are considered the most promising candidate for the next-generation energy storage system. However, their pragmatic applications confront several non-negligible drawbacks that mainly originate from the reaction and transformation of sulfur intermediates. Grasping and catalyzing these sulfur species motivated the research topics in this field. In this regard, carbon dopants with metal/metal-free atoms together with transition-metal complex, as traditional lithium polysulfide (LiPS) propellers, exhibited significant electrochemical performance promotions. Nevertheless, only the surface atoms of these host-accelerators can possibly be used as active sites. In sharp contrast, organic materials with a tunable structure and composition can be dispersed as individual molecules on the surface of substrates that may be more efficient electrocatalysts. The well-defined molecular structures also contribute to elucidate the involved surface-binding mechanisms. Inspired by these perceptions, organic electrocatalysts have achieved a great progress in recent decades. This review focuses on the organic electrocatalysts used in each part of Li-S batteries and discusses the structure-activity relationship between the introduced organic molecules and LiPSs. Ultimately, the future developments and prospects of organic electrocatalysts in Li-S batteries are also discussed.
Collapse
Affiliation(s)
- Yangyang Dong
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Tingting Li
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Dong Cai
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Shuo Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Huagui Nie
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| |
Collapse
|
31
|
Lin J, Zhong Y, Tang L, Wang L, Yang M, Xia H. Covalent organic frameworks: From materials design to electrochemical energy storage applications. NANO SELECT 2021. [DOI: 10.1002/nano.202100153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jiamin Lin
- School of Materials Science and Engineering Herbert Gleiter Institute of Nanoscience Nanjing University of Science and Technology Nanjing China
| | - Yiren Zhong
- Department of Chemistry Energy Sciences Institute Yale University Yale Connecticut USA
| | - Lingyu Tang
- School of Materials Science and Engineering Herbert Gleiter Institute of Nanoscience Nanjing University of Science and Technology Nanjing China
| | - Liuqi Wang
- School of Materials Science and Engineering Herbert Gleiter Institute of Nanoscience Nanjing University of Science and Technology Nanjing China
| | - Mei Yang
- School of Materials Science and Engineering Herbert Gleiter Institute of Nanoscience Nanjing University of Science and Technology Nanjing China
| | - Hui Xia
- School of Materials Science and Engineering Herbert Gleiter Institute of Nanoscience Nanjing University of Science and Technology Nanjing China
| |
Collapse
|
32
|
Vardhan H, Al-Enizi AM, Nafady A, Pan Y, Yang Z, Gutiérrez HR, Han X, Ma S. Single-Pore versus Dual-Pore Bipyridine-Based Covalent-Organic Frameworks: An Insight into the Heterogeneous Catalytic Activity for Selective CH Functionalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003970. [PMID: 32914540 DOI: 10.1002/smll.202003970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Exponential growth in the field of covalent-organic frameworks (COFs) is emanating from the direct correlation between designing principles and desired properties. The comparison of catalytic activity between single-pore and dual-pore COFs is of importance to establish structure-function relationship. Herein, the synthesis of imine-linked dual-pore [(BPyDC)]x % -ETTA COFs (x = 0%, 25%, 50%, 75%, 100%) with controllable bipyridine content is fulfilled by three-component condensation of 4,4',4″,4'″-(ethene-1,1,2,2-tetrayl)tetraaniline (ETTA), 4,4'-biphenyldialdehyde, and 2,2'-bipyridyl-5,5'-dialdehyde in different stoichiometric ratio. The strong coordination of bipyridine moieties of [(BPyDC)]x % -ETTA COFs with palladium imparts efficient catalytic active sites for selective functionalization of sp2 CH bond to CX (X = Br, Cl) or CO bonds in good yield. To broaden the scope of regioselective CH functionalization, a wide range of electronically and sterically substituted substrates under optimized catalytic condition are investigated. A comparison of the catalytic activity of palladium decorated dual-pore frameworks with single-pore imine-linked Pd(II) @ Py-2,2'-BPyDC framework is undertaken. The finding of this work provides a sporadic example of chelation-assisted CH functionalization and disclosed an in-depth comparison of the relationship between superior catalytic activity and core properties of rationally designed imine linked frameworks.
Collapse
Affiliation(s)
- Harsh Vardhan
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, 1231 Albrecht Blvd., Fargo, ND, 58108, USA
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, 1231 Albrecht Blvd., Fargo, ND, 58108, USA
| | | | - Xiaolong Han
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Shengqian Ma
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, USA
| |
Collapse
|
33
|
Challenges and perspectives of covalent organic frameworks for advanced alkali-metal ion batteries. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1016-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Mallakpour S, Azadi E, Hussain CM. Emerging new-generation hybrids based on covalent organic frameworks for industrial applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj00609f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review highlights the advancement of COF hybrid-based materials for diverse industrial applications.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|
35
|
Zhao Q, Ma C, Liu J, Chen Z, Zhao H, Li B, Yang X. Synthesis of magnetic covalent organic framework molecularly imprinted polymers at room temperature: A novel imprinted strategy for thermo-sensitive substance. Talanta 2020; 225:121958. [PMID: 33592713 DOI: 10.1016/j.talanta.2020.121958] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Molecularly imprinted polymers (MIPs) with specific selective recognition have shown excellent performance in the rapid and efficient separation and enrichment of targets in complex systems. Unfortunately, it is not suitable for thermosensitive substances with biological functions. To this end, an imine-linked MIPs with covalent organic frameworks and magnetic nanoparticles was developed by using a room temperature synthesis strategy for the purification of Cyaninin-3-O-glucoside (C3G) from black chokeberry. The prepared material recognized C3G through π-π interaction, assisted by hydrogen bond, and will not be disturbed by water environment. The adsorption capacity and equilibrium binding constant were 86.92 mg g-1 and 1.46 L mg-1, respectively. Based on this special structure, it can also act as a "protective umbrella" and improve the stability of C3G. Furthermore, it exhibited high selectivity compared with dummy template imprinting technique. After purification, the purity of C3G was obviously improved (from 11.96% to 84.72%). This work provided a new strategy for the selective separation of anthocyanin and a method to develop MIPs for thermosensitive substances.
Collapse
Affiliation(s)
- Qianyu Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Chao Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Jingyi Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Zilong Chen
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Jiangxi, Nanchang, 330004, China
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Bin Li
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Jiangxi, Nanchang, 330004, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|