1
|
Zeng Y, Gao Y, He L, Ge W, Wang X, Ma T, Xie X. Smart delivery vehicles for cancer: categories, unique roles and therapeutic strategies. NANOSCALE ADVANCES 2024; 6:4275-4308. [PMID: 39170969 PMCID: PMC11334973 DOI: 10.1039/d4na00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 08/23/2024]
Abstract
Chemotherapy and surgery remain the primary treatment modalities for cancers; however, these techniques have drawbacks, such as cancer recurrence and toxic side effects, necessitating more efficient cancer treatment strategies. Recent advancements in research and medical technology have provided novel insights and expanded our understanding of cancer development; consequently, scholars have investigated several delivery vehicles for cancer therapy to improve the efficiency of cancer treatment and patient outcomes. Herein, we summarize several types of smart therapeutic carriers and elaborate on the mechanism underlying drug delivery. We reveal the advantages of smart therapeutic carriers for cancer treatment, focus on their effectiveness in cancer immunotherapy, and discuss the application of smart cancer therapy vehicles in combination with other emerging therapeutic strategies for cancer treatment. Finally, we summarize the bottlenecks encountered in the development of smart cancer therapeutic vehicles and suggest directions for future research. This review will promote progress in smart cancer therapy and facilitate related research.
Collapse
Affiliation(s)
- Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Liming He
- Department of Stomatology, Changsha Stomatological Hospital Changsha 410004 P. R. China
| | - Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xinying Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Tao Ma
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| |
Collapse
|
2
|
Dechbumroong P, Hu R, Keaswejjareansuk W, Namdee K, Liang XJ. Recent advanced lipid-based nanomedicines for overcoming cancer resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:24. [PMID: 39050885 PMCID: PMC11267154 DOI: 10.20517/cdr.2024.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
The increasing prevalence of cancer drug resistance not only critically limits the efficiency of traditional therapies but also causes relapses or recurrences of cancer. Consequently, there remains an urgent need to address the intricate landscape of drug resistance beyond traditional cancer therapies. Recently, nanotechnology has played an important role in the field of various drug delivery systems for the treatment of cancer, especially therapy-resistant cancer. Among advanced nanomedicine technologies, lipid-based nanomaterials have emerged as effective drug carriers for cancer treatment, significantly improving therapeutic effects. Due to their biocompatibility, simplicity of preparation, and potential for functionalization, lipid-based nanomaterials are considered powerful competitors for resistant cancer. In this review, an overview of lipid-based nanomaterials for addressing cancer resistance is discussed. We summarize the recent progress in overcoming drug resistance in cancer by these lipid-based nanomaterials, and highlight their potential in future applications to reverse cancer resistance.
Collapse
Affiliation(s)
- Piroonrat Dechbumroong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
- Authors contributed equally
| | - Runjing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Authors contributed equally
| | - Wisawat Keaswejjareansuk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Bhusare N, Gade A, Kumar MS. Using nanotechnology to progress the utilization of marine natural products in combating multidrug resistance in cancer: A prospective strategy. J Biochem Mol Toxicol 2024; 38:e23732. [PMID: 38769657 DOI: 10.1002/jbt.23732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Achieving targeted, customized, and combination therapies with clarity of the involved molecular pathways is crucial in the treatment as well as overcoming multidrug resistance (MDR) in cancer. Nanotechnology has emerged as an innovative and promising approach to address the problem of drug resistance. Developing nano-formulation-based therapies using therapeutic agents poses a synergistic effect to overcome MDR in cancer. In this review, we aimed to highlight the important pathways involved in the progression of MDR in cancer mediated through nanotechnology-based approaches that have been employed to circumvent them in recent years. Here, we also discussed the potential use of marine metabolites to treat MDR in cancer, utilizing active drug-targeting nanomedicine-based techniques to enhance selective drug accumulation in cancer cells. The discussion also provides future insights for developing complex targeted, multistage responsive nanomedical drug delivery systems for effective cancer treatments. We propose more combinational studies and their validation for the possible marine-based nanoformulations for future development.
Collapse
Affiliation(s)
- Nilam Bhusare
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| | - Anushree Gade
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| | - Maushmi S Kumar
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| |
Collapse
|
4
|
Wang C, Lan X, Zhu L, Wang Y, Gao X, Li J, Tian H, Liang Z, Xu W. Construction Strategy of Functionalized Liposomes and Multidimensional Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309031. [PMID: 38258399 DOI: 10.1002/smll.202309031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/30/2023] [Indexed: 01/24/2024]
Abstract
Liposomes are widely used in the biological field due to their good biocompatibility and surface modification properties. With the development of biochemistry and material science, many liposome structures and their surface functional components have been modified and optimized one by one, pushing the liposome platform from traditional to functionalized and intelligent, which will better satisfy and expand the needs of scientific research. However, a main limiting factor effecting the efficiency of liposomes is the complicated environmental conditions in the living body. Currently, in order to overcome the above problem, functionalized liposomes have become a very promising strategy. In this paper, binding strategies of liposomes with four main functional elements, namely nucleic acids, antibodies, peptides, and stimuli-responsive motif have been summarized for the first time. In addition, based on the construction characteristics of functionalized liposomes, such as drug-carrying, targeting, long-circulating, and stimulus-responsive properties, a comprehensive overview of their features and respective research progress are presented. Finally, the paper critically presents the limitations of these functionalized liposomes in the current applications and also prospectively suggests the future development directions, aiming to accelerate realization of their industrialization.
Collapse
Affiliation(s)
- Chengyun Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Xinyue Lan
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yanhui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Xinru Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
| | - Jie Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
| | - Wentao Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
5
|
Wang TY, Zhu XY, Jia HR, Zhu YX, Zhou YX, Li YH, Gao CZ, Pan GY, Wu FG. Devastating the Supply Wagons: Multifaceted Liposomes Capable of Exhausting Tumor to Death via Triple Energy Depletion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308861. [PMID: 38372029 DOI: 10.1002/smll.202308861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/08/2024] [Indexed: 02/20/2024]
Abstract
The anabolism of tumor cells can not only support their proliferation, but also endow them with a steady influx of exogenous nutrients. Therefore, consuming metabolic substrates or limiting access to energy supply can be an effective strategy to impede tumor growth. Herein, a novel treatment paradigm of starving-like therapy-triple energy-depleting therapy-is illustrated by glucose oxidase (GOx)/dc-IR825/sorafenib liposomes (termed GISLs), and such a triple energy-depleting therapy exhibits a more effective tumor-killing effect than conventional starvation therapy that only cuts off one of the energy supplies. Specifically, GOx can continuously consume glucose and generate toxic H2O2 in the tumor microenvironment (including tumor cells). After endocytosis, dc-IR825 (a near-infrared cyanine dye) can precisely target mitochondria and exert photodynamic and photothermal activities upon laser irradiation to destroy mitochondria. The anti-angiogenesis effect of sorafenib can further block energy and nutrition supply from blood. This work exemplifies a facile and safe method to exhaust the energy in a tumor from three aspects and starve the tumor to death and also highlights the importance of energy depletion in tumor treatment. It is hoped that this work will inspire the development of more advanced platforms that can combine multiple energy depletion therapies to realize more effective tumor treatment.
Collapse
Affiliation(s)
- Tian-Yu Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Xiao-Yu Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Yong-Xi Zhou
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Yan-Hong Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Cheng-Zhe Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Guang-Yu Pan
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541100, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| |
Collapse
|
6
|
Zhang X, Ma Y, Shi Y, Jiang L, Wang L, Ur Rashid H, Yuan M, Liu X. Advances in liposomes loaded with photoresponse materials for cancer therapy. Biomed Pharmacother 2024; 174:116586. [PMID: 38626516 DOI: 10.1016/j.biopha.2024.116586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024] Open
Abstract
Cancer treatment is presently a significant challenge in the medical domain, wherein the primary modalities of intervention include chemotherapy, radiation therapy and surgery. However, these therapeutic modalities carry side effects. Photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as promising modalities for the treatment of tumors in recent years. Phototherapy is a therapeutic approach that involves the exposure of materials to specific wavelengths of light, which can subsequently be converted into either heat or Reactive Oxygen Species (ROS) to effectively eradicate cancer cells. Due to the hydrophobicity and lack of targeting of many photoresponsive materials, the use of nano-carriers for their transportation has been extensively explored. Among these nanocarriers, liposomes have been identified as an effective drug delivery system due to their controllability and availability in the biomedical field. By binding photoresponsive materials to liposomes, it is possible to reduce the cytotoxicity of the material and regulate drug release and accumulation at the tumor site. This article provides a comprehensive review of the progress made in cancer therapy using photoresponsive materials loaded onto liposomes. Additionally, the article discusses the potential synergistic treatment through the combination of phototherapy with chemo/immuno/gene therapy using liposomes.
Collapse
Affiliation(s)
- Xianwei Zhang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Youfu Ma
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Yenong Shi
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Lihe Jiang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Lisheng Wang
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Haroon Ur Rashid
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Mingqing Yuan
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Xu Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
7
|
Yang B, Sang R, Li Y, Goldys EM, Deng W. Improved effectiveness of X-PDT against human triple-negative breast cancer cells through the use of liposomes co-loaded with protoporphyrin IX and perfluorooctyl bromide. J Mater Chem B 2024; 12:3764-3773. [PMID: 38533806 DOI: 10.1039/d4tb00011k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In this study, we utilized X-ray-induced photodynamic therapy (X-PDT) against triple-negative breast cancer (TNBC) cells. To achieve this, we developed a liposome delivery system that co-loaded protoporphyrin IX (PPIX) and perfluorooctyl bromide (PFOB) in a rational manner. Low-dose X-ray at 2 Gy was employed to activate PPIX for the generation of reactive oxygen species (ROS), and the co-loading of PFOB provided additional oxygen to enhance ROS production. The resulting highly toxic ROS effectively induced cell death in TNBC. In vitro X-PDT effects, including intracellular ROS generation, cell viability, and apoptosis/necrosis assays in TNBC cells, were thoroughly investigated. Our results indicate that the nanocarriers effectively induced X-PDT effects with very low-dose radiation, making it feasible to damage cancer cells. This suggests the potential for the effective utilization of X-PDT in treating hypoxic cancers, including TNBC, with only a fraction of conventional radiotherapy.
Collapse
Affiliation(s)
- Biyao Yang
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia
| | - Rui Sang
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia
| | - Yi Li
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
8
|
Zhu XY, Wang TY, Jia HR, Wu SY, Gao CZ, Li YH, Zhang X, Shan BH, Wu FG. A ferroptosis-reinforced nanocatalyst enhances chemodynamic therapy through dual H 2O 2 production and oxidative stress amplification. J Control Release 2024; 367:892-904. [PMID: 38278369 DOI: 10.1016/j.jconrel.2024.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
The existence of a delicate redox balance in tumors usually leads to cancer treatment failure. Breaking redox homeostasis by amplifying oxidative stress and reducing glutathione (GSH) can accelerate cancer cell death. Herein, we construct a ferroptosis-reinforced nanocatalyst (denoted as HBGL) to amplify intracellular oxidative stress via dual H2O2 production-assisted chemodynamic therapy (CDT). Specifically, a long-circulating liposome is employed to deliver hemin (a natural iron-containing substrate for Fenton reaction and ferroptosis), β-lapachone (a DNA topoisomerase inhibitor with H2O2 generation capacity for chemotherapy), and glucose oxidase (which can consume glucose for starvation therapy and generate H2O2). HBGL can achieve rapid, continuous, and massive H2O2 and •OH production and GSH depletion in cancer cells, resulting in increased intracellular oxidative stress. Additionally, hemin can reinforce the ferroptosis-inducing ability of HBGL, which is reflected in the downregulation of glutathione peroxidase-4 and the accumulation of lipid peroxide. Notably, HBGL can disrupt endo/lysosomes and impair mitochondrial function in cancer cells. HBGL exhibits effective tumor-killing ability without eliciting obvious side effects, indicating its clinical translation potential for synergistic starvation therapy, chemotherapy, ferroptosis therapy, and CDT. Overall, this nanocatalytic liposome may be a promising candidate for achieving potentiated cancer treatment.
Collapse
Affiliation(s)
- Xiao-Yu Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Tian-Yu Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Hao-Ran Jia
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Shun-Yu Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Cheng-Zhe Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Yan-Hong Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Xinping Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China.
| |
Collapse
|
9
|
Zou J. Site-specific delivery of cisplatin and paclitaxel mediated by liposomes: A promising approach in cancer chemotherapy. ENVIRONMENTAL RESEARCH 2023; 238:117111. [PMID: 37734579 DOI: 10.1016/j.envres.2023.117111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
The site-specific delivery of drugs, especially anti-cancer drugs has been an interesting field for researchers and the reason is low accumulation of cytotoxic drugs in cancer cells. Although combination cancer therapy has been beneficial in providing cancer drug sensitivity, targeted delivery of drugs appears to be more efficient. One of the safe, biocompatible and efficient nano-scale delivery systems in anti-cancer drug delivery is liposomes. Their particle size is small and they have other properties such as adjustable physico-chemical properties, ease of functionalization and high entrapment efficiency. Cisplatin is a chemotherapy drug with clinical approval in patients, but its accumulation in cancer cells is low due to lack of targeted delivery and repeated administration results in resistance development. Gene and drug co-administration along with cisplatin/paclitaxel have resulted in increased sensitivity in tumor cells, but there is still space for more progress in cancer therapy. The delivery of cisplatin/paclitaxel by liposomes increases accumulation of drug in tumor cells and impairs activity of efflux pumps in promoting cytotoxicity. Moreover, phototherapy along with cisplatin/paclitaxel delivery can increase potential in tumor suppression. Smart nanoparticles including pH-sensitive nanoparticles provide site-specific delivery of cisplatin/paclitaxel. The functionalization of liposomes can be performed by ligands to increase targetability towards tumor cells in mediating site-specific delivery of cisplatin/paclitaxel. Finally, liposomes can mediate co-delivery of cisplatin/paclitaxel with drugs or genes in potentiating tumor suppression. Since drug resistance has caused therapy failure in cancer patients, and cisplatin/paclitaxel are among popular chemotherapy drugs, delivery of these drugs mediates targeted suppression of cancers and prevents development of drug resistance. Because of biocompatibility and safety of liposomes, they are currently used in clinical trials for treatment of cancer patients. In future, the optimal dose of using liposomes and optimal concentration of loading cisplatin/paclitaxel on liposomal nanocarriers in clinical trials should be determined.
Collapse
Affiliation(s)
- Jianyong Zou
- Department of Thoracic Surgery, The first Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, PR China.
| |
Collapse
|
10
|
Chavda VP, Balar PC, Nalla LV, Bezbaruah R, Gogoi NR, Gajula SNR, Peng B, Meena AS, Conde J, Prasad R. Conjugated Nanoparticles for Solid Tumor Theranostics: Unraveling the Interplay of Known and Unknown Factors. ACS OMEGA 2023; 8:37654-37684. [PMID: 37867666 PMCID: PMC10586263 DOI: 10.1021/acsomega.3c05069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Cancer diagnoses have been increasing worldwide, and solid tumors are among the leading contributors to patient mortality, creating an enormous burden on the global healthcare system. Cancer is responsible for around 10.3 million deaths worldwide. Solid tumors are one of the most prevalent cancers observed in recent times. On the other hand, early diagnosis is a significant challenge that could save a person's life. Treatment with existing methods has pitfalls that limit the successful elimination of the disorder. Though nanoparticle-based imaging and therapeutics have shown a significant impact in healthcare, current methodologies for solid tumor treatment are insufficient. There are multiple complications associated with the diagnosis and management of solid tumors as well. Recently, surface-conjugated nanoparticles such as lipid nanoparticles, metallic nanoparticles, and quantum dots have shown positive results in solid tumor diagnostics and therapeutics in preclinical models. Other nanotheranostic material platforms such as plasmonic theranostics, magnetotheranostics, hybrid nanotheranostics, and graphene theranostics have also been explored. These nanoparticle theranostics ensure the appropriate targeting of tumors along with selective delivery of cargos (both imaging and therapeutic probes) without affecting the surrounding healthy tissues. Though they have multiple applications, nanoparticles still possess numerous limitations that need to be addressed in order to be fully utilized in the clinic. In this review, we outline the importance of materials and design strategies used to engineer nanoparticles in the treatment and diagnosis of solid tumors and how effectively each method overcomes the drawbacks of the current techniques. We also highlight the gaps in each material platform and how design considerations can address their limitations in future research directions.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department
of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380001, India
| | - Pankti C. Balar
- Pharmacy
Section, L.M. College of Pharmacy, Ahmedabad 380001, India
| | - Lakshmi Vineela Nalla
- Department
of Pharmacy, Koneru Lakshmaiah Education
Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Rajashri Bezbaruah
- Department
of Pharmaceutical Sciences, Faculty of Science
and Engineering, Dibrugarh, 786004 Assam, India
| | - Niva Rani Gogoi
- Department
of Pharmaceutical Sciences, Faculty of Science
and Engineering, Dibrugarh, 786004 Assam, India
| | - Siva Nageswara Rao Gajula
- Department
of Pharmaceutical Analysis, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Berney Peng
- Department
of Pathology and Laboratory Medicine, University
of California at Los Angeles, Los
Angeles, California 90095, United States
| | - Avtar S. Meena
- Department
of Biotechnology, All India Institute of
Medical Sciences (AIIMS), Ansari
Nagar, New Delhi 110029, India
| | - João Conde
- ToxOmics,
NOVA Medical School, Faculdade de Ciências Médicas,
NMS|FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Rajendra Prasad
- School
of Biochemical Engineering, Indian Institute
of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
11
|
Ashique S, Garg A, Hussain A, Farid A, Kumar P, Taghizadeh‐Hesary F. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers. Cancer Med 2023; 12:18797-18825. [PMID: 37668041 PMCID: PMC10557914 DOI: 10.1002/cam4.6502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Cancer treatment is still a global health challenge. Nowadays, chemotherapy is widely applied for treating cancer and reducing its burden. However, its application might be in accordance with various adverse effects by exposing the healthy tissues and multidrug resistance (MDR), leading to disease relapse or metastasis. In addition, due to tumor heterogeneity and the varied pharmacokinetic features of prescribed drugs, combination therapy has only shown modestly improved results in MDR malignancies. Nanotechnology has been explored as a potential tool for cancer treatment, due to the efficiency of nanoparticles to function as a vehicle for drug delivery. METHODS With this viewpoint, functionalized nanosystems have been investigated as a potential strategy to overcome drug resistance. RESULTS This approach aims to improve the efficacy of anticancer medicines while decreasing their associated side effects through a range of mechanisms, such as bypassing drug efflux, controlling drug release, and disrupting metabolism. This review discusses the MDR mechanisms contributing to therapeutic failure, the most cutting-edge approaches used in nanomedicine to create and assess nanocarriers, and designed nanomedicine to counteract MDR with emphasis on recent developments, their potential, and limitations. CONCLUSIONS Studies have shown that nanoparticle-mediated drug delivery confers distinct benefits over traditional pharmaceuticals, including improved biocompatibility, stability, permeability, retention effect, and targeting capabilities.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of PharmaceuticsPandaveswar School of PharmacyPandaveswarIndia
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, PharmacyJabalpurIndia
| | - Afzal Hussain
- Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Arshad Farid
- Gomal Center of Biochemistry and BiotechnologyGomal UniversityDera Ismail KhanPakistan
| | - Prashant Kumar
- Teerthanker Mahaveer College of PharmacyTeerthanker Mahaveer UniversityMoradabadIndia
- Department of Pharmaceutics, Amity Institute of PharmacyAmity University Madhya Pradesh (AUMP)GwaliorIndia
| | - Farzad Taghizadeh‐Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of MedicineIran University of Medical SciencesTehranIran
- Clinical Oncology DepartmentIran University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Huang Z, Xu K, Zhao L, Zheng LE, Xu N, Yan C, Hu X, Zhang Q, Liu J, Zhao Q, Xia Y. AND-Gated Nanosensor for Imaging of Glutathione and Apyrimidinic Endonuclease 1 in Cells, Animals, and Organoids. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37245159 DOI: 10.1021/acsami.3c02236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The development of a strategy for imaging of glutathione (GSH) and apurinic/apyrimidinic endonuclease 1 (APE1) in an organism remains challenging despite their significance in elaborating the correlated pathophysiological processes. Therefore, in this study, we propose a DNA-based AND-gated nanosensor for fluorescence imaging of the GSH as well as APE1 in living cells, animals, and organoids. The DNA probe is composed of a G-strand and A-strand. The disulfide bond in the G-strand is cleaved through a GSH redox reaction, and the hybridization stability between the G-strand and A-strand is decreased, leading to a conformational change of the A-strand. In the presence of APE1, the apurinic/apyrimidinic (AP) site in the A-strand is digested, producing a fluorescence signal for the correlated imaging of GSH and APE1. This nanosensor enables monitoring of the expression level change of GSH and APE1 in cells. Additionally, we illustrate the capability of this "dual-keys-and-locked" conceptual methodology in achieving specific tumor imaging when GSH and APE1 are present simultaneously (overexpressed GSH and APE1 in tumor cells) with improving tumor-to-normal tissue ratio in vivo. Furthermore, using this nanosensor, the GSH and APE1 also are visualized in organoids that recapitulate the phenotypic and functional traits of the original biological specimens. Overall, this study demonstrates the potential of our proposed biosensing technology in investigating the roles of various biological molecules involved in specific diseases.
Collapse
Affiliation(s)
- Zening Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Kaixiang Xu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Lijuan Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Li-E Zheng
- Department of Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Nana Xu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Caixia Yan
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Xingjiang Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Qiao Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Jian Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Yaokun Xia
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| |
Collapse
|
13
|
Wang J, Zhang H, Lv J, Zheng Y, Li M, Yang G, Wei X, Li N, Huang H, Li T, Qin X, Li S, Wu C, Zhang W, Liu Y, Yang H. A Tumor-specific ROS Self-supply Enhanced Cascade-responsive Prodrug Activation Nanosystem for Amplified Chemotherapy against Multidrug-Resistant Tumors. Acta Biomater 2023; 164:522-537. [PMID: 37072069 DOI: 10.1016/j.actbio.2023.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 04/20/2023]
Abstract
Chemotherapy remains the mainstay of cancer treatment, and doxorubicin (DOX) is recommended as a first-line chemotherapy drug against cancer. However, systemic adverse drug reactions and multidrug resistance limit its clinical applications. Here, a tumor-specific reactive oxygen species (ROS) self-supply enhanced cascade responsive prodrug activation nanosystem (denoted as PPHI@B/L) was developed to optimize multidrug resistance tumor chemotherapy efficacy while minimizing the side effects. PPHI@B/L was constructed by encapsulating the ROS-generating agent β-lapachone (Lap) and the ROS-responsive doxorubicin prodrug (BDOX) in acidic pH-sensitive heterogeneous nanomicelles. PPHI@B/L exhibited particle size decrease and charge increase when it reached the tumor microenvironment due to acid-triggered PEG detachment, to favor its endocytosis efficiency and deep tumor penetration. Furthermore, after PPHI@B/L internalization, rapidly released Lap was catalyzed by the overexpressed quinone oxidoreductase-1 (NQO1) enzyme NAD(P)H in tumor cells to selectively raise intracellular ROS levels. Subsequently, ROS generation further promoted the specific cascade activation of the prodrug BDOX to exert the chemotherapy effects. Simultaneously, Lap-induced ATP depletion reduced drug efflux, synergizing with increased intracellular DOX concentrations to assist in overcoming multidrug resistance. This tumor microenvironment-triggered cascade responsive prodrug activation nanosystem potentiates antitumor effects with satisfactory biosafety, breaking the chemotherapy limitation of multidrug resistance and significantly improving therapy efficiency. STATEMENT OF SIGNIFICANCE: Chemotherapy remains the mainstay of cancer treatment, and doxorubicin (DOX) is recommended as a first-line chemotherapy drug against cancer. However, systemic adverse drug reactions and multidrug resistance limit its clinical applications. Here, a tumor-specific reactive oxygen species (ROS) self-supply enhanced cascade responsive prodrug activation nanosystem (denoted as PPHI@B/L) was developed to optimize multidrug resistance tumor chemotherapy efficacy while minimizing the side effects. The work provides a new sight for simultaneously addressing the molecular mechanisms and physio-pathological disorders to overcome MDR in cancer treatment.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Hanxi Zhang
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Jiazhen Lv
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Yue Zheng
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Mengyue Li
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Geng Yang
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Xiaodan Wei
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Ningxi Li
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Honglin Huang
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Tingting Li
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Xiang Qin
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Shun Li
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Chunhui Wu
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Wei Zhang
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China.
| | - Yiyao Liu
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P.R. China.
| | - Hong Yang
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
14
|
Tian M, Zhu Y, Guan W, Lu C. Quantitative Measurement of Drug Release Dynamics within Targeted Organelles Using Förster Resonance Energy Transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206866. [PMID: 37026420 DOI: 10.1002/smll.202206866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Measuring the release dynamics of drug molecules after their delivery to the target organelle is critical to improve therapeutic efficacy and reduce side effects. However, it remains challenging to quantitatively monitor subcellular drug release in real time. To address the knowledge gap, a novel gemini fluorescent surfactant capable of forming mitochondria-targeted and redox-responsive nanocarriers is designed. A quantitative Förster resonance energy transfer (FRET) platform is fabricated using this mitochondria-anchored fluorescent nanocarrier as a FRET donor and fluorescent drugs as a FRET acceptor. The FRET platform enables real-time measurement of drug release from organelle-targeted nanocarriers. Moreover, the obtained drug release dynamics can evaluate the duration of drug release at the subcellular level, which established a new quantitative method for organelle-targeted drug release. This quantitative FRET platform can compensate for the absent assessment of the targeted release performances of nanocarriers, offering in-depth understanding of the drug release behaviors at the subcellular targets.
Collapse
Affiliation(s)
- Mingce Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaping Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
15
|
Liu X, Zhan W, Gao G, Jiang Q, Zhang X, Zhang H, Sun X, Han W, Wu FG, Liang G. Apoptosis-Amplified Assembly of Porphyrin Nanofiber Enhances Photodynamic Therapy of Oral Tumor. J Am Chem Soc 2023; 145:7918-7930. [PMID: 36987560 DOI: 10.1021/jacs.2c13189] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common oral cancer, having high recurrence and metastasis features. In addition to surgery, photodynamic therapy (PDT) is considered as another effective approach for OSCC treatment. The water solubility of currently available PDT photosensitizers (PSs) is poor, lowering their singlet oxygen (1O2) yield and consequent PDT efficiency. Strategies of PS assembly have been reported to increase 1O2 yield, but it is still possible to further enhance PDT efficiency. In this work, we utilized apoptosis to amplify the assembly of porphyrin nanofibers for enhanced PDT of OSCC. A water-soluble porphyrin derivative, Ac-Asp-Glu-Val-Asp-Asp-TPP (Ac-DEVDD-TPP), was designed for this purpose. Upon caspase-3 (Casp3, an activated enzyme during apoptosis) cleavage and laser irradiation, Ac-DEVDD-TPP was converted to D-TPP, which spontaneously self-assembled into porphyrin nanofibers, accompanied by 1.4-fold and 2.1-fold 1O2 generations in vitro and in cells, respectively. The as-formed porphyrin nanofiber induced efficient cell apoptosis and pyroptosis. In vivo experiments demonstrated that, compared with the scrambled control compound Ac-DEDVD-TPP, Ac-DEVDD-TPP led to 6.2-fold and 1.3-fold expressions of Casp3 in subcutaneous and orthotopic oral tumor models, respectively, and significantly suppressed the tumors. We envision that our strategy of apoptosis-amplified porphyrin assembly might be applied for OSCC treatment in the clinic in the near future.
Collapse
|
16
|
Petrikaite V, D'Avanzo N, Celia C, Fresta M. Nanocarriers overcoming biological barriers induced by multidrug resistance of chemotherapeutics in 2D and 3D cancer models. Drug Resist Updat 2023; 68:100956. [PMID: 36958083 DOI: 10.1016/j.drup.2023.100956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Multidrug resistance (MDR) is currently a big challenge in cancer therapy and limits its success in several patients. Tumors use the MDR mechanisms to colonize the host and reduce the efficacy of chemotherapeutics that are injected as single agents or combinations. MDR mechanisms are responsible for inactivation of drugs and formbiological barriers in cancer like the drug efflux pumps, aberrant extracellular matrix, hypoxic areas, altered cell death mechanisms, etc. Nanocarriers have some potential to overcome these barriers and improve the efficacy of chemotherapeutics. In fact, they are versatile and can deliver natural and synthetic biomolecules, as well as RNAi/DNAi, thus providing a controlled release of drugs and a synergistic effect in tumor tissues. Biocompatible and safe multifunctional biopolymers, with or without specific targeting molecules, modify the surface and interface properties of nanocarriers. These modifications affect the interaction of nanocarriers with cellular models as well as the selection of suitable models for in vitro experiments. MDR cancer cells, and particularly their 2D and 3D models, in combination with anatomical and physiological structures of tumor tissues, can boost the design and preparation of nanomedicines for anticancer therapy. 2D and 3D cancer cell cultures are suitable models to study the interaction, internalization, and efficacy of nanocarriers, the mechanisms of MDR in cancer cells and tissues, and they are used to tailor a personalized medicine and improve the efficacy of anticancer treatment in patients. The description of molecular mechanisms and physio-pathological pathways of these models further allow the design of nanomedicine that can efficiently overcome biological barriers involved in MDR and test the activity of nanocarriers in 2D and 3D models of MDR cancer cells.
Collapse
Affiliation(s)
- Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania; Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Nicola D'Avanzo
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy; Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy
| | - Christian Celia
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania; Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta" s.n.c., 88100 Catanzaro, Italy
| |
Collapse
|
17
|
Wan Y, Chen Z, Wang Y, Zhao W, Pei Z, Pu L, Lv Y, Li J, Li J, Pei Y. A hyaluronic acid modified cuprous metal-organic complex for reversing multidrug resistance via redox dyshomeostasis. Carbohydr Polym 2023; 311:120762. [PMID: 37028879 DOI: 10.1016/j.carbpol.2023.120762] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/12/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023]
Abstract
Multidrug resistance (MDR) which is often related to the overexpression of P-glycoprotein (P-gp) in drug-resistant cancer cells has been a major problem faced by current cancer chemotherapy. Reversing P-gp-related MDR by disrupting tumor redox homeostasis that regulates the expression of P-gp is a promising strategy. In this work, a hyaluronic acid (HA) modified nanoscale cuprous metal-organic complex (HA-CuTT) was developed to reverse P-gp-related MDR via two-way regulated redox dyshomeostasis, which was achieved by both Cu+-catalyzed generation of •OH and disulfide bonds-mediated depletion of glutathione (GSH). In vitro studies reveal that the DOX-loaded complex (HA-CuTT@DOX) has excellent targeting ability to HepG2-ADR cells due to the modification of HA and effectively induces redox dyshomeostasis in HepG2-ADR cells. Moreover, HA-CuTT@DOX can cause mitochondrial damage, decrease ATP level, and downregulate the P-gp expression, thereby leading to the reversal of MDR and the increased drug accumulation in HepG2-ADR cells. Importantly, in vivo experimental results show that it can achieve effective inhibition (89.6 %) of tumor growth in nude mice bearing HepG2-ADR cells. This is the first work to reverse P-gp-related MDR via two-way regulated redox dyshomeostasis based on a HA modified nanoscale cuprous metal-organic complex, providing a new therapeutic paradigm for effective treatment of MDR-related cancer.
Collapse
Affiliation(s)
- Yichen Wan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Zelong Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Wenkang Zhao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Liang Pu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yinghua Lv
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jiaxuan Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jiahui Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
18
|
Lee T, Kim KS, Na K. Nanocracker capable of simultaneously reversing both P-glycoprotein and tumor microenvironment. J Control Release 2023; 354:268-278. [PMID: 36634708 DOI: 10.1016/j.jconrel.2022.12.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023]
Abstract
Here, we describe a multidrug-resistant nanocracker (MDRC) that can treat multi-drug resistant (MDR) cancer by recognizing the acidic microenvironment and inhibiting two mechanisms of MDR such as P-glycoprotein (P-gp) and vacuolar-type ATPase (V-ATPase). MDRC is a liposome formulation co-loading pantoprazole (PZ) and paclitaxel (PTX). PZ acts as a chemosensitizer that enhances the MDR cancer treatment effect of PTX by disrupting the pH gradient and inhibiting P-gp. MDRC-encapsulated PZ and PTX have different release rates, with PZ released within 12 h and PTX sustained release for 48 h in the plasma. MDRC could increase cell uptake by inhibiting the P-gp overexpressed MCF-7/mdr cells and UV-2237M cells, which are human breast MDR cancer cells and murine fibrosarcoma cells, respectively. MDRC can also increase the cytotoxic efficacy of PTX by increasing intracellular pH. MDRC has a 10.5-fold reduced IC50 value in the P-gp overexpressed human breast adenocarcinoma and a 6.3- to 9.5-fold reduced IC50 value in the P-gp non-expressed human breast adenocarcinoma compared to the mixture of PZ and PTX, respectively. Intravenous injection of MDRC did not cause weight loss, liver dysfunction, or major organ toxicity. MDRC exhibited 80% complete remission of murine fibrosarcoma. The excellent therapeutic effect of MDRC on MDR tumors was accompanied by an increase in dendritic cell maturation and cytotoxic T cells. In other words, MDRC has the potential to terminate MDR therapy through the complete remission of MDR tumors.
Collapse
Affiliation(s)
- Taebum Lee
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyoung Sub Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kun Na
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
19
|
Hashemi M, Ghadyani F, Hasani S, Olyaee Y, Raei B, Khodadadi M, Ziyarani MF, Basti FA, Tavakolpournegari A, Matinahmadi A, Salimimoghadam S, Aref AR, Taheriazam A, Entezari M, Ertas YN. Nanoliposomes for doxorubicin delivery: Reversing drug resistance, stimuli-responsive carriers and clinical translation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Mitochondrion, lysosome, and endoplasmic reticulum: Which is the best target for phototherapy? J Control Release 2022; 351:692-702. [PMID: 36150580 DOI: 10.1016/j.jconrel.2022.09.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
Abstract
Photodynamic therapy (PDT) is a robust cancer treatment modality, and the precise spatiotemporal control of its subcellular action site is crucial for its effectiveness. However, accurate comparison of the efficacy of different organelle-targeted PDT approaches is challenging since it is difficult to find a single system that can achieve separate targeting of different organelles with separable time windows and similar binding amounts. Herein, we conjugated chlorin e6 (Ce6) with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-5000] (ammonium salt) (DSPE-PEG5000-NH2) to afford DSPE-PEG-Ce6, which could migrate from mitochondrion to lysosome and ultimately to endoplasmic reticulum (ER) after cellular internalization. Benefiting from the dynamic subcellular distribution of DSPE-PEG-Ce6 with tunable organelle-binding amounts, we accurately determined the PDT efficacy order of the molecule, i.e., mitochondrion > ER > lysosome. This work proposes an ideal model system for accurately evaluating the specific organelle-targeted PDT efficacy and may promote the future development of effective PDT strategies.
Collapse
|
21
|
Dual-Functionalized Nanoliposomes Achieve a Synergistic Chemo-Phototherapeutic Effect. Int J Mol Sci 2022; 23:ijms232112817. [PMID: 36361615 PMCID: PMC9653560 DOI: 10.3390/ijms232112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
The enhancement of photodynamic therapy (PDT) effectiveness by combining it with other treatment modalities and improved drug delivery has become an interesting field in cancer research. We have prepared and characterized nanoliposomes containing the chemotherapeutic drug irinotecan (CPT11lip), the photodynamic agent protoporphyrin IX (PpIXlip), or their combination (CPT11-PpIXlip). The effects of individual and bimodal (chemo-phototherapeutic) treatments on HeLa cells have been studied by a combination of biological and photophysical studies. Bimodal treatments show synergistic cytotoxic effects on HeLa cells at relatively low doses of PpIX/PDT and CPT11. Mechanistic cell inactivation studies revealed mitotic catastrophe, apoptosis, and senescence contributions. The enhanced anticancer activity is due to a sustained generation of reactive oxygen species, which increases the number of double-strand DNA breaks. Bimodal chemo-phototherapeutic liposomes may have a very promising future in oncological therapy, potentially allowing a reduction in the CPT11 concentration required to achieve a therapeutic effect and overcoming resistance to individual cancer treatments.
Collapse
|
22
|
Yadav P, Ambudkar SV, Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnology 2022; 20:423. [PMID: 36153528 PMCID: PMC9509578 DOI: 10.1186/s12951-022-01626-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer often develops multidrug resistance (MDR) when cancer cells become resistant to numerous structurally and functionally different chemotherapeutic agents. MDR is considered one of the principal reasons for the failure of many forms of clinical chemotherapy. Several factors are involved in the development of MDR including increased expression of efflux transporters, the tumor microenvironment, changes in molecular targets and the activity of cancer stem cells. Recently, researchers have designed and developed a number of small molecule inhibitors and derivatives of natural compounds to overcome various mechanisms of clinical MDR. Unfortunately, most of the chemosensitizing approaches have failed in clinical trials due to non-specific interactions and adverse side effects at pharmacologically effective concentrations. Nanomedicine approaches provide an efficient drug delivery platform to overcome the limitations of conventional chemotherapy and improve therapeutic effectiveness. Multifunctional nanomaterials have been found to facilitate drug delivery by improving bioavailability and pharmacokinetics, enhancing the therapeutic efficacy of chemotherapeutic drugs to overcome MDR. In this review article, we discuss the major factors contributing to MDR and the limitations of existing chemotherapy- and nanocarrier-based drug delivery systems to overcome clinical MDR mechanisms. We critically review recent nanotechnology-based approaches to combat tumor heterogeneity, drug efflux mechanisms, DNA repair and apoptotic machineries to overcome clinical MDR. Recent successful therapies of this nature include liposomal nanoformulations, cRGDY-PEG-Cy5.5-Carbon dots and Cds/ZnS core–shell quantum dots that have been employed for the effective treatment of various cancer sub-types including small cell lung, head and neck and breast cancers.
Collapse
|
23
|
Moghassemi S, Dadashzadeh A, de Azevedo RB, Amorim CA. Secure transplantation by tissue purging using photodynamic therapy to eradicate malignant cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112546. [PMID: 36029759 DOI: 10.1016/j.jphotobiol.2022.112546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 12/17/2022]
Abstract
The field of photodynamic therapy (PDT) for treating various malignant neoplasms has been given researchers' attention due to its ability to be a selective and minimally invasive cancer therapy strategy. The possibility of tumor cell infection and hence high recurrence rates in cancer patients tends to restrict autologous transplantation. So, the photodynamic tissue purging process, which consists of selective photoinactivation of the malignant cells in the graft, is defined as a compromising strategy to purify contaminated tissues before transplantation. In this strategy, the direct malignant cells' death results from the reactive oxygen species (ROS) generation through the activation of a photosensitizer (PS) by light exposure in the presence of oxygen. Since new PS generations can effectively penetrate the tissue, PDT could be an ideal ex vivo tissue purging protocol that eradicates cancer cells derived from various malignancies. The challenge is that the applied pharmacologic ex vivo tissue purging should efficiently induce tumor cells with minor influence on normal tissue cells. This review aims to provide an overview of the current status of the most effective PDT strategies and PS development concerning their potential application in ex vivo purging before hematopoietic stem cell or ovarian tissue transplantation.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ricardo Bentes de Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília DF, Brazil
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
24
|
Rethi L, Mutalik C, Anurogo D, Lu LS, Chu HY, Yougbaré S, Kuo TR, Cheng TM, Chen FL. Lipid-Based Nanomaterials for Drug Delivery Systems in Breast Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2948. [PMID: 36079985 PMCID: PMC9458017 DOI: 10.3390/nano12172948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Globally, breast cancer is one of the most prevalent diseases, inducing critical intimidation to human health. Lipid-based nanomaterials have been successfully demonstrated as drug carriers for breast cancer treatment. To date, the development of a better drug delivery system based on lipid nanomaterials is still urgent to make the treatment and diagnosis easily accessible to breast cancer patients. In a drug delivery system, lipid nanomaterials have revealed distinctive features, including high biocompatibility and efficient drug delivery. Specifically, a targeted drug delivery system based on lipid nanomaterials has inherited the advantage of optimum dosage and low side effects. In this review, insights on currently used potential lipid-based nanomaterials are collected and introduced. The review sheds light on conjugation, targeting, diagnosis, treatment, and clinical significance of lipid-based nanomaterials to treat breast cancer. Furthermore, a brighter side of lipid-based nanomaterials as future potential drug delivery systems for breast cancer therapy is discussed.
Collapse
Affiliation(s)
- Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Dito Anurogo
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan or
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar City 90221, South Sulawesi, Indonesia
| | - Long-Sheng Lu
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Yi Chu
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de la Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro BP 218, 11, Burkina Faso
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsai-Mu Cheng
- Graduate Institute of Translational Medicine, College of Medicine and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Fu-Lun Chen
- Department of Internal Medicine, Division of Infectious Diseases, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
25
|
Hu T, Gong H, Xu J, Huang Y, Wu F, He Z. Nanomedicines for Overcoming Cancer Drug Resistance. Pharmaceutics 2022; 14:pharmaceutics14081606. [PMID: 36015232 PMCID: PMC9412887 DOI: 10.3390/pharmaceutics14081606] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Clinically, cancer drug resistance to chemotherapy, targeted therapy or immunotherapy remains the main impediment towards curative cancer therapy, which leads directly to treatment failure along with extended hospital stays, increased medical costs and high mortality. Therefore, increasing attention has been paid to nanotechnology-based delivery systems for overcoming drug resistance in cancer. In this respect, novel tumor-targeting nanomedicines offer fairly effective therapeutic strategies for surmounting the various limitations of chemotherapy, targeted therapy and immunotherapy, enabling more precise cancer treatment, more convenient monitoring of treatment agents, as well as surmounting cancer drug resistance, including multidrug resistance (MDR). Nanotechnology-based delivery systems, including liposomes, polymer micelles, nanoparticles (NPs), and DNA nanostructures, enable a large number of properly designed therapeutic nanomedicines. In this paper, we review the different mechanisms of cancer drug resistance to chemotherapy, targeted therapy and immunotherapy, and discuss the latest developments in nanomedicines for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Jiayue Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Yuan Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Fengbo Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| |
Collapse
|
26
|
Jia C, Guo Y, Wu FG. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103868. [PMID: 34729913 DOI: 10.1002/smll.202103868] [Citation(s) in RCA: 305] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT), a novel cancer therapeutic strategy defined as the treatment using Fenton or Fenton-like reaction to produce •OH in the tumor region, was first proposed by Bu, Shi, and co-workers in 2016. Recently, with the rapid development of Fenton and Fenton-like nanomaterials, CDT has attracted tremendous attention because of its unique advantages: 1) It is tumor-selective with low side effects; 2) the CDT process does not depend on external field stimulation; 3) it can modulate the hypoxic and immunosuppressive tumor microenvironment; 4) the treatment cost of CDT is low. In addition to the Fe-involved CDT strategies, the Fenton-like reaction-mediated CDT strategies have also been proposed, which are based on many other metal elements including copper, manganese, cobalt, titanium, vanadium, palladium, silver, molybdenum, ruthenium, tungsten, cerium, and zinc. Moreover, CDT has been combined with other therapies like chemotherapy, radiotherapy, phototherapy, sonodynamic therapy, and immunotherapy for achieving enhanced anticancer effects. Besides, there have also been studies that extend the application of CDT to the antibacterial field. This review introduces the latest advancements in the nanomaterials-involved CDT from 2018 to the present and proposes the current limitations as well as future research directions in the related field.
Collapse
Affiliation(s)
- Chenyang Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
27
|
Zhang Y, Pei Q, Yue Y, Xie Z. Binary dimeric prodrug nanoparticles for self-boosted drug release and synergistic chemo-photodynamic therapy. J Mater Chem B 2022; 10:880-886. [PMID: 35043826 DOI: 10.1039/d1tb02638k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemotherapy is the major strategy for cancer therapy, but its limited therapeutic efficiency and serious toxicity to normal tissues greatly restrict its clinical performance. Herein, we develop carrier-free self-activated prodrug nanoparticles combining chemotherapy and photodynamic therapy to enhance the antitumor efficiency. Reactive oxygen species (ROS)-responsive paclitaxel and porphyrin prodrugs are synthesized and co-assembled into nanoparticles without the addition of any adjuvants, which improves the drug content and reduces carrier-associated toxicity. After entering cancer cells, the obtained co-assembled nanoparticles can generate sufficient ROS upon light irradiation not only for photodynamic therapy, but also triggering on-demand drug release for chemotherapy, thus realizing self-enhanced prodrug activation and synergistic chemo-photodynamic therapy. This simple and effective carrier-free prodrug nanoplatform unifies the distinct traits of on-demand drug release and combination therapy, thus possessing great potential in advancing cancer treatment.
Collapse
Affiliation(s)
- Youwei Zhang
- Department of Gynecological Oncology, The First Hospital of Jilin University, Xinmin Street, Changchun, Jilin 130021, P. R. China.
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | - Ying Yue
- Department of Gynecological Oncology, The First Hospital of Jilin University, Xinmin Street, Changchun, Jilin 130021, P. R. China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| |
Collapse
|
28
|
Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 40:102494. [PMID: 34775061 DOI: 10.1016/j.nano.2021.102494] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
Multidrug resistance (MDR) in cancer chemotherapy is a growing concern for medical practitioners. P-glycoprotein (P-gp) overexpression is one of the major reasons for multidrug resistance in cancer chemotherapy. The P-gp overexpression in cancer cells depends on several factors like adenosine triphosphate (ATP) hydrolysis, hypoxia-inducible factor 1 alpha (HIF-1α), and drug physicochemical properties such as lipophilicity, molecular weight, and molecular size. Further multiple exposures of anticancer drugs to the P-gp efflux protein cause acquired P-gp overexpression. Unique structural and functional characteristics of nanotechnology-based drug delivery systems provide opportunities to circumvent P-gp mediated MDR. The primary mechanism behind the nanocarrier systems in P-gp inhibition includes: bypassing or inhibiting the P-gp efflux pump to combat MDR. In this review, we discuss the role of P-gp in MDR and highlight the recent progress in different nanocarriers to overcome P-gp mediated MDR in terms of their limitations and potentials.
Collapse
|
29
|
Moghassemi S, Dadashzadeh A, Azevedo RB, Feron O, Amorim CA. Photodynamic cancer therapy using liposomes as an advanced vesicular photosensitizer delivery system. J Control Release 2021; 339:75-90. [PMID: 34562540 DOI: 10.1016/j.jconrel.2021.09.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
The multidisciplinary field of photodynamic therapy (PDT) is a combination of photochemistry and photophysics sciences, which has shown tremendous potential for cancer therapy application. PDT employs a photosensitizing agent (PS) and light to form cytotoxic reactive oxygen species and subsequently oxidize light-exposed tissue. Despite numerous advantages of PDT and enormous progress in this field, common PSs are still far from ideal treatment because of their poor permeability, non-specific phototoxicity, side effects, hydrophobicity, weak bioavailability, and tendency to self-aggregation. To circumvent these limitations, PS can be encapsulated in liposomes, an advanced drug delivery system that has demonstrated the ability to enhance drug permeability into biological membranes and loading both hydrophobic and lipophilic agents. Moreover, liposomes can also be coated by targeting agents to improve delivery efficiency. The present review aims to summarize the principles of PDT, various PS generations, PS-loaded nanoparticles, liposomes, and their impact on PDT, then discuss recent photodynamic cancer therapy strategies using liposomes as PS-loaded vectors, and highlight future possibilities and perspectives.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ricardo Bentes Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Olivier Feron
- Pôle de Pharmacologie et thérapeutique, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
30
|
Su Z, Dong S, Zhao SC, Liu K, Tan Y, Jiang X, Assaraf YG, Qin B, Chen ZS, Zou C. Novel nanomedicines to overcome cancer multidrug resistance. Drug Resist Updat 2021; 58:100777. [PMID: 34481195 DOI: 10.1016/j.drup.2021.100777] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022]
Abstract
Chemotherapy remains a powerful tool to eliminate malignant cells. However, the efficacy of chemotherapy is compromised by the frequent emergence of intrinsic and acquired multidrug resistance (MDR). These chemoresistance modalities are based on a multiplicity of molecular mechanisms of drug resistance, including : 1) Impaired drug uptake into cancer cells; 2) Increased expression of ATP-binding cassette efflux transporters; 3) Loss of function of pro-apoptotic factors; 4) Enhanced DNA repair capacity; 5) Qualitative or quantitative alterations of specific cellular targets; 6) Alterations that allow cancer cells to tolerate adverse or stressful conditions; 7) Increased biotransformation or metabolism of anticancer drugs to less active or completely inactive metabolites; and 8) Intracellular and intercellular drug sequestration in well-defined organelles away from the cellular target. Hence, one of the major aims of cancer research is to develop novel strategies to overcome cancer drug resistance. Over the last decades, nanomedicine, which focuses on targeted delivery of therapeutic drugs into tumor tissues using nano-sized formulations, has emerged as a promising tool for cancer treatment. Therefore, nanomedicine has been introduced as a reliable approach to improve treatment efficacy and minimize detrimental adverse effects as well as overcome cancer drug resistance. With rationally designed strategies including passively targeted delivery, actively targeted delivery, delivery of multidrug combinations, as well as multimodal combination therapy, nanomedicine paves the way towards efficacious cancer treatment and hold great promise in overcoming cancer drug resistance. Herein, we review the recent progress of nanomaterials used in medicine, including liposomal nanoparticles, polymeric nanoparticles, inorganic nanoparticles and hybrid nanoparticles, to surmount cancer multidrug resistance. Finally, the future perspectives of the application of nanomedicine to reverse cancer drug resistance will be addressed.
Collapse
Affiliation(s)
- Zhenwei Su
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, PR China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, 518001, Guangdong, PR China
| | - Shaowei Dong
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, PR China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, 518001, Guangdong, PR China
| | - Shan-Chao Zhao
- Department of Urology, the Third Affiliated Hospital of Southern Medical University; Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Kaisheng Liu
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, PR China
| | - Yao Tan
- Shenzhen Aier Eye Hospital, Jinan University, No. 2048, Huaqiang South Road, Futian District, Shenzhen, 518032, Guangdong, PR China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Jinan University, No. 2048, Huaqiang South Road, Futian District, Shenzhen, 518032, Guangdong, PR China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, 11439, New York, USA.
| | - Chang Zou
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, PR China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, 518001, Guangdong, PR China.
| |
Collapse
|
31
|
Liu X, Yang Y, Wang X, Liu X, Cheng H, Wang P, Shen Y, Xie A, Zhu M. Self-assembled Au 4Cu 4/Au 25 NCs@liposome tumor nanotheranostics with PT/fluorescence imaging-guided synergetic PTT/PDT. J Mater Chem B 2021; 9:6396-6405. [PMID: 34313290 DOI: 10.1039/d1tb01092a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Exploring and developing a new type of nanoplatform with diagnosis and treatment to effectively cure tumors and reduce side effects has become a hot spot for researchers and is of great significance. Herein, a cancer theranostic nanoplatform with dual-imaging, dual-phototherapy and laser-responsiveness to tumor microenvironment was successfully assembled by liposome (Lip) co-loaded with oil-soluble Au4Cu4 nanoclusters (NCs) and water-soluble Au25 NCs via a simple film hydration method and subsequent extraction process. The prepared Au4Cu4/Au25@Lip nanoplatform with core-shell structure and about 50 nm of uniform sphere shape presented highly biocompatible, stability and passive targeting due to the enhanced permeability and retention (EPR) effect. Furthermore, the Lip composed of lecithin and cholesterol has good affinity with the cell membrane, which can realize the effective accumulation of photosensitizers at the tumor site, so that improving phototherapy effect and reducing the damage to normal tissue. The loaded oil-soluble Au4Cu4 NCs were firstly and pleasantly surprised to find possessed not only ideal photodynamic effect, but also preferable catalysis towards endogenous hydrogen peroxide (H2O2) decomposition to produce oxygen (O2) for improving the tumor hypoxic environment besides the excellent photoluminescence ability while the water-soluble Au25 NCs own outstanding photothermogenesis effect and also photoluminescence performance. The in vitro and in vivo experiment results proved that in the Au4Cu4/Au25@Lip nanoplatform, the performances of both NCs were complementary, which presenting considerable photothermal/fluorescence imaging (PTI/FI)-guided synergistic photothermal therapy (PTT)/O2-enhanced photodynamic therapy (PDT) effect for the tumor under the irradiation of near infrared (NIR) laser. This work provides a useful inspiration and paves a new way for the assembly of NCs or namomaterials with different properties into an integrated anti-tumor theranostic nanoplatform.
Collapse
Affiliation(s)
- Xinyu Liu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yi X, Duan QY, Wu FG. Low-Temperature Photothermal Therapy: Strategies and Applications. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9816594. [PMID: 34041494 PMCID: PMC8125200 DOI: 10.34133/2021/9816594] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Although photothermal therapy (PTT) with the assistance of nanotechnology has been considered as an indispensable strategy in the biomedical field, it still encounters some severe problems that need to be solved. Excessive heat can induce treated cells to develop thermal resistance, and thus, the efficacy of PTT may be dramatically decreased. In the meantime, the uncontrollable diffusion of heat can pose a threat to the surrounding healthy tissues. Recently, low-temperature PTT (also known as mild PTT or mild-temperature PTT) has demonstrated its remarkable capacity of conquering these obstacles and has shown excellent performance in bacterial elimination, wound healing, and cancer treatments. Herein, we summarize the recently proposed strategies for achieving low-temperature PTT based on nanomaterials and introduce the synthesis, characteristics, and applications of these nanoplatforms. Additionally, the combination of PTT and other therapeutic modalities for defeating cancers and the synergistic cancer therapeutic effect of the combined treatments are discussed. Finally, the current limitations and future directions are proposed for inspiring more researchers to make contributions to promoting low-temperature PTT toward more successful preclinical and clinical disease treatments.
Collapse
Affiliation(s)
- Xiulin Yi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| |
Collapse
|
33
|
Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Chemotherapy typically involves the use of specific chemodrugs to inhibit the proliferation of cancer cells, but the frequent emergence of a variety of multidrug-resistant cancer cells poses a tremendous threat to our combat against cancer. The fundamental causes of multidrug resistance (MDR) have been studied for decades, and can be generally classified into two types: one is associated with the activation of diverse drug efflux pumps, which are responsible for translocating intracellular drug molecules out of the cells; the other is linked with some non-efflux pump-related mechanisms, such as antiapoptotic defense, enhanced DNA repair ability, and powerful antioxidant systems. To overcome MDR, intense efforts have been made to develop synergistic therapeutic strategies by introducing MDR inhibitors or combining chemotherapy with other therapeutic modalities, such as phototherapy, gene therapy, and gas therapy, in the hope that the drug-resistant cells can be sensitized toward chemotherapeutics. In particular, nanotechnology-based drug delivery platforms have shown the potential to integrate multiple therapeutic agents into one system. In this review, the focus was on the recent development of nanostrategies aiming to enhance the efficiency of chemotherapy and overcome the MDR of cancer in a synergistic manner. Different combinatorial strategies are introduced in detail and the advantages as well as underlying mechanisms of why these strategies can counteract MDR are discussed. This review is expected to shed new light on the design of advanced nanomedicines from the angle of materials and to deepen our understanding of MDR for the development of more effective anticancer strategies. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
34
|
Guo Q, Liu Y, Wang Z, Zhang J, Mu G, Wang W, Liu J. Supramolecular nanofibers increase the efficacy of 10-hydroxycamptothecin by enhancing nuclear accumulation and depleting cellular ATP. Acta Biomater 2021; 122:343-353. [PMID: 33444804 DOI: 10.1016/j.actbio.2020.12.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/08/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
Poor nuclear delivery and accumulation are the main reasons for the reduced drug efficacy of many anticancer drugs that target DNA or enzymes in the nucleus, and it is a major obstacle to successful cancer therapy. To address this problem, developing practical drug delivery systems for nuclear delivery is urgently needed. Here we develop a supramolecular hydrogel by conjugating the anticancer agent 10-hydroxycamptothecine (HCPT) and macrocyclic polyamine cyclen to a self-assembling peptide. The cyclen fragment possesses nuclear localization and ATP hydrolysis properties, which can provide a synergistic therapeutic effect for cancer treatment. The HCPT-FFFK-cyclen nanofibers showed improved nuclear accumulation and inhibition capacity in cancer cells including drug-resistant cancer cells in vitro. The nanofibers also exhibited favorable ATP consuming ability in vitro. Moreover, the obtained nanomedicine showed enhanced anticancer efficiency and favorable biocompatibility in vivo when administered to mice via tail vein injection. This constructed self-delivery drug system significantly improved the delivery efficiency of the small molecule agents into the nucleus and showed favorable ATP consuming ability, offering new strategies for developing nanomedicines for cancer combination therapy.
Collapse
Affiliation(s)
- Qingxiang Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yifan Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhongyan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Jiamin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Ganen Mu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Wei Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China; College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
35
|
Li X, Yang C, Tao Y, Hou X, Liu Y, Sang H, Jiang G. Near-Infrared Light-Triggered Thermosensitive Liposomes Modified with Membrane Peptides for the Local Chemo/Photothermal Therapy of Melanoma. Onco Targets Ther 2021; 14:1317-1329. [PMID: 33658797 PMCID: PMC7920603 DOI: 10.2147/ott.s287272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/29/2021] [Indexed: 01/14/2023] Open
Abstract
Purpose A near-infrared (NIR)-triggered trans-activating transcriptional activator (TAT)-based targeted drug delivery system for the combined chemo/photothermal therapy of melanoma, namely, TAT-TSL-TMZ (temozolomide)/IR820, was developed for the first time. Methods TAT-TSL-TMZ/IR820 liposomes were synthesized via thin-film dispersion and sonication. IR820 and TMZ were encased in the inner layer and lipid bilayer of the liposomes, respectively. Results Dynamic light scattering results showed that the liposomes had an average hydrodynamic size of 166.9 nm and a zeta potential of -2.55 mV. The encapsulation rates of TMZ and IR820 were 35.4% and 28.6%, respectively. The heating curve obtained under near-infrared (NIR) laser irradiation showed that TAT-TSL-TMZ/IR820 liposomes had good photothermal conversion efficiency. The in vitro drug release curve revealed that NIR laser irradiation could accelerate drug release from TAT-TSL-TMZ/IR820 liposomes. The results of inverted fluorescence microscopy and flow cytometry proved that the uptake of TAT-TSL-TMZ/IR820 liposomes by human melanoma cells (MV3 cells) was concentration-dependent and that the liposomes modified with membrane peptides were more likely to be ingested by cells than unmodified liposomes. Confocal laser scanning microscopy indicated that TAT-TSL-TMZ/IR820 liposomes entered MV3 cells via endocytosis and was stored in lysosomes. In addition, TAT-TSL-TMZ/IR820 liposomes exposed to NIR laser showed 89.73% reduction in cell viability. Conclusion This study investigated the photothermal conversion, cell uptake, colocation and chemo/photothermal effect of TAT-TSL-TMZ/IR820 liposomes.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Chunsheng Yang
- Jinling Hospital Department of Dermatology, Nanjing Medical University, Nanjing, 210002, People's Republic of China.,Department of Dermatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, 223002, People's Republic of China
| | - Yingkai Tao
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Xiaoyang Hou
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Yanqun Liu
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Hong Sang
- Jinling Hospital Department of Dermatology, Nanjing Medical University, Nanjing, 210002, People's Republic of China
| | - Guan Jiang
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| |
Collapse
|
36
|
Yan BY, Liu BL, Yi LY, Wang GL, Xue BZ, Xie Y. Doxorubicin-Loaded In Situ Gel Combined with Biocompatible Hydroxyethyl Cellulose Hemostatic Gauze for Controlled Release of Drugs and Prevention of Breast Cancer Recurrence Postsurgery. ACS Biomater Sci Eng 2020; 6:5959-5968. [PMID: 33320580 DOI: 10.1021/acsbiomaterials.0c01187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biodegradable hemostatic gauze used for surgical hemostasis has attracted great interest due to its excellent compliance and local anti-inflammatory and therapeutic effects when combined with drugs. Herein, we demonstrate the successful fabrication of water-soluble absorbed cellulose hemostatic material by introducing a biocompatible hydroxyethyl cellulose (HEC) hemostasis gauze into doxorubicin-loaded in situ gel (GEL(DOX)) for the prevention of breast cancer recurrence after surgical tumor resection. The present results show that HEC has a shorter metabolic period, no anaphylaxis and peripheral nerve toxicity, and possesses more advantages than oxidative regenerated cellulose hemostasis gauze, a commercially available product in market. HEC is of the physical hemostasis in mechanism, which does not induce physiological hemostasis and hemolysis. In addition, the combination of HEC with GEL(DOX) not only stops the bleeding efficiently, but also effectively reduces the proliferation of tumor with no cardiac toxic and bone marrow suppression. After treatment, the tumor inhibition rate is up to 90%, resulting in prolonged survival time to 58 days. In conclusion, HEC hemostatic gauze has a broad prospect in clinical application due to its perfect biocompatibility, and we envision that it is a new strategy for the prevention of breast cancer to implant HEC hemostatic gauze containing GEL(DOX) at the postoperative site after surgery.
Collapse
Affiliation(s)
- Bai-Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Bai-Lu Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Ling-Yu Yi
- Penglai Nuokang Pharmaceutical Company, Limited, Shandong Province, Penglai 265607, P. R. China
| | - Gui-Ling Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Bai-Zhong Xue
- Penglai Nuokang Pharmaceutical Company, Limited, Shandong Province, Penglai 265607, P. R. China
| | - Ying Xie
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| |
Collapse
|