1
|
Bigham A, Raucci MG, Zheng K, Boccaccini AR, Ambrosio L. Oxygen-Deficient Bioceramics: Combination of Diagnosis, Therapy, and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302858. [PMID: 37259776 DOI: 10.1002/adma.202302858] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Indexed: 06/02/2023]
Abstract
The journey of ceramics in medicine has been synchronized with an evolution from the first generation-alumina, zirconia, etc.-to the third -3D scaffolds. There is an up-and-coming member called oxygen-deficient or colored bioceramics, which have recently found their way through biomedical applications. The oxygen vacancy steers the light absorption toward visible and near infrared regions, making the colored bioceramics multifunctional-therapeutic, diagnostic, and regenerative. Oxygen-deficient bioceramics are capable of turning light into heat and reactive oxygen species for photothermal and photodynamic therapies, respectively, and concomitantly yield infrared and photoacoustic images. Different types of oxygen-deficient bioceramics have been recently developed through various synthesis routes. Some of them like TiO2- x , MoO3- x , and WOx have been more investigated for biomedical applications, whereas the rest have yet to be scrutinized. The most prominent advantage of these bioceramics over the other biomaterials is their multifunctionality endowed with a change in the microstructure. There are some challenges ahead of this category discussed at the end of the present review. By shedding light on this recently born bioceramics subcategory, it is believed that the field will undergo a big step further as these platforms are naturally multifunctional.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples, 80125, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
| | - Kai Zheng
- Jiangsu Key Laboratory of Oral Diseases and Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Aldo R Boccaccini
- Institute for Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
| |
Collapse
|
2
|
Guo S, Gu D, Yang Y, Tian J, Chen X. Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes. J Nanobiotechnology 2023; 21:348. [PMID: 37759287 PMCID: PMC10523653 DOI: 10.1186/s12951-023-02111-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Near-infrared (NIR) organic small molecule dyes (OSMDs) are effective photothermal agents for photothermal therapy (PTT) due to their advantages of low cost and toxicity, good biodegradation, and strong NIR absorption over a wide wavelength range. Nevertheless, OSMDs have limited applicability in PTT due to their low photothermal conversion efficiency and inadequate destruction of tumor regions that are nonirradiated by NIR light. However, they can also act as photosensitizers (PSs) to produce reactive oxygen species (ROS), which can be further eradicated by using ROS-related therapies to address the above limitations of PTT. In this review, the synergistic mechanism, composition, and properties of photodynamic therapy (PDT)-PTT nanoplatforms were comprehensively discussed. In addition, some specific strategies for further improving the combined PTT and PDT based on OSMDs for cancer to completely eradicate cancer cells were outlined. These strategies include performing image-guided co-therapy, enhancing tumor infiltration, increasing H2O2 or O2 in the tumor microenvironment, and loading anticancer drugs onto nanoplatforms to enable combined therapy with phototherapy and chemotherapy. Meanwhile, the intriguing prospects and challenges of this treatment modality were also summarized with a focus on the future trends of its clinical application.
Collapse
Affiliation(s)
- Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
3
|
Kampaengsri S, Chansaenpak K, Yong GY, Hiranmartsuwan P, Uengwanarat B, Lai RY, Meemon P, Kue CS, Kamkaew A. PEGylated Aza-BODIPY Nanoparticles for Photothermal Therapy. ACS APPLIED BIO MATERIALS 2022; 5:4567-4577. [PMID: 36054220 DOI: 10.1021/acsabm.2c00624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photothermal therapy is a promising treatment modality in the realm of cancer therapy. Photothermal nanomaterials that absorb and emit in the near-infrared range (750-900 nm) have drawn a lot of attention recently because of the deep penetration of NIR light in biological tissue. Most nanomaterials, however, are produced by encapsulating or altering the surface of a nanoplatform, which has limited loading capacity and long-term storage. Herein, we developed a stable polymer conjugated with aza-BODIPY that self-assembled to form nanoparticles (aza-BODIPY-mPEG) with better hydrophilicity and biocompatibility while retaining the dye's photothermal conversion characteristics. Aza-BODIPY-mPEG with a hydrodynamic size of around 170 nm exhibited great photostability and excellent photothermal therapy in vitro and in ovo. Aza-BODIPY-mPEG exhibits approximately 30% better anti-angiogenesis and antitumor activity against implanted xenograft human HCT116 tumor in the chick embryo compared to parent aza-BODIPY-A, altogether suggesting that aza-BODIPY-mPEG is a promising material for cancer photothermal therapy.
Collapse
Affiliation(s)
- Sastiya Kampaengsri
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kantapat Chansaenpak
- National Science and Technology Development Agency, National Nanotechnology Center, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Gong Yi Yong
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100 Shah Alam, Selangor, Malaysia
| | - Peraya Hiranmartsuwan
- National Science and Technology Development Agency, National Nanotechnology Center, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Bongkot Uengwanarat
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Rung-Yi Lai
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Panomsak Meemon
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chin Siang Kue
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100 Shah Alam, Selangor, Malaysia
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
4
|
Abstract
Cancerous diseases are rightfully considered among the most lethal, which have a consistently negative effect when considering official statistics in regular health reports around the globe. Nowadays, metallic nanoparticles can be potentially applied in medicine as active pharmaceuticals, adjustable carriers, or distinctive enhancers of physicochemical properties if combined with other drugs. Boron dipyrromethene (BODIPY) molecules have been considered for future applications in theranostics in the oncology field, thus expanding the potential of conceivable applicability. Hence, taking into account positive practical features of both metal-based nanostructures and BODIPY derivatives, the present study aims to gather recent results connected to BODIPY-conjugated metallic nanoparticles. This is with respect to their expediency in the diagnosis and treatment of tumor ailments as well as in sensing of heavy metals. To fulfill the designated objectives, multiple research documents were analyzed concerning the latest discoveries within the scope of BODIPY-based nanomaterials with particular emphasis on their utilization for diagnostical sensing as well as cancer diagnostics and therapy. In addition, collected examples of mentioned conjugates were presented in order to draw the attention of the scientific community to their practical applications, elucidate the topic in a consistent manner, and inspire fellow researchers for new findings.
Collapse
|
5
|
Du W, Chen W, Wang J, Cheng L, Wang J, Zhang H, Song L, Hu Y, Ma X. Oxygen-deficient titanium dioxide-loaded black phosphorus nanosheets for synergistic photothermal and sonodynamic cancer therapy. BIOMATERIALS ADVANCES 2022; 136:212794. [PMID: 35929333 DOI: 10.1016/j.bioadv.2022.212794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 01/08/2023]
Abstract
Malignant tumors, particularly those located in deep tissues, have always been a grievous threat to human health. Sonodynamic therapy (SDT) has recently attracted great attention due to deep tissue penetration. However, the lack of effective sonosensitizers and the poor therapeutic efficacy severely limit their wider use. Herein, dual-functionalized black phosphorus nanosheets (BP@PEI-PEG, i.e., PPBP) integrating black oxygen-deficient titanium dioxide particles (B-TiO2) were successfully constructed (PPBP-B-TiO2) for synergistic photothermal (PTT)/sonodynamic therapy. In these nanocomposites, black titanium dioxide can enhance the separation of electrons (e-) and holes (h+) due to the oxygen-deficient structure and significantly improves the production of reactive oxygen species (ROS) for SDT, while the BP nanosheets endow the nanocomposites with a higher photothermal conversion capability for photothermal therapy (η = 44.1%) which can prolong the blood circulation and improve the O2 supply. In vivo experiments prove that PPBP-B-TiO2 nanocomposites exhibited outstanding tumor inhibition efficacy and excellent biocompatibility. This work provides a prospective platform for combined photothermal/sonodynamic cancer therapy.
Collapse
Affiliation(s)
- Wenxiang Du
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China; CAS Key Lab of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China
| | - Weijian Chen
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China; CAS Key Lab of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China
| | - Jing Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, PR China
| | - Liang Cheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China; CAS Key Lab of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China
| | - Jingwen Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China; CAS Key Lab of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China
| | - Hongjie Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China; CAS Key Lab of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China; CAS Key Lab of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China.
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China; CAS Key Lab of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China.
| | - Xiaopeng Ma
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, PR China; Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China.
| |
Collapse
|
6
|
Nain A, Huang HH, Chevrier DM, Tseng YT, Sangili A, Lin YF, Huang YF, Chang L, Chang FC, Huang CC, Tseng FG, Chang HT. Catalytic and photoresponsive BiZ/Cu xS heterojunctions with surface vacancies for the treatment of multidrug-resistant clinical biofilm-associated infections. NANOSCALE 2021; 13:18632-18646. [PMID: 34734624 DOI: 10.1039/d1nr06358h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report a one-pot facile synthesis of highly photoresponsive bovine serum albumin (BSA) templated bismuth-copper sulfide nanocomposites (BSA-BiZ/CuxS NCs, where BiZ represents in situ formed Bi2S3 and bismuth oxysulfides (BOS)). As-formed surface vacancies and BiZ/CuxS heterojunctions impart superior catalytic, photodynamic and photothermal properties. Upon near-infrared (NIR) irradiation, the BSA-BiZ/CuxS NCs exhibit broad-spectrum antibacterial activity, not only against standard multidrug-resistant (MDR) bacterial strains but also against clinically isolated MDR bacteria and their associated biofilms. The minimum inhibitory concentration of BSA-BiZ/CuxS NCs is 14-fold lower than that of BSA-CuxS NCs because their multiple heterojunctions and vacancies facilitated an amplified phototherapeutic response. As-prepared BSA-BiZ/CuxS NCs exhibited substantial biofilm inhibition (90%) and eradication (>75%) efficiency under NIR irradiation. Furthermore, MRSA-infected diabetic mice were immensely treated with BSA-BiZ/CuxS NCs coupled with NIR irradiation by destroying the mature biofilm on the wound site, which accelerated the wound healing process via collagen synthesis and epithelialization. We demonstrate that BSA-BiZ/CuxS NCs with superior antimicrobial activity and high biocompatibility hold great potential as an effective photosensitive agent for the treatment of biofilm-associated infections.
Collapse
Affiliation(s)
- Amit Nain
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Taipei 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Hao-Hsin Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Daniel M Chevrier
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), CEA Cadarache, Bâtiment 1900, Saint-Paul-lez-Durance, France
| | - Yu-Ting Tseng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Arumugam Sangili
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Yu-Feng Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Yu-Fen Huang
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Lung Chang
- Department of Pediatrics, Mackay Memorial Hospital and Mackay Junior College of Medicine, Taipei, 10449, Taiwan.
| | - Fu-Chieh Chang
- Infection Control Centre, Mackay Memorial Hospital, Taipei, 10449, Taiwan
- College of Management, Yuan Ze University, Taoyuan City, 32003, Taiwan
- Nursing and Management, Mackay Junior College of Medicine, Taipei, 10650, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Research Centre for Applied Sciences Academia Sinica, Taipei 11529, Taiwan
- Frontier Research Centre on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
7
|
Yin J, Jiang X, Sui G, Du Y, Xing E, Shi R, Gu C, Wen X, Feng Y, Shan Z, Meng S. The tumor phototherapeutic application of nanoparticles constructed by the relationship between PTT/PDT efficiency and 2,6- and 3,5-substituted BODIPY derivatives. J Mater Chem B 2021; 9:7461-7471. [PMID: 34551049 DOI: 10.1039/d1tb01155c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BODIPY dyes have recently been used for photothermal and photodynamic therapy of tumors. However, complex multi-material systems, multiple excitation wavelengths and the unclear relationship between BODIPY structures and their PTT/PDT efficiency are still major issues. In our study, nine novel BODIPY near-infrared dyes were designed and successfully synthesized and then, the relationships between BODIPY structures and their PTT/PDT efficiency were investigated in detail. The results showed that modifications at position 3,5 of the BODIPY core with conjugated structures have better effects on photothermal and photodynamic efficiency than the modifications at position 2,6 with halogen atoms. Density functional theory (DFT) calculations showed that this is mainly due to the extension of the conjugated chain and the photoinduced electron transfer (PET) effect. By encapsulating BDPX-M with amphiphilic DSPE-PEG2000-RGD and lecithin, the obtained NPs not only show good water solubility and biological stability, but also could act as superior agents for photothermal and photodynamic synergistic therapy of tumors. Finally, we obtained BODIPY NPs that exhibited excellent photothermal and photodynamic effects at the same time under single irradiation with an 808 nm laser (photothermal conversion efficiency: 42.76%, A/A0: ∼0.05). In conclusion, this work provides a direction to design and construct phototherapeutic nanoparticles based on BODIPY dyes for tumor treatment.
Collapse
Affiliation(s)
- Juanjuan Yin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, P. R. China.
| | - Xu Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, P. R. China.
| | - Guomin Sui
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, P. R. China.
| | - Yingying Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, P. R. China.
| | - Enyun Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, P. R. China.
| | - Ruijie Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, P. R. China.
| | - Chengzhi Gu
- School of Chemical Engineering, Shihezi University, No. 22, Beisi Road, Shihezi City, China
| | - Xiaona Wen
- Department of Pharmacy, The Third Central Hospital of Tianjin, Tianjin 300170, China
| | - Yaqing Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, P. R. China.
| | - Zhongqiang Shan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, P. R. China.
| | - Shuxian Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, P. R. China.
| |
Collapse
|
8
|
Chen B, Cao J, Zhang K, Zhang YN, Lu J, Zubair Iqbal M, Zhang Q, Kong X. Synergistic photodynamic and photothermal therapy of BODIPY-conjugated hyaluronic acid nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2028-2045. [PMID: 34251996 DOI: 10.1080/09205063.2021.1954138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The combination of photodynamic therapy (PDT) and photothermal therapy (PTT) has emerged as a promising strategy for complete tumor ablation therapy. Herein, a boron dipyrromethene (BODIPY)-conjugated hyaluronic acid polymer that can self-assemble to form the nanoparticles (BODIPY-HA NPs) was prepared for combined cancer PDT and PTT. The fluorescence emission and reactive oxygen species (ROS) generation of BODIPY-HA NPs were inhibited because of the π-π stacking behavior of BODIPY, resulting in photothermal effect under 808 nm light irradiation. Upon the internalization by cancer cells, the BODIPY-HA NPs could disassemble into BODIPY-HA molecules, with the recovery of the fluorescence and ROS generation for PDT. Importantly, in vitro results confirmed that combined PTT and PDT have exhibited better anticancer effect than PTT alone upon 808 nm laser irradiation. These results showed that the self-assembled BODIPY-HA NPs may be a promising nanomedicine for synergistic cancer PDT and PTT.
Collapse
Affiliation(s)
- Bowen Chen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jie Cao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Kebiao Zhang
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan-Ning Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiaju Lu
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Muhammad Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Quan Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
9
|
Prieto-Montero R, Prieto-Castañeda A, Katsumiti A, Cajaraville MP, Agarrabeitia AR, Ortiz MJ, Martínez-Martínez V. Functionalization of Photosensitized Silica Nanoparticles for Advanced Photodynamic Therapy of Cancer. Int J Mol Sci 2021; 22:6618. [PMID: 34205599 PMCID: PMC8234454 DOI: 10.3390/ijms22126618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/10/2023] Open
Abstract
BODIPY dyes have recently attracted attention as potential photosensitizers. In this work, commercial and novel photosensitizers (PSs) based on BODIPY chromophores (haloBODIPYs and orthogonal dimers strategically designed with intense bands in the blue, green or red region of the visible spectra and high singlet oxygen production) were covalently linked to mesoporous silica nanoparticles (MSNs) further functionalized with PEG and folic acid (FA). MSNs approximately 50 nm in size with different functional groups were synthesized to allow multiple alternatives of PS-PEG-FA decoration of their external surface. Different combinations varying the type of PS (commercial Rose Bengal, Thionine and Chlorine e6 or custom-made BODIPY-based), the linkage design, and the length of PEG are detailed. All the nanosystems were physicochemically characterized (morphology, diameter, size distribution and PS loaded amount) and photophysically studied (absorption capacity, fluorescence efficiency, and singlet oxygen production) in suspension. For the most promising PS-PEG-FA silica nanoplatforms, the biocompatibility in dark conditions and the phototoxicity under suitable irradiation wavelengths (blue, green, or red) at regulated light doses (10-15 J/cm2) were compared with PSs free in solution in HeLa cells in vitro.
Collapse
Affiliation(s)
- Ruth Prieto-Montero
- Departamento de Química Física, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain;
| | - Alejandro Prieto-Castañeda
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.P.-C.); (A.R.A.)
| | - Alberto Katsumiti
- CBET Research Group, Department Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, 48620 Basque Country, Spain; (M.P.C.)
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (A.K.)
| | - Miren P. Cajaraville
- CBET Research Group, Department Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, 48620 Basque Country, Spain; (M.P.C.)
| | - Antonia R. Agarrabeitia
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.P.-C.); (A.R.A.)
| | - María J. Ortiz
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.P.-C.); (A.R.A.)
| | - Virginia Martínez-Martínez
- Departamento de Química Física, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain;
| |
Collapse
|
10
|
Yang N, Song S, Ren J, Liu C, Li Z, Qi H, Yu C. Controlled Aggregation of a Perylene-Derived Probe for Near-Infrared Fluorescence Imaging and Phototherapy. ACS APPLIED BIO MATERIALS 2021; 4:5008-5015. [PMID: 35007049 DOI: 10.1021/acsabm.1c00289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design and synthesis of water-soluble phototherapeutic agents with near-infrared (NIR) fluorescence emission is highly desirable for cancer diagnosis and treatment. Here, we report the construction of an amphiphilic perylene-derived photosensitizer, AP. AP shows NIR emission with large Stokes shift (130 nm) and high 1O2 quantum yield (22%). It can self-assemble into nanoparticles in aqueous solution with quenched fluorescence emission due to aggregation-induced quenching. Upon membrane anchoring, AP is able to disassemble into free monomer molecules and specifically "light up" the cell membrane without the usually required washing procedures. Furthermore, AP is subsequently used for the efficient photodynamic therapy against cancer cells and solid tumors. The in vitro and in vivo experiments clearly indicate that AP is suitable for biological imaging and can serve as a promising photosensitizer for tumor suppression.
Collapse
Affiliation(s)
- Na Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Shuang Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jia Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Chang Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhiheng Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hong Qi
- Tumor Hospital of Jilin Province, Changchun 130061, China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Zhao C, Jian X, Zhang X, Guo J, Gao Z, Song YY. Rapid Capture and Photocatalytic Inactivation of Target Cells from Whole Blood by Rotating Janus Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12972-12981. [PMID: 33689269 DOI: 10.1021/acsami.1c02042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Effective isolation and removal of target tumor cells from patients' peripheral blood are of great importance to clinical prognosis and recovery. However, the extremely low quantity of target cells in peripheral blood becomes one of the challenges in this respect. Herein, we design and synthesize an innovative nanostructure based on magnetic TiO2 nanotubes with Pt nanoparticles' asymmetrical decoration for effectively capturing and inactivating target cells. Using CCRF-CEM as the model cell, the resulting nanotubes with accurate modification of recognition probes exhibit high selectivity and cell-isolation efficiency upon real blood samples. Particularly, the target cells are selectively captured at a low concentration with a recovery rate of 73.0 ± 11.5% at five cells per milliliter for whole blood samples. Consequently, benefitting from the remarkable photocatalytic activity of the Janus nanotubes, these isolated cells can be rapidly inactivated via light-emitting diode (LED) irradiation with an ignorable effect on normal cells. This work offers a new paradigm for high-efficient isolating/killing target cells from a complex medium.
Collapse
Affiliation(s)
- Chenxi Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Xiaoxia Jian
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Xi Zhang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junli Guo
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
12
|
|
13
|
Li S, Zhang L, Li M, Huang J, Cui B, Jia J, Guo Z, Ma K, Cui C. Anti-CD19 mAb modified mesoporous titanium dioxide as exclusively targeting vector for efficient B-lymphoblastic leukemia therapy. J Pharm Sci 2021; 110:2733-2742. [PMID: 33639139 DOI: 10.1016/j.xphs.2021.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/07/2023]
Abstract
B lymphoblastic leukemia (B-LL) is a clonal hematopoietic stem cell neoplasm derived from B-cell progenitors, which mainly occurs in children and adolescents and is one of the main causes of death from malignant tumors in this population. The surface marker CD19 is specifically expressed on the membrane of most malignant B-cells, which is widely used as a marker of B-LL antigen-specific immunotherapy. In this study, mesoporous titanium dioxide nanoparticles (MTNs)-based antibody drug delivery system was designed for B-LL treatment. Anti-CD19 monoclonal antibody was conjugated to PEGylated MTNs, and doxorubicin (DOX) was loaded in the nanoparticle. The CD19-PEG-MTN/DOX nanoparticle could recognize CD19+B-LL cell lines and induced them apoptosis, but nontoxic for the normal cells. Further, after treated with CD19-PEG-MTN/DOX nanoparticle, pro-apoptotic proteins Bax and Caspase-3 in KOPN 8 and NALM-6 cells were significantly upregulated, but anti-apoptotic proteins Bcl2, MCL-1, HSP 70, and BAG 3 were downregulated, which indicated the activation of the apoptosis pathway by the nanodrug. By contrast, CD19-PEG-MTN/DOX didn't play a part on CD19-cell line U937. Besides, the cytotoxicity of CD19-PEG-MTN/DOX was low with good biocompatibility. Collectively, CD19-PEG-MTN/DOX is a promising antitumor nanodrug for the treatment of B-LL.
Collapse
Affiliation(s)
- Shanshan Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Long Zhang
- Department of Obstetrics and Gynaecology of the Panjin Peoples Hospital, Panjin, Liaoning Province, China
| | - Mingda Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Jiao Huang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Baocheng Cui
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Jie Jia
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Zhaoming Guo
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Kun Ma
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China.
| | - Changhao Cui
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China.
| |
Collapse
|
14
|
Nain A, Wei SC, Lin YF, Tseng YT, Mandal RP, Huang YF, Huang CC, Tseng FG, Chang HT. Copper Sulfide Nanoassemblies for Catalytic and Photoresponsive Eradication of Bacteria from Infected Wounds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7865-7878. [PMID: 33586966 DOI: 10.1021/acsami.0c18999] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bovine serum albumin (BSA)-encapsulated copper sulfide nanocrystals (CuS NCs) were prepared by heating an alkaline solution containing copper ions and BSA without an additional sulfur source. At a high BSA concentration (0.8 mM), nanoassembly of the as-formed CuS NCs occurs to form BSA-CuS NCs as a result of the formation of BSA gel-like structures. In addition to their intrinsic photothermal properties, the BSA-CuS NCs possess rich surface vacancies and thus exhibit enzyme-like and photodynamic activities. Spontaneous generation of hydrogen peroxide (H2O2) led to the in situ formation of copper peroxide (CPO) nanodots on the BSA-CuS NCs to catalyze singlet oxygen radical generation. The antimicrobial response was enhanced by >60-fold upon NIR laser irradiation, which was ascribed to the combined effect of the photodynamic and photothermal inactivation of bacteria. Furthermore, BSA-CuS NCs were transdermally administered onto a methicillin-resistant Staphylococcus aureus-infected wound and eradicated >99% of bacteria in just 1 min under NIR illumination due to the additional peroxidase-like activity of BSA-CuS NCs, transforming H2O2 at the infection site into hydroxyl radicals and thus increasing the synergistic effect from photodynamic and photothermal treatment. The BSA-CuS NCs exhibited insignificant in vitro cytotoxicity and hemolysis and thus can serve as highly biocompatible bactericides in preclinical applications to effectively eradicate bacteria.
Collapse
Affiliation(s)
- Amit Nain
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Chun Wei
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Feng Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ting Tseng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | | | - Yu-Fen Huang
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Research Center for Applied Sciences Academia Sinica, Taipei 11529, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|