1
|
Hu W, Fan Z, Mo L, Lin H, Li M, Li W, Ou J, Tao R, Tian G, Qin M, Zeng M, Lu X, Zhou G, Gao X, Liu JM. Volatile Resistive Switching and Short-Term Synaptic Plasticity in a Ferroelectric-Modulated SrFeO x Memristor. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9595-9605. [PMID: 39882776 DOI: 10.1021/acsami.4c19627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
SrFeOx (SFO) offers a topotactic phase transformation between an insulating brownmillerite SrFeO2.5 (BM-SFO) phase and a conductive perovskite SrFeO3 (PV-SFO) phase, making it a competitive candidate for use in resistive memory and neuromorphic computing. However, most of existing SFO-based memristors are nonvolatile devices which struggle to achieve short-term synaptic plasticity (STP). To address this issue and realize STP, we propose to leverage ferroelectric polarization to effectively draw ions across the interface so that the PV-SFO conductive filaments (CFs) can be ruptured in absence of an external field. As a proof of concept, we fabricate ferroelectric Pb(Zr0.2Ti0.8)O3 (PZT)/BM-SFO bilayer films with Au top electrodes and SrRuO3 bottom electrodes. The device exhibits the desired volatile resistive switching behavior, with its low resistance state decaying over time. Such volatility is attributed to the positive polarization charge near the PZT/SFO interface, which can attract the oxygen ions from SFO to PZT and hence lead to the rupture of CFs. Moreover, this volatile device successfully emulates STP-related synaptic functions, including excitatory postsynaptic current, paired-pulse facilitation, learning-experience behavior, associative learning, and reservoir computing. Our study showcases an effective method for achieving volatile resistive switching and STP, which may be applied to various systems beyond SFO-based memristors.
Collapse
Affiliation(s)
- Wenjie Hu
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Zhen Fan
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Linyuan Mo
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Haipeng Lin
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Meixia Li
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Wenjie Li
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Jiali Ou
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Ruiqiang Tao
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Guo Tian
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Minghui Qin
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Min Zeng
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Xubing Lu
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Guofu Zhou
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Xingsen Gao
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Jun-Ming Liu
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Alam N, Rahaman T, Das AK, Pal AK, Datta A, Ray SJ, Mondal PK, Polentarutti M, Mandal S. Inflection of Resistive Switching Behavior in Atomically Precise Silver Cluster-Assembled Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409118. [PMID: 39659068 DOI: 10.1002/smll.202409118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/24/2024] [Indexed: 12/12/2024]
Abstract
Bottom-up design of electronic materials based on nanometer-sized building blocks requires precise control over their self-assembly process. Atomically precise metal nanoclusters (NCs) are the well-characterized building blocks for crafting tunable nanomaterials. Here, a solution-processed assembly of a newly synthesized molecular silver nanocluster (0 D Ag12-NC) into a 1D nanocluster chain (1 D Ag12-CAM) is mediated by 4,4'-bipyridine linker Both 0 D Ag12-NC and 1 D Ag12-CAM consist of Ag12 core that adopts the cuboctahedron geometry protected by organic ligands. The resistive switching devices are fabricated in a sandwich-like structure of ITO (Indium tin oxide)/X/Ag (where X is either 0 D Ag12-NC or 1 D Ag12-CAM). The device based on 1 D Ag12-CAM exhibited excellent resistive switching behaviour, enduring up to 1000 cycles and boasting a fivefold higher Ion/Ioff ratio compared to the device based on the molecular 0 D Ag12-NC nanocluster. Furthermore, the device based on 1 D Ag12-CAM demonstrated negative differential resistance (NDR) phenomena, achieving a peak-to-valley ratio of 2.34 with a switching efficiency of 23 Ns. This work highlights the importance of interconnecting molecular nanoclusters into 1D nanocluster chains for fine-tuning resistive memory properties in futuristic electronic appliances.
Collapse
Affiliation(s)
- Noohul Alam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India
| | - Towhidur Rahaman
- Department of Physics, Indian Institute of Technology Patna, Bihar, 801106, India
| | - Anish Kumar Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India
| | - Arun K Pal
- School of Chemical Sciences, Indian Associate for the Cultivation of Sciences, Kolkata, West Bengal, 700032, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Associate for the Cultivation of Sciences, Kolkata, West Bengal, 700032, India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Bihar, 801106, India
| | - Pradip Kumar Mondal
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, Trieste, 34149, Italy
| | - Maurizio Polentarutti
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, Trieste, 34149, Italy
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
3
|
Su R, Chen D, Cheng W, Xiao R, Deng Y, Duan Y, Li Y, Ye L, An H, Xu J, Lai PT, Miao X. Oxygen Vacancy Compensation-Induced Analog Resistive Switching in the SrFeO 3-δ/Nb:SrTiO 3 Epitaxial Heterojunction for Noise-Tolerant High-Precision Image Recognition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54115-54128. [PMID: 39327975 DOI: 10.1021/acsami.4c07951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Neuromorphic computing, inspired by the brain's architecture, promises to surpass the limitations of von Neumann computing. In this paradigm, synaptic devices play a crucial role, with resistive switching memory (memristors) emerging as promising candidates due to their low power consumption and scalability advantages. This study focuses on the development of metal/oxide-semiconductor heterojunctions, which offer several technological advantages and have broad potential for applications in artificial neural synapses. However, constructing high-quality epitaxial interfaces between metal and oxide semiconductors and designing modifiable contact barriers are challenging. Herein, we construct high-quality epitaxial metal/semiconductor interfaces based on the metallicity of the perovskite phase SrFeO3-δ (PV-SFO) and a small Schottky barrier in contact with Nb-doped SrTiO3 (NSTO). X-ray diffraction patterns, reciprocal space mapping results, and cross-sectional transmission electron microscopy images reveal that the prepared PV-SFO film exhibits a perfect single-crystal structure and an excellent epitaxial interface with the NSTO (111) substrate. The corresponding memristor exhibits analog-type resistive-variable characteristics with an ON/OFF ratio of ∼1000, stable data retention after 10,000 s, and no noticeable fluctuation in resistance after 10,000 pulse cycles. Electron energy loss spectroscopy, first-principles calculations, and electrical measurements reveal that compensating or restoring oxygen vacancies at the NSTO surface decreases or increases the contact barrier between PV-SFO and NSTO, respectively, thereby gradually regulating the resistance value. Furthermore, high-quality epitaxial PV-SFO/NSTO devices achieve up to 98.21% recognition accuracy for handwriting recognition tasks using LeNet-5-based network structures and 92.21% accuracy for color images using visual geometry group (VGG) network structures. This work contributes to the advancement of interface-type memristors and provides valuable insights into enhancing synaptic functionality in neuromorphic computing systems.
Collapse
Affiliation(s)
- Rui Su
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Dunbao Chen
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Weiming Cheng
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruizi Xiao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuheng Deng
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Yufeng Duan
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yi Li
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lei Ye
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongyu An
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Jingping Xu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peter To Lai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Xiangshui Miao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Shin Y, Poeppelmeier KR, Rondinelli JM. Informatics-Based Learning of Oxygen Vacancy Ordering Principles in Oxygen-Deficient Perovskites. Inorg Chem 2024; 63:12785-12802. [PMID: 38954760 DOI: 10.1021/acs.inorgchem.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Ordered oxygen vacancies (OOVs) in perovskites can exhibit long-range order and may be used to direct materials properties through modifications in electronic structures and broken symmetries. Based on the various vacancy patterns observed in previously known compounds, we explore the ordering principles of oxygen-deficient perovskite oxides with ABO2.5 stoichiometry to identify other OOV variants. We performed first-principles calculations to assess the OOV stability on a data set of 50 OOV structures generated from our bespoke algorithm. The algorithm employs uniform planar vacancy patterns on (111) pseudocubic perovskite layers and the approach proves effective for generating stable OOV patterns with minimal computational loads. We find as expected that the major factors determining the stability of OOV structures include coordination preferences of transition metals and elastic penalties resulting from the assemblies of polyhedra. Cooperative rotational modes of polyhedra within the OOV structures reduce elastic instabilities by optimizing the bond valence of A- and B cations. This finding explains the observed formation of vacancy channels along low-index crystallographic directions in prototypical OOV phases. The identified ordering principles enable us to devise other stable vacancy patterns with longer periodicity for targeted property design in yet to be synthesized compounds.
Collapse
Affiliation(s)
- Yongjin Shin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Kenneth R Poeppelmeier
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Lee HJ, Kim JH, Choi J, Kim YS, Lee SN. Correlation between oxygen flow-controlled resistive switching and capacitance behavior in gallium oxide memristors grown via RF sputtering. Heliyon 2023; 9:e23157. [PMID: 38144313 PMCID: PMC10746488 DOI: 10.1016/j.heliyon.2023.e23157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
We studied on the bipolar resistive switching (RS)-dependent capacitance of Ga2O3 memristors, grown using controlled oxygen flow via a radio frequency sputtering process. The Ag/Ga2O3/Pt memristor structure was employed to investigate the capacitance changes associated with RS behavior and oxygen concentration. In the low-resistance state (LRS), capacitance increased by over 60 times compared to the high-resistance state (HRS). Furthermore, in the HRS state, increasing the oxygen flow from 0 to 0.3 sccm resulted in an 80 % decrease in capacitance, while in the LRS state, capacitance increased by 128 %. These results indicate that RS-dependent capacitance in Ga2O3 memristors is influenced by the density of oxygen vacancies. The presence of oxygen vacancies affects charge storage capacity and capacitance, with higher oxygen concentrations leading to reduced capacitance in HRS and increased capacitance in LRS. The results contribute to the understanding of the capacitance behavior in Ga2O3 memristors and highlight the significance of oxygen vacancies in their operation.
Collapse
Affiliation(s)
- Hye Jin Lee
- Department of IT & Semiconductor Convergence Engineering, Tech University of Korea, Siheung, 15073, Republic of Korea
| | - Jeong-Hyeon Kim
- Department of IT & Semiconductor Convergence Engineering, Tech University of Korea, Siheung, 15073, Republic of Korea
| | - Jongyun Choi
- Department of IT & Semiconductor Convergence Engineering, Tech University of Korea, Siheung, 15073, Republic of Korea
| | - Yoon Seok Kim
- Department of Nano & Semiconductor Engineering, Tech University of Korea, Siheung, 15073, Republic of Korea
| | - Sung-Nam Lee
- Department of IT & Semiconductor Convergence Engineering, Tech University of Korea, Siheung, 15073, Republic of Korea
- Department of Nano & Semiconductor Engineering, Tech University of Korea, Siheung, 15073, Republic of Korea
| |
Collapse
|
6
|
Zhang R, Su R, Shen C, Xiao R, Cheng W, Miao X. Research Progress on the Application of Topological Phase Transition Materials in the Field of Memristor and Neuromorphic Computing. SENSORS (BASEL, SWITZERLAND) 2023; 23:8838. [PMID: 37960537 PMCID: PMC10650417 DOI: 10.3390/s23218838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/07/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Topological phase transition materials have strong coupling between their charge, spin orbitals, and lattice structure, which makes them have good electrical and magnetic properties, leading to promising applications in the fields of memristive devices. The smaller Gibbs free energy difference between the topological phases, the stable oxygen vacancy ordered structure, and the reversible topological phase transition promote the memristive effect, which is more conducive to its application in information storage, information processing, information calculation, and other related fields. In particular, extracting the current resistance or conductance of the two-terminal memristor to convert to the weight of the synapse in the neural network can simulate the behavior of biological synapses in their structure and function. In addition, in order to improve the performance of memristors and better apply them to neuromorphic computing, methods such as ion doping, electrode selection, interface modulation, and preparation process control have been demonstrated in memristors based on topological phase transition materials. At present, it is considered an effective method to obtain a unique resistive switching behavior by improving the process of preparing functional layers, regulating the crystal phase of topological phase transition materials, and constructing interface barrier-dependent devices. In this review, we systematically expound the resistance switching mechanism, resistance switching performance regulation, and neuromorphic computing of topological phase transition memristors, and provide some suggestions for the challenges faced by the development of the next generation of non-volatile memory and brain-like neuromorphic devices based on topological phase transition materials.
Collapse
Affiliation(s)
| | | | | | | | - Weiming Cheng
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China; (R.Z.); (R.S.); (C.S.); (R.X.); (X.M.)
| | | |
Collapse
|
7
|
Yang Z, Wang L, Dhas JA, Engelhard MH, Bowden ME, Liu W, Zhu Z, Wang C, Chambers SA, Sushko PV, Du Y. Guided anisotropic oxygen transport in vacancy ordered oxides. Nat Commun 2023; 14:6068. [PMID: 37770428 PMCID: PMC10539514 DOI: 10.1038/s41467-023-40746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/07/2023] [Indexed: 09/30/2023] Open
Abstract
Anisotropic and efficient transport of ions under external stimuli governs the operation and failure mechanisms of energy-conversion systems and microelectronics devices. However, fundamental understanding of ion hopping processes is impeded by the lack of atomically precise materials and probes that allow for the monitoring and control at the appropriate time- and length- scales. In this work, using in-situ transmission electron microscopy, we directly show that oxygen ion migration in vacancy ordered, semiconducting SrFeO2.5 epitaxial thin films can be guided to proceed through two distinctly different diffusion pathways, each resulting in different polymorphs of SrFeO2.75 with different ground electronic properties before reaching a fully oxidized, metallic SrFeO3 phase. The diffusion steps and reaction intermediates are revealed by means of ab-initio calculations. The principles of controlling oxygen diffusion pathways and reaction intermediates demonstrated here may advance the rational design of structurally ordered oxides for tailored applications and provide insights for developing devices with multiple states of regulation.
Collapse
Affiliation(s)
- Zhenzhong Yang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jeffrey A Dhas
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Mark H Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Mark E Bowden
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Wen Liu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Zihua Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Scott A Chambers
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Peter V Sushko
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
8
|
Park TJ, Deng S, Manna S, Islam ANMN, Yu H, Yuan Y, Fong DD, Chubykin AA, Sengupta A, Sankaranarayanan SKRS, Ramanathan S. Complex Oxides for Brain-Inspired Computing: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203352. [PMID: 35723973 DOI: 10.1002/adma.202203352] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The fields of brain-inspired computing, robotics, and, more broadly, artificial intelligence (AI) seek to implement knowledge gleaned from the natural world into human-designed electronics and machines. In this review, the opportunities presented by complex oxides, a class of electronic ceramic materials whose properties can be elegantly tuned by doping, electron interactions, and a variety of external stimuli near room temperature, are discussed. The review begins with a discussion of natural intelligence at the elementary level in the nervous system, followed by collective intelligence and learning at the animal colony level mediated by social interactions. An important aspect highlighted is the vast spatial and temporal scales involved in learning and memory. The focus then turns to collective phenomena, such as metal-to-insulator transitions (MITs), ferroelectricity, and related examples, to highlight recent demonstrations of artificial neurons, synapses, and circuits and their learning. First-principles theoretical treatments of the electronic structure, and in situ synchrotron spectroscopy of operating devices are then discussed. The implementation of the experimental characteristics into neural networks and algorithm design is then revewed. Finally, outstanding materials challenges that require a microscopic understanding of the physical mechanisms, which will be essential for advancing the frontiers of neuromorphic computing, are highlighted.
Collapse
Affiliation(s)
- Tae Joon Park
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sunbin Deng
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sukriti Manna
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - A N M Nafiul Islam
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Haoming Yu
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yifan Yuan
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Dillon D Fong
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Alexander A Chubykin
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Abhronil Sengupta
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Subramanian K R S Sankaranarayanan
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Shriram Ramanathan
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
9
|
Wang L, Zuo Z, Wen D. Realization of Artificial Nerve Synapses Based on Biological Threshold Resistive Random Access Memory. Adv Biol (Weinh) 2023; 7:e2200298. [PMID: 36650948 DOI: 10.1002/adbi.202200298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Indexed: 01/19/2023]
Abstract
A one-selector one resistor (1S1R) array formed of a selector and resistive random access memory (RRAM) is an important way to achieve high-density storage and neuromorphic computing. However, the low durability and poor consistency of the selector limit its practical application. The fabrication of a selector based on egg albumen (EA) is reported in this paper. The device exhibits excellent bidirectional threshold switching characteristics, including a low leakage current (10-7 A), a high ON/OFF current ratio (106 ), and good endurance (>700 days). It is used as a selector to form a 1S1R unit in combination with an EA-based RRAM to effectively solve the leakage current in a crossbar array. A feasible solution is provided for the realization of a protein-based 1S1R array to achieve high-density storage. The 1S1R unit shows characteristics similar to those of synapses in the human brain under impulse excitation and has great potential in simulating the human brain for neuromorphic calculations.).
Collapse
Affiliation(s)
- Lu Wang
- School of Electronic Engineering, Heilongjiang University, Harbin, 150080, P. R. China
| | - Ze Zuo
- School of Electronic Engineering, Heilongjiang University, Harbin, 150080, P. R. China
| | - Dianzhong Wen
- School of Electronic Engineering, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
10
|
Barman A, Das D, Deshmukh S, Sarkar PK, Banerjee D, Hübner R, Gupta M, Saini CP, Kumar S, Johari P, Dhar S, Kanjilal A. Aliovalent Ta-Doping-Engineered Oxygen Vacancy Configurations for Ultralow-Voltage Resistive Memory Devices: A DFT-Supported Experimental Study. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34822-34834. [PMID: 35866235 DOI: 10.1021/acsami.2c05089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alteration of transport properties of any material, especially metal oxides, by doping suitable impurities is not straightforward as it may introduce multiple defects like oxygen vacancies (Vo) in the system. It plays a decisive role in controlling the resistive switching (RS) performance of metal oxide-based memory devices. Therefore, a judicious choice of dopants and their atomic concentrations is crucial for achieving an optimum Vo configuration. Here, we show that the rational designing of RS memory devices with cationic dopants (Ta), in particular, Au/Ti1-xTaxO2-δ/Pt devices, is promising for the upcoming non-volatile memory technology. Indeed, a current window of ∼104 is realized at an ultralow voltage as low as 0.25 V with significant retention (∼104 s) and endurance (∼105 cycles) of the device by considering 1.11 at % Ta doping. The obtained device parameters are compared with those in the available literature to establish its excellent performance. Furthermore, using detailed experimental analyses and density functional theory (DFT)-based first-principles calculations, we comprehend that the meticulous presence of Vo configurations and the columnar-like dendritic structures is crucial for achieving ultralow-voltage bipolar RS characteristics. In fact, the dopant-mediated Vo interactions are found to be responsible for the enhancement in local current conduction, as evidenced from the DFT-simulated electron localization function plots, and these, in turn, augment the device performance. Overall, the present study on cationic-dopant-controlled defect engineering could pave a neoteric direction for future energy-efficient oxide memristors.
Collapse
Affiliation(s)
- Arabinda Barman
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Dadri, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201 314, India
- Department of Physics, Dinhata College, Dinhata, West Bengal 736 135, India
| | - Dip Das
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Dadri, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201 314, India
| | - Sujit Deshmukh
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Dadri, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201 314, India
| | - Pranab Kumar Sarkar
- Department of Applied Sciences and Humanities, Assam University, Silchar, Assam 788 011, India
| | - Debosmita Banerjee
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Dadri, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201 314, India
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dersden 01328, Germany
| | - Mukul Gupta
- UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore, Madhya Pradesh 452 001, India
| | | | - Shammi Kumar
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Dadri, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201 314, India
| | - Priya Johari
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Dadri, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201 314, India
| | - Sankar Dhar
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Dadri, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201 314, India
| | - Aloke Kanjilal
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Dadri, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201 314, India
| |
Collapse
|
11
|
Zhang Q, Meng F, Gao A, Li X, Jin Q, Lin S, Chen S, Shang T, Zhang X, Guo H, Wang C, Jin K, Wang X, Su D, Gu L, Guo EJ. Dynamics of Anisotropic Oxygen-Ion Migration in Strained Cobaltites. NANO LETTERS 2021; 21:10507-10515. [PMID: 34870440 DOI: 10.1021/acs.nanolett.1c04057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Orientation control of the oxygen vacancy channel (OVC) is highly desirable for tailoring oxygen diffusion as it serves as a fast transport channel in ion conductors, which is widely exploited in solid-state fuel cells, catalysts, and ion-batteries. Direct observation of oxygen-ion hopping toward preferential vacant sites is a key to clarifying migration pathways. Here we report anisotropic oxygen-ion migration mediated by strain in ultrathin cobaltites via in situ thermal activation in atomic-resolved transmission electron microscopy. Oxygen migration pathways are constructed on the basis of the atomic structure during the OVC switching, which is manifested as the vertical-to-horizontal OVC switching under tensile strain but the horizontal-to-diagonal switching under compression. We evaluate the topotactic structural changes to the OVC, determine the crucial role of the tolerance factor for OVC stability, and establish the strain-dependent phase diagram. Our work provides a practical guide for engineering OVC orientation that is applicable to ionic-oxide electronics.
Collapse
Affiliation(s)
- Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Yangtze River Delta Physics Research Center Co. Ltd., Liyang 213300, China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ang Gao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyan Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Lin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengru Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtong Shang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haizhong Guo
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Xuefeng Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Er-Jia Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
12
|
Sun B, Zhou G, Sun L, Zhao H, Chen Y, Yang F, Zhao Y, Song Q. ABO 3 multiferroic perovskite materials for memristive memory and neuromorphic computing. NANOSCALE HORIZONS 2021; 6:939-970. [PMID: 34652346 DOI: 10.1039/d1nh00292a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The unique electron spin, transfer, polarization and magnetoelectric coupling characteristics of ABO3 multiferroic perovskite materials make them promising candidates for application in multifunctional nanoelectronic devices. Reversible ferroelectric polarization, controllable defect concentration and domain wall movement originated from the ABO3 multiferroic perovskite materials promotes its memristive effect, which further highlights data storage, information processing and neuromorphic computing in diverse artificial intelligence applications. In particular, ion doping, electrode selection, and interface modulation have been demonstrated in ABO3-based memristive devices for ultrahigh data storage, ultrafast information processing, and efficient neuromorphic computing. These approaches presented today including controlling the dopant in the active layer, altering the oxygen vacancy distribution, modulating the diffusion depth of ions, and constructing the interface-dependent band structure were believed to be efficient methods for obtaining unique resistive switching (RS) behavior for various applications. In this review, internal physical dynamics, preparation technologies, and modulation methods are systemically examined as well as the progress, challenges, and possible solutions are proposed for next generation emerging ABO3-based memristive application in artificial intelligence.
Collapse
Affiliation(s)
- Bai Sun
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Guangdong Zhou
- School of Artificial Intelligence and School of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Linfeng Sun
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Yuanzheng Chen
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Feng Yang
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yong Zhao
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qunliang Song
- School of Artificial Intelligence and School of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
13
|
Zhao J, Chen K, Li SE, Zhang Q, Wang JO, Guo EJ, Qian H, Gu L, Qian T, Ibrahim K, Fan Z, Guo H. Electronic-structure evolution of SrFeO 3-xduring topotactic phase transformation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:064001. [PMID: 34740209 DOI: 10.1088/1361-648x/ac36fd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Oxygen-vacancy-induced topotactic phase transformation between the ABO2.5brownmillerite structure and the ABO3perovskite structure attracts ever-increasing attention due to the perspective applications in catalysis, clean energy field, and memristors. However, a detailed investigation of the electronic-structure evolution during the topotactic phase transformation for understanding the underlying mechanism is highly desired. In this work, multiple analytical methods were used to explore evolution of the electronic structure of SrFeO3-xthin films during the topotactic phase transformation. The results indicate that the increase in oxygen content induces a new unoccupied state of O 2pcharacter near the Fermi energy, inducing the insulator-to-metal transition. More importantly, the hole states are more likely constrained to thedx2-y2orbital than to thed3z2-r2orbital. Our results reveal an unambiguous evolution of the electronic structure of SrFeO3-xfilms during topotactic phase transformation, which is crucial not only for fundamental understanding but also for perspective applications such as solid-state oxide fuel cells, catalysts, and memristor devices.
Collapse
Affiliation(s)
- Jiali Zhao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Kaihui Chen
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Shi-En Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jia-Ou Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Er-Jia Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Haijie Qian
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Tian Qian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Kurash Ibrahim
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhen Fan
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Haizhong Guo
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, People's Republic of China
| |
Collapse
|
14
|
Mou X, Tang J, Lyu Y, Zhang Q, Yang S, Xu F, Liu W, Xu M, Zhou Y, Sun W, Zhong Y, Gao B, Yu P, Qian H, Wu H. Analog memristive synapse based on topotactic phase transition for high-performance neuromorphic computing and neural network pruning. SCIENCE ADVANCES 2021; 7:7/29/eabh0648. [PMID: 34272239 PMCID: PMC8284889 DOI: 10.1126/sciadv.abh0648] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/02/2021] [Indexed: 05/31/2023]
Abstract
Inspired by the human brain, nonvolatile memories (NVMs)-based neuromorphic computing emerges as a promising paradigm to build power-efficient computing hardware for artificial intelligence. However, existing NVMs still suffer from physically imperfect device characteristics. In this work, a topotactic phase transition random-access memory (TPT-RAM) with a unique diffusive nonvolatile dual mode based on SrCoO x is demonstrated. The reversible phase transition of SrCoO x is well controlled by oxygen ion migrations along the highly ordered oxygen vacancy channels, enabling reproducible analog switching characteristics with reduced variability. Combining density functional theory and kinetic Monte Carlo simulations, the orientation-dependent switching mechanism of TPT-RAM is investigated synergistically. Furthermore, the dual-mode TPT-RAM is used to mimic the selective stabilization of developing synapses and implement neural network pruning, reducing ~84.2% of redundant synapses while improving the image classification accuracy to 99%. Our work points out a new direction to design bioplausible memristive synapses for neuromorphic computing.
Collapse
Affiliation(s)
- Xing Mou
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jianshi Tang
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
- Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, China
| | - Yingjie Lyu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Qingtian Zhang
- Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, China
| | - Siyao Yang
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Feng Xu
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Wei Liu
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Minghong Xu
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yu Zhou
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Wen Sun
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yanan Zhong
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Bin Gao
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, China
| | - Pu Yu
- Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, China.
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - He Qian
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, China
| | - Huaqiang Wu
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Zhang H, Cheng C, Huang B, Zhang H, Chen R, Huang Y, Chen H, Pei W. Research on Pt/NiO x/WO 3-x:Ti/W Multijunction Memristors with Synaptic Learning and Memory Functions. J Phys Chem Lett 2021; 12:3600-3606. [PMID: 33822633 DOI: 10.1021/acs.jpclett.1c00704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Artificial synapses based on biological synapses represent a new idea in the field of artificial intelligence with future applications. Current two-terminal RRAM devices have developed tremendously due to the adjustable synaptic plasticity of artificial synapses. However, these devices still have some problems, such as current leakage and poor durability. Here, we demonstrate a Pt/NiOx/WO3-x:Ti/W memristor with a pn-type heterojunction and two metal-semiconductor contacts, which exhibits good rectification. Due to the change in the internal potential barrier, the devices possess multiconductance states under different pulse modulations and memory characteristics, similar to synapses. The rectification characteristics of the device exhibit stable enhancement and suppression behavior. Each device in the 10 × 10 cross array we constructed can be written correctly, which verifies that leakage current does not appear in the device. The structure proposed in this work has great significance for the integration of large-scale memristor cross arrays.
Collapse
Affiliation(s)
- Hengjie Zhang
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chuantong Cheng
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Beiju Huang
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Beijing Key Laboratory on Inorganic Stretchable and Flexible Information Technology, Beijing 100083, People's Republic of China
| | - Huan Zhang
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Run Chen
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yulong Huang
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hongda Chen
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Beijing Key Laboratory on Inorganic Stretchable and Flexible Information Technology, Beijing 100083, People's Republic of China
| | - Weihua Pei
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|