1
|
Luo Y, Zhang K, Mao L, Tan M, Dong X, Li N, Zhou Y, Chen C, Zou Z, Zhang J. Copper oxide nanoparticles disrupt lysosomal function and promote foam cell formation in RAW264.7 macrophages. Toxicology 2025; 513:154101. [PMID: 39986641 DOI: 10.1016/j.tox.2025.154101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Macrophage-derived foam cells are crucial in the development of atherosclerosis, a multifaceted and progressive disorder characterized by lipid and fibrous accumulation in major arteries. Copper oxide nanoparticles (CuONPs) have found widespread applications but their potential role in atherosclerosis remains understudied. In this study, we investigated the impact of CuONPs on foam cell formation in RAW264.7 macrophages. Our results showed that CuONPs, at concentrations as low as 10 μg/ml, significantly exacerbated foam cell formation induced by oxidized low-density lipoprotein (ox-LDL). Exposure to CuONPs stimulated LDL release and elevated the expression of NLRP3 inflammasome components, including NLRP3, Caspase-1, and IL-1β. Transmission electron microscopy (TEM) revealed accumulation of CuONPs within macrophage lysosomes, leading to disrupted lysosomal function. CuONPs-treated cells exhibited autophagosome accumulation due to impaired lysosomal degradation, as confirmed by Western blot analysis showing abnormal expression of LAMP-1 and LAMP-2 proteins. Flow cytometry analysis further demonstrated decreased lysosomal acidity in CuONPs-exposed cells. Our findings reveal a novel mechanism whereby CuONPs activate the inflammasome, disrupt lysosomal function, and hinder cholesterol efflux, thereby exacerbating the formation of macrophage-derived foam cells. These results highlight the potential risks of CuONPs exposure and provide important insights into the role of environmental particulate matter in the development of atherosclerosis.
Collapse
Affiliation(s)
- Yilin Luo
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Kun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Meiling Tan
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Xiaomei Dong
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Na Li
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Yuexing Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
2
|
Altınsoy Ş, Kızılbey K, İlim HB. Green Synthesis of Ag and Cu Nanoparticles Using E. telmateia Ehrh Extract: Coating, Characterization, and Bioactivity on PEEK Polymer Substrates. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5501. [PMID: 39597325 PMCID: PMC11595242 DOI: 10.3390/ma17225501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
PEEK-based implant materials have gained increasing attention as an alternative to titanium due to their biocompatibility and bone-like elasticity. However, PEEK's surface quality and wear resistance are lower than those of metals. This study aimed to enhance the bioactivity and surface quality of PEEK by coating it with silver and copper nanoparticles synthesized via a green method using Equisetum telmateia Ehrh. extract. PEEK samples (Ø 25 mm, 3 mm thick) were coated with single and double layers using spray (airbrush-spray) and drop-coating methods. Comprehensive analyses including SEM, EDX, FT-IR, UV-Vis, surface roughness, release studies, antioxidant and cytotoxicity activity, and antibacterial tests were conducted on the coated samples. The results demonstrated that AgNPs and CuNPs coatings significantly improved the surface quality of PEEK. SEM analysis revealed particle sizes ranging from 48 to 160 nm for AgNPs and 50-135 nm for CuNPs, with superior dispersion obtained using the airbrush-spray method. Surface roughness measurements showed a reduction of 17-33% for AgNPs-coated samples and 7-15% for CuNPs-coated samples compared to uncoated PEEK, with airbrush-spray coatings providing smoother surfaces. Antioxidant activity tests indicated that AgNPs provided 35% higher antioxidant activity compared to CuNPs. Additionally, antibacterial tests revealed that AgNPs exhibited a higher zone of inhibition (up to 14 mm for S. aureus and 18 mm for E. coli) compared to CuNPs, which exhibited zones of 8 mm and 10 mm, respectively. This study concludes that green-synthesized AgNPs, in particular, enhance the bioactivity and surface properties of PEEK, making it a promising material for biomedical applications such as infection-resistant implants.
Collapse
Affiliation(s)
- Şakir Altınsoy
- Biomedical Engineering Department, Faculty of Engineering and Architecture, İstanbul Yeni Yüzyıl University, Zeytinburnu, İstanbul 34010, Türkiye
| | - Kadriye Kızılbey
- Department of Natural Sciences, Faculty of Engineering and Natural Sciences, Acıbadem University, Ataşehir, İstanbul 34752, Türkiye
| | - Hümeyra Berfin İlim
- Science and Engineering Institute, İstanbul Yeni Yüzyıl University, Zeytinburnu, İstanbul 34010, Türkiye;
| |
Collapse
|
3
|
Angulo-Cánovas E, Bartual A, López-Igual R, Luque I, Radzinski NP, Shilova I, Anjur-Dietrich M, García-Jurado G, Úbeda B, González-Reyes JA, Díez J, Chisholm SW, García-Fernández JM, del Carmen Muñoz-Marín M. Direct interaction between marine cyanobacteria mediated by nanotubes. SCIENCE ADVANCES 2024; 10:eadj1539. [PMID: 38781331 PMCID: PMC11114229 DOI: 10.1126/sciadv.adj1539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Microbial associations and interactions drive and regulate nutrient fluxes in the ocean. However, physical contact between cells of marine cyanobacteria has not been studied thus far. Here, we show a mechanism of direct interaction between the marine cyanobacteria Prochlorococcus and Synechococcus, the intercellular membrane nanotubes. We present evidence of inter- and intra-genus exchange of cytoplasmic material between neighboring and distant cells of cyanobacteria mediated by nanotubes. We visualized and measured these structures in xenic and axenic cultures and in natural samples. We show that nanotubes are produced between living cells, suggesting that this is a relevant system of exchange material in vivo. The discovery of nanotubes acting as exchange bridges in the most abundant photosynthetic organisms in the ocean may have important implications for their interactions with other organisms and their population dynamics.
Collapse
Affiliation(s)
- Elisa Angulo-Cánovas
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| | - Ana Bartual
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Rocío López-Igual
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Nikolai P. Radzinski
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Maya Anjur-Dietrich
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gema García-Jurado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Bárbara Úbeda
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - José Antonio González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - José Manuel García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| | - María del Carmen Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| |
Collapse
|
4
|
Mutalik C, Nivedita, Sneka C, Krisnawati DI, Yougbaré S, Hsu CC, Kuo TR. Zebrafish Insights into Nanomaterial Toxicity: A Focused Exploration on Metallic, Metal Oxide, Semiconductor, and Mixed-Metal Nanoparticles. Int J Mol Sci 2024; 25:1926. [PMID: 38339204 PMCID: PMC10856345 DOI: 10.3390/ijms25031926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Nanomaterials are widely used in various fields, and ongoing research is focused on developing safe and sustainable nanomaterials. Using zebrafish as a model organism for studying the potentially toxic effects of nanomaterials highlights the importance of developing safe and sustainable nanomaterials. Studies conducted on nanomaterials and their toxicity and potential risks to human and environmental health are vital in biomedical sciences. In the present review, we discuss the potential toxicity of nanomaterials (inorganic and organic) and exposure risks based on size, shape, and concentration. The review further explores various types of nanomaterials and their impacts on zebrafish at different levels, indicating that exposure to nanomaterials can lead to developmental defects, changes in gene expressions, and various toxicities. The review also covers the importance of considering natural organic matter and chorion membranes in standardized nanotoxicity testing. While some nanomaterials are biologically compatible, metal and semiconductor nanomaterials that enter the water environment can increase toxicity to aquatic creatures and can potentially accumulate in the human body. Further investigations are necessary to assess the safety of nanomaterials and their impacts on the environment and human health.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Nivedita
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
| | - Chandrasekaran Sneka
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
| | - Dyah Ika Krisnawati
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, Surabaya 60237, East Java, Indonesia;
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de La Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro BP 218, 11, Burkina Faso;
| | - Chuan-Chih Hsu
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
- Stanford Byers Center for Biodesign, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Karrer LG, Mathew EN, Nava-Chavez J, Bhatti A, Delong RK. Evidence of Copper Nanoparticles and Poly I:C Modulating Cas9 Interaction and Cleavage of COR (Conserved Omicron RNA). Bioengineering (Basel) 2023; 10:bioengineering10050512. [PMID: 37237582 DOI: 10.3390/bioengineering10050512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Conserved omicron RNA (COR) is a 40 base long 99.9% conserved sequence in SARS-CoV-2 Omicron variant, predicted to form a stable stem loop, the targeted cleavage of which can be an ideal next step in controlling the spread of variants. The Cas9 enzyme has been traditionally utilized for gene editing and DNA cleavage. Previously Cas9 has been shown to be capable of RNA editing under certain conditions. Here we investigated the ability of Cas9 to bind to single-stranded conserved omicron RNA (COR) and examined the effect of copper nanoparticles (Cu NPs) and/or polyinosinic-polycytidilic acid (poly I:C) on the RNA cleavage ability of Cas9. The interaction of the Cas9 enzyme and COR with Cu NPs was shown by dynamic light scattering (DLS) and zeta potential measurements and was confirmed by two-dimensional fluorescence difference spectroscopy (2-D FDS). The interaction with and enhanced cleavage of COR by Cas9 in the presence of Cu NPs and poly I:C was shown by agarose gel electrophoresis. These data suggest that Cas9-mediated RNA cleavage may be potentiated at the nanoscale level in the presence of nanoparticles and a secondary RNA component. Further explorations in vitro and in vivo may contribute to the development of a better cellular delivery platform for Cas9.
Collapse
Affiliation(s)
- Lindy G Karrer
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Elza Neelima Mathew
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Juliet Nava-Chavez
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Abeera Bhatti
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Robert K Delong
- Landmark Bio, Innovation Development Laboratory, Watertown, MA 02472, USA
| |
Collapse
|
6
|
Qiu K, Zou W, Fang Z, Wang Y, Bell S, Zhang X, Tian Z, Xu X, Ji B, Li D, Huang T, Diao J. 2D MoS 2 and BN Nanosheets Damage Mitochondria through Membrane Penetration. ACS NANO 2023; 17:4716-4728. [PMID: 36848459 DOI: 10.1021/acsnano.2c11003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With the progression of nanotechnology, a growing number of nanomaterials have been created and incorporated into organisms and ecosystems, which raises significant concern about potential hazards of these materials on human health, wildlife, and the environment. Two-dimensional (2D) nanomaterials are one type of nanomaterials with thicknesses ranging from that of a single atom or of several atoms and have been proposed for a variety of biomedical applications such as drug delivery and gene therapy, but the toxicity thereof on subcellular organelles remains to be studied. In this work, we studied the impact of two typical 2D nanomaterials, MoS2 and BN nanosheets, on mitochondria, which are a type of membranous subcellular organelle that provides energy to cells. While 2D nanomaterials at a low dose exhibited a negligible cell mortality rate, significant mitochondrial fragmentation and partially reduced mitochondrial functions occurred; cells initiate mitophagy in response to mitochondrial damages, which cleans damaged mitochondria to avoid damage accumulation. Moreover, the molecular dynamics simulation results revealed that both MoS2 and BN nanosheets can spontaneously penetrate the mitochondrial lipid membrane through the hydrophobic interaction. The membrane penetration induced heterogeneous lipid packing resulting in damages. Our results demonstrate that even at a low dose 2D nanomaterials can physically damage mitochondria by penetrating the membrane, which draws attention to carefully evaluating the cytotoxicity of 2D nanomaterials for the potential biomedical application.
Collapse
Affiliation(s)
- Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Weiwei Zou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
| | - Zhou Fang
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yuxin Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Sam Bell
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Xiuqiong Xu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Baohua Ji
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Dechang Li
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
- Department of Pediatrics, University at Buffalo, 1001 Main Street, Buffalo, New York 14203, United States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| |
Collapse
|
7
|
Busi KB, Kotha J, Bandaru S, Ghantasala JP, Haseena S, Bhamidipati K, Puvvada N, Ravva MK, Thondamal M, Chakrabortty S. Engineering colloidally stable, highly fluorescent and nontoxic Cu nanoclusters via reaction parameter optimization. RSC Adv 2022; 12:17585-17595. [PMID: 35765449 PMCID: PMC9194929 DOI: 10.1039/d2ra02819k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/27/2022] [Indexed: 12/29/2022] Open
Abstract
Metal nanoclusters (NCs) composed of the least number of atoms (a few to tens) have become very attractive for their emerging properties owing to their ultrasmall size. Preparing copper nanoclusters (Cu NCs) in an aqueous medium with high emission properties, strong colloidal stability, and low toxicity has been a long-standing challenge. Although Cu NCs are earth-abundant and inexpensive, they have been comparatively less explored due to their various limitations, such as ease of surface oxidation, poor colloidal stability, and high toxicity. To overcome these constraints, we established a facile synthetic route by optimizing the reaction parameters, especially altering the effective concentration of the reducing agent, to influence their optical characteristics. The improvement of the photoluminescence intensity and superior colloidal stability was modeled from a theoretical standpoint. Moreover, the as-synthesized Cu NCs showed a significant reduction of toxicity in both in vitro and in vivo models. The possibility of using such Cu NCs as a diagnostic probe toward C. elegans was explored. Also, the extension of our approach toward improving the photoluminescence intensity of the Cu NCs on other ligand systems was demonstrated.
Collapse
Affiliation(s)
- Kumar Babu Busi
- Department of Chemistry, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | - Jyothi Kotha
- Department of Biological Sciences, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | - Shamili Bandaru
- Department of Chemistry, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | | | - Sheik Haseena
- Department of Chemistry, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | - Keerti Bhamidipati
- Applied Biology Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 Telangana India
| | - Nagaprasad Puvvada
- Applied Biology Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 Telangana India
- Department of Chemistry, Indrashil University Rajpur Mehsana-382740 Gujarat India
| | - Mahesh Kumar Ravva
- Department of Chemistry, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | - Manjunatha Thondamal
- Department of Biological Sciences, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | | |
Collapse
|
8
|
Copper-Containing Nanoparticles and Organic Complexes: Metal Reduction Triggers Rapid Cell Death via Oxidative Burst. Int J Mol Sci 2021; 22:ijms222011065. [PMID: 34681725 PMCID: PMC8539714 DOI: 10.3390/ijms222011065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/21/2022] Open
Abstract
Copper-containing agents are promising antitumor pharmaceuticals due to the ability of the metal ion to react with biomolecules. In the current study, we demonstrate that inorganic Cu2+ in the form of oxide nanoparticles (NPs) or salts, as well as Cu ions in the context of organic complexes (oxidation states +1, +1.5 and +2), acquire significant cytotoxic potency (2–3 orders of magnitude determined by IC50 values) in combinations with N-acetylcysteine (NAC), cysteine, or ascorbate. In contrast, other divalent cations (Zn, Fe, Mo, and Co) evoked no cytotoxicity with these combinations. CuO NPs (0.1–1 µg/mL) together with 1 mM NAC triggered the formation of reactive oxygen species (ROS) within 2–6 h concomitantly with perturbation of the plasma membrane and caspase-independent cell death. Furthermore, NAC potently sensitized HCT116 colon carcinoma cells to Cu–organic complexes in which the metal ion coordinated with 5-(2-pyridylmethylene)-2-methylthio-imidazol-4-one or was present in the coordination sphere of the porphyrin macrocycle. The sensitization effect was detectable in a panel of mammalian tumor cell lines including the sublines with the determinants of chemotherapeutic drug resistance. The components of the combination were non-toxic if added separately. Electrochemical studies revealed that Cu cations underwent a stepwise reduction in the presence of NAC or ascorbate. This mechanism explains differential efficacy of individual Cu–organic compounds in cell sensitization depending on the availability of Cu ions for reduction. In the presence of oxygen, Cu+1 complexes can generate a superoxide anion in a Fenton-like reaction Cu+1L + O2 → O2−. + Cu+2L, where L is the organic ligand. Studies on artificial lipid membranes showed that NAC interacted with negatively charged phospholipids, an effect that can facilitate the penetration of CuO NPs across the membranes. Thus, electrochemical modification of Cu ions and subsequent ROS generation, as well as direct interaction with membranes, represent the mechanisms of irreversible membrane damage and cell death in response to metal reduction in inorganic and organic Cu-containing compounds.
Collapse
|
9
|
Mao L, Wang L, Zhang M, Ullah MW, Liu L, Zhao W, Li Y, Ahmed AAQ, Cheng H, Shi Z, Yang G. In Situ Synthesized Selenium Nanoparticles-Decorated Bacterial Cellulose/Gelatin Hydrogel with Enhanced Antibacterial, Antioxidant, and Anti-Inflammatory Capabilities for Facilitating Skin Wound Healing. Adv Healthc Mater 2021; 10:e2100402. [PMID: 34050616 DOI: 10.1002/adhm.202100402] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/01/2021] [Indexed: 02/07/2023]
Abstract
Bacterial-associated wound infection and antibiotic resistance have posed a major burden on patients and health care systems. Thus, developing a novel multifunctional antibiotic-free wound dressing that cannot only effectively prevent wound infection, but also facilitate wound healing is urgently desired. Herein, a series of multifunctional nanocomposite hydrogels with remarkable antibacterial, antioxidant, and anti-inflammatory capabilities, based on bacterial cellulose (BC), gelatin (Gel), and selenium nanoparticles (SeNPs), are constructed for wound healing application. The BC/Gel/SeNPs nanocomposite hydrogels exhibit excellent mechanical properties, good swelling ability, flexibility and biodegradability, and favorable biocompatibility, as well as slow and sustainable release profiles of SeNPs. The decoration of SeNPs endows the hydrogels with superior antioxidant and anti-inflammatory capability, and outstanding antibacterial activity against both common bacteria (E. coli and S. aureus) and their multidrug-resistant counterparts. Furthermore, the BC/Gel/SeNPs hydrogels show an excellent skin wound healing performance in a rat full-thickness defect model, as evidenced by the significantly reduced inflammation, and the notably enhanced wound closure, granulation tissue formation, collagen deposition, angiogenesis, and fibroblast activation and differentiation. This study suggests that the developed multifunctional BC/Gel/SeNPs nanocomposite hydrogel holds a great promise as a wound dressing for preventing wound infection and accelerating skin regeneration in clinic.
Collapse
Affiliation(s)
- Lin Mao
- National Engineering Research Center for Nano‐Medicine Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Li Wang
- National Engineering Research Center for Nano‐Medicine Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Mingyue Zhang
- National Engineering Research Center for Nano‐Medicine Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Muhammad Wajid Ullah
- National Engineering Research Center for Nano‐Medicine Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Li Liu
- National Engineering Research Center for Nano‐Medicine Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Weiwei Zhao
- School of Mechanical and Electronic Engineering Wuhan University of Technology Wuhan 430070 China
| | - Ying Li
- Center for AIE Research College of Materials Science and Engineering Shenzhen University Shenzhen 518061 China
| | - Abeer Ahmed Qaed Ahmed
- National Engineering Research Center for Nano‐Medicine Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Haoyan Cheng
- School of Materials Science and Engineering Henan University of Science and Technology Luoyang 471023 China
| | - Zhijun Shi
- National Engineering Research Center for Nano‐Medicine Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Guang Yang
- National Engineering Research Center for Nano‐Medicine Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|