1
|
Qin J, Tang Y, Zeng Y, Liu X, Tang D. Recent advances in flexible sensors: From sensing materials to detection modes. Trends Analyt Chem 2024; 181:118027. [DOI: 10.1016/j.trac.2024.118027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
|
2
|
Yu ZJ, Deng DH, Liang SR, Huang YL, Yi XY. Overview of Gas-Generating-Reaction-Based Immunoassays. BIOSENSORS 2024; 14:580. [PMID: 39727844 PMCID: PMC11726966 DOI: 10.3390/bios14120580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/09/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
Point-of-care (POC) immunoassays have become convincing alternatives to traditional immunosensing methods for the sensitive and real-time detection of targets. Immunoassays based on gas-generating reactions were recently developed and have been used in various fields due to their advantages, such as rapid measurement, direct reading, simple operation, and low cost. Enzymes or nanoparticles modified with antibodies can effectively catalyze gas-generating reactions and convert immunorecognition events into gas pressure signals, which can be easily recorded by multifunctional portable devices. This article summarizes the advances in gas-generating-reaction-based immunoassays, according to different types of signal output systems, including distance-based readout, pressure differential, visualized detection, and thermal measurement. The review mainly focuses on the role of photothermal materials and the working principle of immunoassays. In addition, the challenges and prospects for the future development of gas-generating-reaction-based immunoassays are briefly discussed.
Collapse
Affiliation(s)
- Zhao-Jiang Yu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
| | - De-Hua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
| | - Si-Rui Liang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
| | - Ya-Liang Huang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| | - Xin-Yao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| |
Collapse
|
3
|
Chen W, Zhang X, Chi M, Zheng Q. Enhanced photocurrents for photoelectrochemical immunoassay of alpha-fetoprotein with Pt-functionalized Bi 2O 2S nanoflowers. Anal Chim Acta 2024; 1330:343281. [PMID: 39489964 DOI: 10.1016/j.aca.2024.343281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Designing heterojunctions with efficient electron-hole separation holds great promise for improving photoelectric response. RESULTS Herein, we reported a multifunctional Pt co-catalyst-modified Bi2O2S nanoflowers (BOS NFs) photocatalytic component for achieving an efficient photoelectric chemistry (PEC) immunosensor for alpha-fetoprotein (AFP). Briefly, the Pt co-catalyst improved the intrinsic band gap structure of BOS on the one hand, and on the other hand, it was able to achieve a rapid decomposition of hydrogen peroxide to hydroxyl radicals, which led to the improvement of electrochemical half-responses during the amplification of target immunosignals. In addition, Pt-functionalized BOS NFs (BOS-Pt) exhibited peroxidase-like enzymatic reaction activity and related properties. By enzyme-linked immunosorbent assay, a sandwich immuno-model in the presence of AFP catalyzed the production of hydrogen peroxide from the substrate glucose and the conversion of a sizable photoelectrochemical signal catalyzed by BOS-Pt. Following condition optimization, it was determined that the developed sensor exhibited a specific response to AFP over a wide linear range of 0.05-50 ng mL-1. SIGNIFICANCE This work provides a new strategy for developing efficient immunosensors from the perspective of modulating photoelectrochemical half-reactions.
Collapse
Affiliation(s)
- Wei Chen
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated hospital, Fujian Medical University, Fuzhou 350212, Fujian Province, China; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, 350005, Fujian Province, China
| | - Xiang Zhang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated hospital, Fujian Medical University, Fuzhou 350212, Fujian Province, China; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, 350005, Fujian Province, China
| | - Minhui Chi
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated hospital, Fujian Medical University, Fuzhou 350212, Fujian Province, China; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, 350005, Fujian Province, China.
| | - Qi Zheng
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated hospital, Fujian Medical University, Fuzhou 350212, Fujian Province, China; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, 350005, Fujian Province, China.
| |
Collapse
|
4
|
Hu X, Zhang H, Guo X, Wang Z, Huang Q, Wang Y, Ma X, Lin Z. Nanozyme catalysis pressure-powered intuitive distance variation for portable quantitative detection of H 2S with the naked eye. Anal Bioanal Chem 2024; 416:6045-6055. [PMID: 38878181 DOI: 10.1007/s00216-024-05390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 10/26/2024]
Abstract
As a representative gas of food spoilage, the development of rapid hydrogen sulfide (H2S) analysis strategies for food safety control is in great demand. Despite traditional methods for H2S detection possessing great achievements, they are still incapable of meeting the requirement of portability and quantitative detection at the same time. Herein, a nanozyme catalysis pressure-powered sensing platform that enables visual quantification with the naked eye is proposed. In this methodology, Pt nanozyme inherits the catalase-like activity to facilitate the decomposition of H2O2 to O2, which can significantly improve the pressure in the closed container, further pushing the movement of indicator dye. Furthermore, H2S was found to effectively inhibit the catalytic activity of Pt nanozyme, indicating that the catalase-like activity of PtNPs may be regulated by varying concentrations of H2S. Therefore, by utilizing a self-designed pressure-powered microchannel device, the concentration of H2S was successfully converted into a distinct signal variation in distance. The effectiveness of the as-designed sensor in assessing the spoilage of red wine by H2S determination has been demonstrated. It exhibits a strong correlation between the change in dye distance and H2S concentration within the range of 1-250 μM, with a detection limit of 0.17 μM. This method is advantageous as it enhances the quantitative detection of H2S with the naked eye based on the portable pressure-powered sensing platform, as compared to traditional H2S biosensors. Such a pressure-powered distance variation platform would greatly broaden the application of H2S-based detection in food spoilage management.
Collapse
Affiliation(s)
- Xuan Hu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Huifang Zhang
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Xinyu Guo
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Qitong Huang
- Key Laboratory of Biomedical Sensors of Ganzhou, Key Laboratory of Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Xiaoming Ma
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China.
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
5
|
Jia X, Jiao L, Li R, Yan D, Hu L, Chen C, Li X, Zhai Y, Lu X. Inhibition effect of p-d orbital hybridized PtSn nanozymes for colorimetric sensor array of antioxidants. Biosens Bioelectron 2024; 261:116468. [PMID: 38852326 DOI: 10.1016/j.bios.2024.116468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Rational design of peroxidase (POD)-like nanozymes with high activity and specificity still faces a great challenge. Besides, the investigations of nanozymes inhibitors commonly focus on inhibition efficiency, the interaction between nanozymes-involved catalytic reactions and inhibitors is rarely reported. In this work, we design a p-block metal Sn-doped Pt (p-d/PtSn) nanozymes with the selective enhancement of POD-like activity. The p-d orbital hybridization interaction between Pt and Sn can effectively optimize the electronic structure of PtSn nanozymes and thus selectively enhance POD-like activity. In addition, the antioxidants as nanozymes inhibitors can effectively inhibit the POD-like activity of p-d/PtSn nanozymes, which results in the fact that antioxidants absorbed on the p-d/PtSn surface can hinder the adsorption of hydrogen peroxide. The inhibition type (glutathione as a model molecule) is reversible mixed-inhibition with inhibition constants (Ki' and Ki) of 0.21 mM and 0.03 mM. Finally, based on the varying inhibition levels of antioxidant molecules, a colorimetric sensor array is constructed to distinguish and simultaneously detect five antioxidants. This work is expected to design highly active and specific nanozymes through p-d orbital hybrid engineering, and also provides insights into the interaction between nanozymes and inhibitors.
Collapse
Affiliation(s)
- Xiangkun Jia
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Lei Jiao
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China.
| | - Ruimin Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Dongbo Yan
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Lijun Hu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Chengjie Chen
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Xiaotong Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Yanling Zhai
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China.
| | - Xiaoquan Lu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
6
|
Wang L, Liu Z, Yao L, Liu S, Wang Q, Qu H, Wu Y, Mao Y, Zheng L. A Bioinspired Single-Atom Fe Nanozyme with Excellent Laccase-Like Activity for Efficient Aflatoxin B 1 Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400629. [PMID: 38682737 DOI: 10.1002/smll.202400629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/10/2024] [Indexed: 05/01/2024]
Abstract
The applications of natural laccases are greatly restricted because of their drawbacks like poor biostability, high costs, and low recovery efficiency. M/NC single atom nanozymes (M/NC SAzymes) are presenting as great substitutes due to their superior enzyme-like activity, excellent selectivity and high stability. In this work, inspired by the catalytic active center of natural enzyme, a biomimetic Fe/NC SAzyme (Fe-SAzyme) with O2-Fe-N4 coordination is successfully developed, exhibiting excellent laccase-like activity. Compared with their natural counterpart, Fe-SAzyme has shown superior catalytic efficiency and excellent stability under a wide range of pH (3.0-9.0), temperature (4-80 °C) and NaCl strength (0-300 mm). Interestingly, density functional theory (DFT) calculations reveal that the high catalytic performance is attributed to the activation of O2 by O2-Fe-N4 sites, which weakened the O─O bonds in the oxygen-to-water oxidation pathway. Furthermore, Fe-SAzyme is successfully applied for efficient aflatoxin B1 removal based on its robust laccase-like catalytic activity. This work provides a strategy for the rational design of laccase-like SAzymes, and the proposed catalytic mechanism will help to understand the coordination environment effect of SAzymes on laccase-like catalytic processes.
Collapse
Affiliation(s)
- Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Zixuan Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Qiuping Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yuen Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
7
|
Sui JH, Wei YY, Ren XY, Xu ZR. Pressure and multicolor dual-mode detection of mucin 1 based on the pH-regulated dual-enzyme mimic activities of manganese dioxide nanosheets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124352. [PMID: 38678841 DOI: 10.1016/j.saa.2024.124352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Mucin 1 is an essential tumor biomarker, and developing cost-effective and portable methods for mucin 1 detection is crucial in resource-limited settings. Herein, the pH-regulated dual-enzyme mimic activities of manganese dioxide nanosheets were demonstrated, which were integrated into an aptasensor for dual-mode detection of mucin 1. Under acidic conditions, manganese dioxide nanosheets with oxidase mimic activities catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine sulfate, producing visible multicolor signals; while under basic conditions, manganese dioxide nanosheets with catalase mimic activities were used as catalyst for the decomposition of hydrogen peroxide, generating gas pressure signals. The proposed method allows the naked eye detection of mucin 1 through multicolor signal readout and the quantitative detection of mucin 1 with a handheld pressure meter or a UV-vis spectrophotometer. The study demonstrates that manganese dioxide nanosheets with pH-regulated dual-enzyme mimic activities can facilitate multidimensional transducing signals. The use of manganese dioxide nanosheets for the transduction of different signals avoids extra labels and simplifies the operation procedures. Besides, the signal readout mode can be selected according to the available detection instruments. Therefore, the use of manganese dioxide nanosheets with pH-regulated dual-enzyme mimic activities for dual-signal readout provides a new way for mucin 1 detection.
Collapse
Affiliation(s)
- Jin-Hong Sui
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Yun-Yun Wei
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Xiu-Yan Ren
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
8
|
Liu B, Cao J, Hong B, You H, Li T, Yu Z, Li D, Liang B, Gan N. A microfluidic chip platform based on Pt nanozyme and magnetized phage composite probes for dual-mode detecting and imaging pathogenic bacteria viability. Talanta 2024; 275:126067. [PMID: 38640522 DOI: 10.1016/j.talanta.2024.126067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
The detection of pathogen viability is critically important to evaluate its infectivity. In the study, an integrated microfluidic chip based on dual-mode analytical strategy was developed to rapidly realize detection of bacteria activity (with Salmonella typhimurium, S.T, as a model analyte). Firstly, the composite probes, including deactivated phage modified magnetic beads and nano Pt-antimicrobial peptide (AMP) which can specifically recognize Gram-negative bacteria as nanozyme were prepared. When the composite probes are introduced into the chip together with target bacteria, after enrichment, oscillating and magnetic separation, they will conjugate with S.T and produce a magnetic sandwich complex. The complex can catalyze tetramethylbenzidine (TMB)-H2O2 to produce visible colorimetric signals which is correspondent to the total S.T content. Simultaneously, PtNPs in the complex can produce hydroxyl radical oxidation (∙OH) by decomposing H2O2. Under the synergistic action of ∙OH and AMP, the captured live S.T can be lysed to release ATP and emit bioluminescence signals which corresponds to the live S.T concentration. Therefore, the chip can simultaneously detect and image S.T at different viability in one test. The dual-mode assay demonstrated high sensitivity (≤33 CFU/mL), high specificity (identifying strain), signal amplification (5 folds) and short time (≤40min). The chip array can detect four samples in one test and exhibited advantages of high-integration, -sensitivity, -specificity and miniaturization, which are suitable to rapidly detect and image pathogen's viability in trace level. The replacement of phage probes can detect other bacteria. It has a wide prospect in pathogens screening.
Collapse
Affiliation(s)
- Bailu Liu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Jingya Cao
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Binxin Hong
- School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Hang You
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Tianhua Li
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Zhenzhong Yu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Dengfeng Li
- School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Baihui Liang
- Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, 315336, China; Ningbo Fotile Kitchenware Co., Ltd., Ningbo, Zhejiang 315336, China.
| | - Ning Gan
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China.
| |
Collapse
|
9
|
Mizera A, Zięba S, Bielejewski M, Dubis AT, Łapiński A. Effect of hydrostatic pressure on charge carriers in a conducting pyrrole- co-poly(pyrrole-3-carboxylic) copolymer. Phys Chem Chem Phys 2024; 26:18962-18969. [PMID: 38952289 DOI: 10.1039/d4cp01087f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The charge carriers in conducting pyrrole-co-poly(pyrrole-3-carboxylic) were examined using high-pressure Raman spectroscopy. The molecular structure of the new copolymer was investigated using high-resolution 13C ssNMR, 1H-13C 2D NMR correlation spectroscopy, and density functional theory (DFT) calculations. Bands in Raman spectra that showed the presence of polarons and bipolarons were studied. It was observed that the quantity of polarons and bipolarons correlated with the hydrostatic pressure. At a pressure of 4 GPa, an anomaly in the correlation between pressure and the position of the Raman band was identified.
Collapse
Affiliation(s)
- Adam Mizera
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179, Poznań, Poland.
| | - Sylwia Zięba
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179, Poznań, Poland.
| | - Michał Bielejewski
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179, Poznań, Poland.
| | - Alina T Dubis
- Department of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245, Białystok, Poland
| | - Andrzej Łapiński
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179, Poznań, Poland.
| |
Collapse
|
10
|
Wu D, Tang J, Yu Z, Gao Y, Zeng Y, Tang D, Liu X. Pt/Zn-TCPP Nanozyme-Based Flexible Immunoassay for Dual-Mode Pressure-Temperature Monitoring of Low-Abundance Proteins. Anal Chem 2024; 96:8740-8746. [PMID: 38722256 DOI: 10.1021/acs.analchem.4c01059] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Pressure and temperature, as common physical parameters, are important for monitoring human health. In contrast, single-mode monitoring is prone to causing experimental errors. Herein, we innovatively designed a dual-mode flexible sensing platform based on a platinum/zinc-meso-tetrakis(4-carboxyphenyl)porphyrin (Pt/Zn-TCPP) nanozyme for the quantitative monitoring of carcinoembryonic antigen (CEA) in biological fluids with pressure and temperature readouts. The Pt/Zn-TCPP nanozyme with catalytic and photothermal efficiencies was synthesized by means of integrating photosensitizers into porous materials. The flexible sensing system after the antigen-antibody reaction recognized the pressure using a flexible skin-like pressure sensor with a digital multimeter readout, whereas the temperature was acquired via the photoheat conversion system of the Pt/Zn-TCPP nanozyme under 808 nm near-infrared (NIR) irradiation using a portable NIR imaging camera on a smartphone. Meanwhile, the dual-mode flexible sensing system was carried out on a homemade three-dimensional (3D)-printed device. Results revealed that the developed dual-mode immunosensing platform could exhibit good pressure and temperature responses within the dynamic range of 0.5-100 ng mL-1 CEA with the detection limits of 0.24 and 0.13 ng mL-1, respectively. In addition, the pressure and temperature were sensed simultaneously without crosstalk interference. Importantly, the dual-mode flexible immunosensing system can effectively avoid false alarms during the measurement, thus providing great potential for simple and low-cost development for point-of-care testing.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Juan Tang
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and chemical engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Zhichao Yu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yuan Gao
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| |
Collapse
|
11
|
Wu J, Liang L, Li S, Qin Y, Zhao S, Ye F. Rational design of nanozyme with integrated sample pretreatment for colorimetric biosensing. Biosens Bioelectron 2024; 257:116310. [PMID: 38643549 DOI: 10.1016/j.bios.2024.116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Nanozymes have been widely used in the field of biosensing owing to their high stability, low cost, adjustable catalytic activity, and convenient modification. However, achieving high selectivity and sensitivity simultaneously in nanozyme-based colorimetric sensing remains a major challenge. Nanozymes are nanomaterials with enzyme-simulating activity that are often used as solid-phase adsorbents for sample pretreatment. Our design strategy integrated sample pretreatment function into the nanozyme through separation and enrichment, thereby improving the selectivity and sensitivity of nanozyme-based colorimetric biosensing. As a proof-of-concept, glucose was used as the model analyte in this study. A phenylboric acid-modified magnetic nanozyme (Cu/Fe3O4@BA) was rationally designed and synthesized. Selectivity was enhanced by boronate-affinity specific adsorption and the elimination of interference after magnetic separation. In addition, magnetic solid-phase extraction enrichment was used to improve the sensitivity. A recovery rate of more than 80% was reached when the enrichment factor was 50. The synthesized magnetic Cu/Fe3O4@BA was recyclable at least five times. The proposed method exhibited excellent selectivity and sensitivity, simple operation, and recyclability, providing a novel and practical strategy for designing multifunctional nanozymes for biosensing.
Collapse
Affiliation(s)
- Jia Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China
| | - Ling Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Shuishi Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yuan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Fanggui Ye
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
12
|
Lee HB, Son SE, Ha CH, Kim DH, Seong GH. Dual-mode colorimetric and photothermal aptasensor for detection of kanamycin using flocculent platinum nanoparticles. Biosens Bioelectron 2024; 249:116007. [PMID: 38194812 DOI: 10.1016/j.bios.2024.116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Chitosan (CS)-stabilized platinum nanoparticles (CS/PtNPs) were employed to develop a novel aptamer-based dual-mode colorimetric and photothermal biosensor for selective detection of kanamycin (KAN). As a peroxidase-like catalyst, the CS/PtNPs showed outstanding catalytic activity for the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). As a stabilizing agent, CS excelled at fixing the KAN binding aptamer on the surface of the CS/PtNPs, amplifying their catalytic activity and enhancing colloidal dispersion and stability. The oxidized TMB (TMBox) functioned as a signal for the colorimetric, photothermal aptasensor because of its observable absorbance of light in the visible and near-infrared (NIR) regions. When light from a NIR laser was absorbed by the TMBox in the reaction solution, heat was generated in inverse proportion to the KAN concentration. The developed colorimetric and photothermal modes of the aptasensor showed a linear detection range of 0.1-50 and 0.5-50 μM, with a limit of detection (LOD) of 0.04 and 0.41 μM, respectively. Moreover, the aptasensor successfully determined KAN concentrations in spiked milk samples, verifying the reliability and reproducibility in practical applications. The dual-mode aptasensor based on CS/PtNPs for KAN detection, utilizing both color change and heat generation signals through a single probe (TMBox), demonstrates rapid response, simplicity in operation, cost-effectiveness, and high sensitivity. In addition, unlike typical immunoassays, this aptamer-based peroxidase-like nanozyme activation and inhibition strategy required no washing process, which was very effective in terms of reducing the time required for an assay and sustaining a high sensitivity.
Collapse
Affiliation(s)
- Han Been Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Seong Eun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Chang Hyeon Ha
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Do Hyeon Kim
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea.
| |
Collapse
|
13
|
Peng C, Pang R, Li J, Wang E. Current Advances on the Single-Atom Nanozyme and Its Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211724. [PMID: 36773312 DOI: 10.1002/adma.202211724] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Nanozymes, a class of nanomaterials mimicking the function of enzymes, have aroused much attention as the candidate in diverse fields with the arbitrarily tunable features owing to the diversity of crystalline nanostructures, composition, and surface configurations. However, the uncertainty of their active sites and the lower intrinsic deficiencies of nanomaterial-initiated catalysis compared with the natural enzymes promote the pursuing of alternatives by imitating the biological active centers. Single-atom nanozymes (SAzymes) maximize the atom utilization with the well-defined structure, providing an important bridge to investigate mechanism and the relationship between structure and catalytic activity. They have risen as the new burgeoning alternative to the natural enzyme from in vitro bioanalytical tool to in vivo therapy owing to the flexible atomic engineering structure. Here, focus is mainly on the three parts. First, a detailed overview of single-atom catalyst synthesis strategies including bottom-up and top-down approaches is given. Then, according to the structural feature of single-atom nanocatalysts, the influence factors such as central metal atom, coordination number, heteroatom doping, and the metal-support interaction are discussed and the representative biological applications (including antibacterial/antiviral performance, cancer therapy, and biosensing) are highlighted. In the end, the future perspective and challenge facing are demonstrated.
Collapse
Affiliation(s)
- Chao Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Ruoyu Pang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
14
|
Deng Y, Zhang C, Lv L, Wang K, Liu F, Zhou Y, Peng Z, Wang B. In situ detection of silk fibroin using a dual recognition strategy with a flexible pressure immunosensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1185-1195. [PMID: 38305686 DOI: 10.1039/d3ay01967e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Silk is a symbol of ancient Chinese civilization that has made an indelible contribution to the development of world civilization. However, because ancient artifacts are often contaminated or degraded, it is difficult to detect the presence of silk therein, and the true origin of silk thus remains a mystery. Therefore, this work presents a flexible pressure immunosensor that was designed based on 3D polypyrrole (PPy) foams for the trace detection of silk fibroin at archaeological sites. Initially, silk fibroin (SF) was conjugated with antibody-functionalized copper oxide nanoparticles (CuO NPs) and carboxylated magnetic beads (MBs) to form a sandwich immune complex. Then, the sandwich immune complex was added to hydrogen peroxide (H2O2) by magnetic separation to catalyse the generation of oxygen (O2), which converted the antigen-antibody specific recognition signal to gas pressure. As the pressure within the device increases, the 3D PPy foam, as the sensing layer resistance was 150 Ω, undergoes extrusion and deformation. This deformation leads to alterations in the foam resistance. The flexible pressure immunosensor can sensitively monitor the change in electrical resistance in the system and quantitatively detect silk fibroin. With optimization, the flexible pressure immunosensor demonstrates a dynamic range of operation spanning from 10 ng mL-1 to 100 μg mL-1, exhibiting a remarkable detection limit of 10.58 ng mL-1 specifically for silk fibroin. Notably, this immunosensor surpasses enzyme-linked immunosorbent assay (ELISA) in terms of superior reproducibility, specificity, and accuracy. Therefore, this application provides a new method and technical support for silk detection.
Collapse
Affiliation(s)
- Yefeng Deng
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Chao Zhang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Lianpeng Lv
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Kun Wang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Feng Liu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yang Zhou
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China
| | - Zhiqin Peng
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Bing Wang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
15
|
Wang X, Wang Y, Liu Y, Cao X, Zhang F, Xia J, Wang Z. MOF-derived porous carbon nanozyme-based flexible electrochemical sensing system for in situ and real-time monitoring of H 2O 2 released from cells. Talanta 2024; 266:125132. [PMID: 37651906 DOI: 10.1016/j.talanta.2023.125132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
A novel flexible electrochemical sensor based on porous carbon nanosheets (PCNSs) nanozyme has been constructed for in situ and real-time monitoring of H2O2 released by cells. The PCNSs are prepared with the integration of thermal transformation, thermal activation and sonochemical exfoliation by using zeolitic imidazolate frameworks as template. The PCNSs exhibit high electrical conductivity, electrochemical activity and peroxidase-like catalytic properties, which is beneficial to H2O2 assay. With the transfer printing method, the flexible electrochemical sensor is obtained, which has excellent performances for H2O2 electrochemical detecting with wide linear range from 1 μM to 20 mM and a low detection limit of 0.76 μM. Owing to the great biocompatibility, the flexible sensor guarantees the growth of living cells for 72 h and realizes in situ and real-time monitoring the release of H2O2 from HeLa cells. The strategy of porous nanozyme preparation and flexible sensor construction provided a promising way for in situ and real-time assay of small molecules in the cellular microenvironment.
Collapse
Affiliation(s)
- Xiao Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China
| | - Yanan Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China
| | - Yali Liu
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266000, PR China
| | - Xiyue Cao
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China.
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
16
|
Yan Z, Zhou X, Kong L, Xu W, Hao J, Sun S, Feng J, Zhi H, Zhu X, Hu L. Spindle-shaped Cu-Ru mesoporous nanospheres with enhanced enzyme-like activity for visual differentiation of toxic o-/m-aminophenol and recognition mechanisms. ENVIRONMENTAL RESEARCH 2023; 239:117407. [PMID: 37838200 DOI: 10.1016/j.envres.2023.117407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
To effectively differentiate toxic aminophenol isomers, a kind of spindle-shaped Cu-Ru bimetal mesoporous nanozyme (Cu-Ru MPNZ) with high specific surface was developed by one-pot homogeneous reduction method, directed by hexadecyl trimethyl ammonium bromide (CTAB) in this work. By virtue of the distinctive microstructure, Cu-Ru MPNZ expressed superior bi-functional oxidase- and peroxidase-mimic activity to catalyze the oxidation of 3,3',5,5,'-tetramethylbenzidine (TMB) and 2,2'-azinobis (3-ethylbenzothiazoline-6- sulfonic acid) ammonium salt (ABTS) with low Michaelis-Menten constants and quick reaction rates. Especially, toxic aminophenol isomers could exclusively react with the oxydates of TMB or ABTS to express differentiable signals in color. Under the optimal conditions, Cu-Ru MPNZ was successfully applied for visual differentiation of toxic aminophenol isomers in real aqueous, juices and medicinal samples with low detection limits (1.60 × 10-8 mol/L for o-aminophenol and 3.25 × 10-8 mol/L for m-aminophenol) and satisfactory recoveries (96.6-103.5%). The different recognition mechanisms of Cu-Ru MPNZ to toxic o- and m-aminophenol isomers were proposed for the first time as far as we known. This work will provide a potential way to monitor different organic isomer pollution in future.
Collapse
Affiliation(s)
- Zhengquan Yan
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China.
| | - Xuemei Zhou
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Lingmin Kong
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Wenjing Xu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Junkai Hao
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Shuo Sun
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Jing Feng
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Huitian Zhi
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Xiao Zhu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Lei Hu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China.
| |
Collapse
|
17
|
Sehrish A, Manzoor R, Lu Y. Ultrathin porous PdCu metallenezymes as oxidase mimics for colorimetric analysis. Mikrochim Acta 2023; 191:13. [PMID: 38081983 DOI: 10.1007/s00604-023-06102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Ultrathin porous and highly curved two-dimensional PdCu alloy metallene are shown to be highly efficient oxidase mimics. Serving as intrinsic oxidase mimic, the ultrathin porous structure of the PdCu metallenezymes could effectively utilize all the Pd atoms of the metallenezymes during catalytic reactions. By using the oxidation capability of 3,3'5,5'-tetramethylbenzidine as distinctive chromogenic substrate, the PdCu metallenezymes was used as oxidase-like mimics for determination of total antioxidant capacity (TAC) of vitamin C containing real products including fresh orange juice, commercial beverages, Vitamin C tablets and dermo-cosmetic products. AAP was hydrolyzed using ALP to generate AA and the corresponding ALP activity was successfully detected in the 0-100 U/L range with a lowest detection limit of 0.9 U/L. This study demonstrates the significant catalytic performance and oxidase-like activity of PdCu metallene nanozyme providing a strategy to develop a TAC assay for the assessment of antioxidant food quality as well as oxidative stress in skin and health care products.
Collapse
Affiliation(s)
- Aniqa Sehrish
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Romana Manzoor
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
18
|
Chen Y, Liang J, Tan X, Shan L, Zhang L, Li L, Ge S, Cui K, Yu J. Constructing DNAzyme-driven three-dimensional DNA nanomachine-mediated paper-based photoelectrochemical device for ultrasensitive detection of miR-486-5p. Biosens Bioelectron 2023; 241:115671. [PMID: 37714060 DOI: 10.1016/j.bios.2023.115671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
As a unique class of dynamic nanostructures, biomimetic DNA walking machines that exhibit geometrical complexity and nanometre precision have gained great success in photoelectrochemical (PEC) bioanalysis. Despite certain achievements, the slow reaction kinetics and low processivity severely restrict the amplification efficiency of the DNA walker-mediated biosensors. Herein, by taking advantage of efficient DNA rolling machines, a three-dimensional (3D) DNA nanomachine-mediated paper-based PEC device for speedy ultrasensitive detection of miR-486-5p was successfully constructed. To achieve it, a novel In2S3/SnS2 sensitized heterojunction was firstly in-situ grown on the Au-modified paper fibers and implemented as the photoanode with effective separation of photogenerated carriers to achieve an enhanced initial photocurrent. Subsequently, the copper hexacyanoferrate(II)-modified CuO nanosphere was introduced as a multifunctional signal regulator via the competitive capture of electron donors and photon energy with the photoelectric layer for efficiently quenching the PEC signal. With the introduction of targets, the DNAzyme-driven DNA nanomachine with editable motion modes was gradually activated and it could continuously cleave the tracks DNA labeled quenching probes, finally achieving the recovery of PEC signal. As a proof of concept, the elaborated paper-based PEC device presented a wide linear range from 0.1 fM to 100 pM and a detection limit of 35 aM for miR-486-5p bioassay. This work provides an innovative insight to the exploitation of DNA nanobiotechnology and nucleic acid signal amplification strategy.
Collapse
Affiliation(s)
- Yuanyuan Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Jiaxin Liang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Xiaoran Tan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Li Shan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China.
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, PR China
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| |
Collapse
|
19
|
Chang TW, Wang SH, Chin IS, Li PZ, Lo SC, Hsieh SY, Lin JH, Wei PK. Biomimetic affinity sensor for the ultrasensitive detection of neonicotinoids. Biosens Bioelectron 2023; 239:115630. [PMID: 37634420 DOI: 10.1016/j.bios.2023.115630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Multiple pesticides are often used in combination to protect crops from pests. This makes rapid on-site detection of pesticide contamination challenging. Herein, we describe a method for simultaneous detection of diverse neonicotinoid pesticides using a sensor that combines neonicotinoid-specific odorant-binding protein 2 (OBP2), which was cloned from an insect chemical sensing protein and modified gold nanoparticles with local surface plasmon resonance (LSPR)-based digital nanoplasmonometry (DiNM). When neonicotinoid pesticides bind to OBP2 on gold nanoparticles, the induced LSPR shift peak wavelength is too small to be measured using conventional LSPR immunoassays. DiNM records and compares the scattered image intensity in two adjacent wavelength bands, A and B, centered on the LSPR peak. It considers both the peak shift and the relative intensity change in these two bands, resulting in a significant LSPR signal enhancement. Then the spectral-image contrast was computed as the signal response. Using this approach, we obtained excellent limits of detection (LODs) of 1.4, 1.5, and 4.5 ppb for the neonicotinoids imidacloprid, acetamiprid, and dinotefuran, respectively. Blind tests demonstrated high positive and negative rates for teas, approximately 85 and 100%, respectively. Recombinant OBP2 produced in E. coli offers several advantages over antibodies, including high yield, time savings, and cost effectiveness. Moreover, this method is highly selective and sensitive to neonicotinoids, making it practical for field use.
Collapse
Affiliation(s)
- Ting-Wei Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Sheng-Hann Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Iuan-Sheau Chin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Pei-Zhen Li
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Cheng Lo
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Yi Hsieh
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jung-Hsin Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
20
|
Sehrish A, Manzoor R, Wu S, Lu Y. Ultrathin porous Pd metallene as highly efficient oxidase mimics for the colorimetric detection of chromium (VI). Anal Bioanal Chem 2023; 415:6063-6075. [PMID: 37522919 DOI: 10.1007/s00216-023-04879-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Palladium (Pd)-based nanomaterials are the emerging class of catalysts with individual physiochemical properties. Unlike traditional catalysts, metallenes showed abundant active sites, large surface area, and high atomic utilization. Based on these benefits, we demonstrate a highly active 2D graphene-like Pd metallene with abundant accessible active sites serving as a highly efficient oxidase mimic. The structure and morphology of Pd metallenezymes were controlled to enhance the catalytic performance and to efficiently utilize all the Pd atoms. Pd metallenezymes with excellent oxidase-like activity were successfully applied for colorimetric-based chromium (VI) (Cr(VI)) detection in a real environment. 3,3',5,5'-Tetramethylbenzidine (TMB) was used as a typical chromogenic substrate catalyzed by Pd metallene to show that blue oxidized TMB (ox TMB) was significantly reduced to colorless TMB by the reducing agent 8-hydroxyquinoline (8-HQ). The reaction process was impressively reversed by the addition of Cr(VI), which interacted with 8-HQ to restore the blue color of TMB. Based on the above results, a facile and effective colorimetric sensing system for the detection of Cr(VI) with a low detection limit of 2.8 nM was developed and could be successfully applied to the detection of Cr(VI) in a real environment.
Collapse
Affiliation(s)
- Aniqa Sehrish
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Romana Manzoor
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shuzhi Wu
- Shandong Academy of Preventive Medicine, Shandong Center for Disease Control and Prevention, Jinan, 250014, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
21
|
Panferov VG, Zherdev AV, Dzantiev BB. Post-Assay Chemical Enhancement for Highly Sensitive Lateral Flow Immunoassays: A Critical Review. BIOSENSORS 2023; 13:866. [PMID: 37754100 PMCID: PMC10526817 DOI: 10.3390/bios13090866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Lateral flow immunoassay (LFIA) has found a broad application for testing in point-of-care (POC) settings. LFIA is performed using test strips-fully integrated multimembrane assemblies containing all reagents for assay performance. Migration of liquid sample along the test strip initiates the formation of labeled immunocomplexes, which are detected visually or instrumentally. The tradeoff of LFIA's rapidity and user-friendliness is its relatively low sensitivity (high limit of detection), which restricts its applicability for detecting low-abundant targets. An increase in LFIA's sensitivity has attracted many efforts and is often considered one of the primary directions in developing immunochemical POC assays. Post-assay enhancements based on chemical reactions facilitate high sensitivity. In this critical review, we explain the performance of post-assay chemical enhancements, discuss their advantages, limitations, compared limit of detection (LOD) improvements, and required time for the enhancement procedures. We raise concerns about the performance of enhanced LFIA and discuss the bottlenecks in the existing experiments. Finally, we suggest the experimental workflow for step-by-step development and validation of enhanced LFIA. This review summarizes the state-of-art of LFIA with chemical enhancement, offers ways to overcome existing limitations, and discusses future outlooks for highly sensitive testing in POC conditions.
Collapse
Affiliation(s)
- Vasily G. Panferov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
| |
Collapse
|
22
|
Wang J, Zhang D, Wang D, Xu Z, Zhang H, Chen X, Wang Z, Xia H, Cai H. Efficient Fabrication of TPU/MXene/Tungsten Disulfide Fibers with Ultra-Fast Response for Human Respiratory Pattern Recognition and Disease Diagnosis via Deep Learning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37946-37956. [PMID: 37523446 DOI: 10.1021/acsami.3c07589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Flexible wearable pressure sensors have received increasing attention as the potential application of flexible wearable devices in human health monitoring and artificial intelligence. However, the complex and expensive process of the conductive filler has limited its practical production and application on a large scale to a certain extent. This study presents a kind of piezoresistive sensor by sinking nonwoven fabrics (NWFs) into tungsten disulfide (WS2) and Ti3C2Tx MXene solutions. With the advantages of a simple production process and practicality, it is conducive to the realization of large-scale production. The assembled flexible pressure sensor exhibits high sensitivity (45.81 kPa-1), wide detection range (0-410 kPa), fast response/recovery time (18/36 ms), and excellent stability and long-term durability (up to 5000 test cycles). Because of the high elastic modulus of MXene and the synergistic effect between WS2 and MXene, the detection range and sensitivity of the piezoresistive pressure sensor are greatly improved, realizing the stable detection of human motion status in all directions. Meanwhile, its high sensitivity at low pressure allows the sensor to accurately detect weak signals such as weak airflow and wrist pulses. In addition, combining the sensor with deep-learning makes it easy to recognize human respiratory patterns with high accuracy, demonstrating its potential impact in the fields of ergonomics and low-cost flexible electronics.
Collapse
Affiliation(s)
- Jun Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongyue Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhenyuan Xu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hao Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoya Chen
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zihu Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hui Xia
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Haolin Cai
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
23
|
Zhao F, Wang L, Li M, Wang M, Liu G, Ping J. Nanozyme-based biosensor for organophosphorus pesticide monitoring: Functional design, biosensing strategy, and detection application. Trends Analyt Chem 2023; 165:117152. [DOI: 10.1016/j.trac.2023.117152] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
|
24
|
Chen M, Qiu Q, Qileng A, Shen H, Liu W, Liu Y. Efficient Nanozyme-Triggered Pressure Sensor for Point-of-Care Immunoassay: Visual Sensing and Time Readout Device. Anal Chem 2023; 95:11383-11390. [PMID: 37458998 DOI: 10.1021/acs.analchem.3c01547] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Point-of-care testing (POCT), with its portability and high sensitivity, is an analytical device for rapid on-site sensing and detection. In this study, a POCT device was designed for the portable detection of illegal additives by integrating a coil device that can visually sense color distance and a two-electrode electrochemical system. Real-time monitoring of pressure changes was achieved by driving CeO2@Pt/Au nanoparticle (NP)-labeled antibodies into a competitive immunoreaction, in which CeO2 and Pt/Au synergistically catalyzed the production of large amounts of O2 from H2O2, leading to a significant increase in gas within the closed chamber. Attractively, the coil device converted the pressure stimulus into visually readable change in distance for semi-quantitative detection of the target substance, while the electrical signal output caused by the changes of the solution around the electrodes achieved accurate and reliable quantification of the target. In addition, the proposed dual-mode pressure immunoassay device has acceptable selectivity, stability, and reproducibility. Herein, this portable device, which enables target concentration readings by converting pressure into multiple signals, provides an effective way to visualize POCT assays in resource-limited areas.
Collapse
Affiliation(s)
- Mengting Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qiqian Qiu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Aori Qileng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Haoran Shen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Weipeng Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
25
|
Keoingthong P, Xu Y, Li S, Xu J, Zhang L, Chen Z, Tan W. Highly Active CoRh Graphitic Nanozyme for Colorimetric Sensing in Real Samples. J Phys Chem B 2023. [PMID: 37290092 DOI: 10.1021/acs.jpcb.3c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rh-based nanozymes show high catalytic efficiency, specific surface area, good stability, and unique physicochemical properties, while magnetic nanozymes facilitate the magnetic separation of detection samples under an external magnetic field for improved sensitivity. However, magnetic Rh nanozymes, especially those with excellent stability, have not been reported. Herein, we apply the chemical vapor deposition (CVD) method to prepare a CoRh graphitic nanozyme (termed as CoRh@G nanozyme), which structurally consists of CoRh nanoalloy encapsulated by a few layers of graphene for sensitive colorimetric sensing applications. The proposed CoRh@G nanozyme has superior peroxidase (POD)-like activity, and it shows higher affinity of the CoRh@G nanozyme than horseradish peroxidase (HRP) toward 3,3',5,5'-tetramethylbenzydine (TMB) oxidation. In addition, the CoRh@G nanozyme shows high durability and superior recyclability owing to its protective graphitic shell. The outstanding merits of the CoRh@G nanozyme allow its use for quantitative colorimetric detection of dopamine (DA) and ascorbic acid (AA), showing high sensitivity and good selectivity. Moreover, it shows satisfactory performance for AA detection in commercial beverages and energy drinks. The proposed CoRh@G nanozyme-based colorimetric sensing platform shows great promise in point-of-care (POC) visual monitoring.
Collapse
Affiliation(s)
- Phouphien Keoingthong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Yiting Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Jieqiong Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Liang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| |
Collapse
|
26
|
Peng B, Wu X, Zhang C, Zhang C, Lan L, Ping J, Ying Y. In-Time Detection of Plant Water Status Change by Self-Adhesive, Water-Proof, and Gas-Permeable Electrodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19199-19208. [PMID: 37022351 DOI: 10.1021/acsami.3c01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Leaf capacitance can reflect plant water content. However, the rigid electrodes used in leaf capacitance monitoring may affect plant health status. Herein, we report a self-adhesive, water-proof, and gas-permeable electrode fabricated by in situ electrospinning of a polylactic acid nanofiber membrane (PLANFM) on a leaf, spraying a layer of the carbon nanotube membrane (CNTM) on PLANFM, and in situ electrospinning of PLANFM on CNTM. The electrodes could be self-adhered to the leaf via electrostatic adhesion due to the charges on PLANFM and the leaf, thus forming a capacitance sensor. Compared with the electrode fabricated by a transferring approach, the in situ fabricated one did not show obvious influence on plant physiological parameters. On that basis, a wireless leaf capacitance sensing system was developed, and the change of plant water status was detected in the first day of drought stress, which was much earlier than direct observation of the plant appearance. This work paved a useful way to realize noninvasive and real-time detection of stress using plant wearable electronics.
Collapse
Affiliation(s)
- Bo Peng
- Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xinyue Wu
- Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chi Zhang
- Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chao Zhang
- Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lingyi Lan
- Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, People's Republic of China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, People's Republic of China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, People's Republic of China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, People's Republic of China
| |
Collapse
|
27
|
Anticancer polypyrrole-polyethylenimine drug-free nanozyme for precise B-cell lymphoma therapy. Biomed Pharmacother 2023; 160:114397. [PMID: 36796279 DOI: 10.1016/j.biopha.2023.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
As an alternative strategy for cancer treatment, the combination of cancer nanomedicine and immunotherapy is promising with regard to efficacy and safety; however, precise modulation of the activation of antitumor immunity remains challenging. Therefore, the aim of the present study was to describe an intelligent nanocomposite polymer immunomodulator, drug-free polypyrrole-polyethyleneimine nanozyme (PPY-PEI NZ), which responds to the B-cell lymphoma tumor microenvironment, for precision cancer immunotherapy. Earlier engulfment of PPY-PEI NZs in an endocytosis-dependent manner resulted in rapid binding in four different types of B-cell lymphoma cells. The PPY-PEI NZ effectively suppressed B cell colony-like growth in vitro accompanied by cytotoxicity via apoptosis induction. During PPY-PEI NZ-induced cell death, mitochondrial swelling, loss of mitochondrial transmembrane potential (MTP), downregulation of antiapoptotic proteins, and caspase-dependent apoptosis were observed. Deregulated AKT and ERK signaling contributed to glycogen synthase kinase-3-regulated cell apoptosis following deregulation of Mcl-1 and MTP loss. Additionally, PPY-PEI NZs induced lysosomal membrane permeabilization while inhibiting endosomal acidification, partly protecting cells from lysosomal apoptosis. PPY-PEI NZs selectively bound and eliminated exogenous malignant B cells in a mixed culture system with healthy leukocytes ex vivo. While PPY-PEI NZs showed no cytotoxicity in wild-type mice, they provided long-term and efficient inhibition of the growth of B-cell lymphoma-driven nodules in a subcutaneous xenograft model. This study explores a potential PPY-PEI NZ-based anticancer agent against B-cell lymphoma.
Collapse
|
28
|
Zhao X, Zhao S, Zhang X, Su Z. Recent progress in flexible pressure sensors based on multiple microstructures: from design to application. NANOSCALE 2023; 15:5111-5138. [PMID: 36852534 DOI: 10.1039/d2nr06084a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flexible pressure sensors (FPSs) have been widely studied in the fields of wearable medical monitoring and human-machine interaction due to their high flexibility, light weight, sensitivity, and easy integration. To better meet these application requirements, key sensing properties such as sensitivity, linear sensing range, pressure detection limits, response/recovery time, and durability need to be effectively improved. Therefore, researchers have extensively and profoundly researched and innovated on the structure of sensors, and various microstructures have been designed and applied to effectively improve the sensing performance of sensors. Compared with single microstructures, multiple microstructures (MMSs) (including hierarchical, multi-layered and hybrid microstructures) can improve the sensing performance of sensors to a greater extent. This paper reviews the recent research progress in the design and application of FPSs with MMSs and systematically summarizes the types, sensing mechanisms, and preparation methods of MMSs. In addition, we summarize the applications of FPSs with MMSs in the fields of human motion detection, health monitoring, and human-computer interaction. Finally, we provide an outlook on the prospects and challenges for the development of FPSs.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Shujing Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
29
|
Zhang J, Chen H, Liu J, Gui J, Liu M, Zhang Y, Yao S. The target-induced redox and diazotized reaction for colorimetric ratio detection of nitrite using CoOOH nanosheets as mimetic oxidase. Talanta 2023; 258:124458. [PMID: 36934661 DOI: 10.1016/j.talanta.2023.124458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Nitrite is a commonly used food additive and water contaminant that has received widespread attention due to its harmful effects on humans. Here, a colorimetric ratio sensing platform for the detection of nitrite in foods as well as aquatic systems was developed via the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by CoOOH nanosheets (CoOOH NSs). Interestingly, in the presence of nitrite, TMB complexes in acidic environments can be oxidized and diazotized to produce yellow oxidized TMB (oxTMB) and diazotized TMB, resulting in the nitrite concentration-dependent ratio variation for the absorbance peaks at 655 and 450 nm (A655/A450). The colorimetric ratio sensing offers higher sensitivity and better selectivity compared to conventional detection methods because of the specific target-induced reduction-oxidation and diazotized reaction, as well as the excellent mimetic oxidase activity of CoOOH NSs. Based on this strategy, a smartphone-assisted portable approach was designed for the in-situ/visual detection of nitrite, which has good application prospects.
Collapse
Affiliation(s)
- Jianan Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Haoyu Chen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Jing Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Jialing Gui
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
30
|
Yang X, Li X, He Q, Ding Y, Luo B, Xie Q, Chen J, Hu Y, Su Z, Qin X. One-step synthesis of triethanolamine-capped Pt nanoparticle for colorimetric and electrochemiluminescent immunoassay of SARS-CoV spike proteins. Microchem J 2023; 186:108329. [PMID: 36590823 PMCID: PMC9789547 DOI: 10.1016/j.microc.2022.108329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Platinum nanoparticles (PtNPs) have been attracted worldwide attention due to their versatile application potentials, especially in the catalyst and sensing fields. Herein, a facile synthetic method of triethanolamine (TEOA)-capped PtNPs (TEOA@PtNP) for electrochemiluminescent (ECL) and colorimetric immunoassay of SARS-CoV spike proteins (SARS-CoV S-protein, a target detection model) is developed. Monodisperse PtNPs with an average diameter of 2.2 nm are prepared by a one-step hydrothermal synthesis method using TEOA as a green reductant and stabilizer. TEOA@PtNPs can be used as a nanocarrier to combine with antigen by the high-affinity antibody, which leads to a remarkable inhibition of electron transfer efficiency and mass transfer processes. On the basis of its peroxidase-like activity and easy-biolabeling property, the TEOA@PtNP can be used to establish a colorimetric immunosensor of SARS-CoV S-protein thought catalyzing the reaction of H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB). Especially, the Ru(bpy)3 2+ ECL reaction is well-achieved with the TEOA@PtNPs due to their great conductivity and loading abundant TEOA co-reactants, resulting in an enhancing ECL signal in immunoassay of SARS-CoV S-protein. As a consequence, two proposed methods could achieve sensitive detection of SARS-CoV S-protein in wide ranges, the colorimetric and ECL detection limits were as low as 8.9 fg /mL and 4.2 fg /mL (S/N = 3), respectively. We believe that the proposed colorimetric and ECL immunosesors with high sensitivity, good reproducibility, and good stability will be a promising candidate for a broad spectrum of applications.
Collapse
Affiliation(s)
- Xiaolan Yang
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Xiangyu Li
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Qingguo He
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Yanbin Ding
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Bin Luo
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Qiuju Xie
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Jiahao Chen
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Yue Hu
- Bairuopu Town Center Health Center, Changsha 410206, China
| | - Zhaohong Su
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoli Qin
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
31
|
Li Z, Liu F, Chen C, Jiang Y, Ni P, Song N, Hu Y, Xi S, Liang M, Lu Y. Regulating the N Coordination Environment of Co Single-Atom Nanozymes for Highly Efficient Oxidase Mimics. NANO LETTERS 2023; 23:1505-1513. [PMID: 36734468 DOI: 10.1021/acs.nanolett.2c04944] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single-atom catalysts with well-defined atomic structures and precisely regulated coordination environments have been recognized as potential substitutes for natural metalloenzymes. Inspired by the metal coordination structure of natural enzymes, we show here that the oxidase-like activity of single-atom Co catalysts greatly depends on their local N coordination around the Co catalytic sites. We synthesized a series of Co single-atom catalysts with different nitrogen coordination numbers (Co-Nx(C), x = 2, 3, and 4) and demonstrated that the oxidase-like activity of single-atom Co catalysts could be effectively tailored by fine-tuning the N coordination. Among the studied single-atom Co catalysts, the Co-N3(C) with three-coordinate N atoms shows the optimum oxygen adsorption structure and robust reactive oxygen species (ROS) generation, thus presenting the preferable oxidase-like catalytic activity. This work facilitates the future development of rational nanozyme designs for targeting reactions at the atomic level.
Collapse
Affiliation(s)
- Zhe Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fangning Liu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Pengjuan Ni
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Ningning Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Hu
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
32
|
Borges MHR, Nagay BE, Costa RC, Souza JGS, Mathew MT, Barão VAR. Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. Adv Colloid Interface Sci 2023; 314:102860. [PMID: 36931199 DOI: 10.1016/j.cis.2023.102860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Polypyrrole (PPy) is one of the most studied conductive polymers due to its electrical conductivity and biological properties, which drive the possibility of numerous applications in the biomedical area. The physical-chemical features of PPy allow the manufacture of biocompatible devices, enhancing cell adhesion and proliferation. Furthermore, owing to the electrostatic interactions between the negatively charged bacterial cell wall and the positive charges in the polymer structure, PPy films can perform an effective antimicrobial activity. PPy is also frequently associated with biocompatible agents and antimicrobial compounds to improve the biological response. Thus, this comprehensive review appraised the available evidence regarding the PPy-based films deposited on metallic implanted devices for biomedical applications. We focus on understanding key concepts that could influence PPy attributes regarding antimicrobial effect and cell behavior under in vitro and in vivo settings. Furthermore, we unravel the several agents incorporated into the PPy film and strategies to improve its functionality. Our findings suggest that incorporating other elements into the PPy films, such as antimicrobial agents, biomolecules, and other biocompatible polymers, may improve the biological responses. Overall, the basic properties of PPy, when combined with other composites, electrostimulation techniques, or surface treatment methods, offer great potential in biocompatibility and/or antimicrobial activities. However, challenges in synthesis standardization and potential limitations such as low adhesion and mechanical strength of the film must be overcome to improve and broaden the application of PPy film in biomedical devices.
Collapse
Affiliation(s)
- Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, Sāo Paulo 07023-070, Brazil; Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| | - Mathew T Mathew
- Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL 61107, USA
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil.
| |
Collapse
|
33
|
Zhang X, Tan X, Wang P, Qin J. Application of Polypyrrole-Based Electrochemical Biosensor for the Early Diagnosis of Colorectal Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:674. [PMID: 36839042 PMCID: PMC9967576 DOI: 10.3390/nano13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Although colorectal cancer (CRC) is easy to treat surgically and can be combined with postoperative chemotherapy, its five-year survival rate is still not optimistic. Therefore, developing sensitive, efficient, and compliant detection technology is essential to diagnose CRC at an early stage, providing more opportunities for effective treatment and intervention. Currently, the widely used clinical CRC detection methods include endoscopy, stool examination, imaging modalities, and tumor biomarker detection; among them, blood biomarkers, a noninvasive strategy for CRC screening, have shown significant potential for early diagnosis, prediction, prognosis, and staging of cancer. As shown by recent studies, electrochemical biosensors have attracted extensive attention for the detection of blood biomarkers because of their advantages of being cost-effective and having sound sensitivity, good versatility, high selectivity, and a fast response. Among these, nano-conductive polymer materials, especially the conductive polymer polypyrrole (PPy), have been broadly applied to improve sensing performance due to their excellent electrical properties and the flexibility of their surface properties, as well as their easy preparation and functionalization and good biocompatibility. This review mainly discusses the characteristics of PPy-based biosensors, their synthetic methods, and their application for the detection of CRC biomarkers. Finally, the opportunities and challenges related to the use of PPy-based sensors for diagnosing CRC are also discussed.
Collapse
|
34
|
Long Q, Zhang Y, Zhang Q, Xu K, Cao L. Application of poly (dimethyl diallyl ammonium chloride) −reinforced multifunctional poly (vinyl alcohol)/ polyaniline hydrogels as flexible sensor materials. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Li Y, Wei Y, Yang Y, Zheng L, Luo L, Gao J, Jiang H, Song J, Xu M, Wang X, Huang W. The Soft-Strain Effect Enabled High-Performance Flexible Pressure Sensor and Its Application in Monitoring Pulse Waves. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0002. [PMID: 39290969 PMCID: PMC11407520 DOI: 10.34133/research.0002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 09/19/2024]
Abstract
Flexible and wearable pressure sensors attached to human skin are effective and convenient in accurate and real-time tracking of various physiological signals for disease diagnosis and health assessment. Conventional flexible pressure sensors are constructed using compressible dielectric or conductive layers, which are electrically sensitive to external mechanical stimulation. However, saturated deformation under large compression significantly restrains the detection range and sensitivity of such sensors. Here, we report a novel type of flexible pressure sensor to overcome the compression saturation of the sensing layer by soft-strain effect, enabling an ultra-high sensitivity of ~636 kPa-1 and a wide detection range from 0.1 kPa to 56 kPa. In addition, the cyclic loading-unloading test reveals the excellent stability of the sensor, which maintains its signal detection after 10,000 cycles of 10 kPa compression. The sensor is capable of monitoring arterial pulse waves from both deep tissue and distal parts, such as digital arteries and dorsal pedal arteries, which can be used for blood pressure estimation by pulse transit time at the same artery branch.
Collapse
Affiliation(s)
- Yue Li
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuan Wei
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yabao Yang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lei Luo
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiuwei Gao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hanjun Jiang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Juncai Song
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Manzhang Xu
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
36
|
Zhen Y, Reddy VS, Ramasubramanian B, Ramakrishna S. Three-dimensional AgNps@Mxene@PEDOT:PSS composite hybrid foam as a piezoresistive pressure sensor with ultra-broad working range. JOURNAL OF MATERIALS SCIENCE 2022; 57:21960-21979. [PMID: 36530848 PMCID: PMC9734898 DOI: 10.1007/s10853-022-08012-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Piezoresistive pressure sensors are becoming increasingly popular for their applications in human motion detection, wearable electronics, health monitoring, and man-machine interfaces. Sensors with superior sensitivity and a broad range of sensing are desirable for practical implementation. To achieve those, a low-cost, scalable and simple fabrication technique of dip coating Ti3C2 (MXene), PEDOT:PSS, and AgNPs onto a melamine foam is proposed. The prepared sensor demonstrated sensitivity of 414.27 kPa-1 at (4.17-12.98 kPa), 182.52 kPa-1 at (12.98-94.55 kPa), 317.78 kPa-1 at (94.55 kPa-1.94 MPa), 164.32 kPa-1 at (> 1.94 MPa), extraordinaire detecting range 977.6 N and outstanding repeatability. The sensor was successfully applied for the real-time detection of heartbeat pulse, limb movement, human weight and powered an LED. Furthermore, an integrated circuit design with sensors had the ability to identify spatial pressure distribution and visualize it on a pressure map. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10853-022-08012-y.
Collapse
Affiliation(s)
- Ye Zhen
- Department of Mechanical Engineering, Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 119260 Singapore
| | - Vundrala Sumedha Reddy
- Department of Mechanical Engineering, Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 119260 Singapore
| | - Brindha Ramasubramanian
- Department of Mechanical Engineering, Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 119260 Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 119260 Singapore
| |
Collapse
|
37
|
Wang X, Liao X, Zhang B, Chen S, Zhang M, Mei L, Zhang L, Qiao X, Hong C. Fabrication of a novel electrochemical immunosensor for the sensitive detection of carcinoembryonic antigen using a double signal attenuation strategy. Anal Chim Acta 2022; 1232:340455. [DOI: 10.1016/j.aca.2022.340455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/01/2022]
|
38
|
Ma W, Liu M, Xie S, Liu B, Jiang L, Zhang X, Yuan X. CRISPR/Cas12a system responsive DNA hydrogel for label-free detection of non-glucose targets with a portable personal glucose meter. Anal Chim Acta 2022; 1231:340439. [DOI: 10.1016/j.aca.2022.340439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/01/2022]
|
39
|
Hou N, Zhao Y, Jiang R, Nie L, Yang J, Wang Y, Li L, Li X, Zhang W. Flexible piezoresistive sensor based on surface modified dishcloth fibers for wearable electronics device. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Mishra S, Mohanty S, Ramadoss A. Functionality of Flexible Pressure Sensors in Cardiovascular Health Monitoring: A Review. ACS Sens 2022; 7:2495-2520. [PMID: 36036627 DOI: 10.1021/acssensors.2c00942] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
As the highest percentage of global mortality is caused by several cardiovascular diseases (CVD), maintenance and monitoring of a healthy cardiovascular condition have become the primary concern of each and every individual. Simultaneously, recent progress and advances in wearable pressure sensor technology have provided many pathways to monitor and detect underlying cardiovascular illness in terms of irregularities in heart rate, blood pressure, and blood oxygen saturation. These pressure sensors can be comfortably attached onto human skin or can be implanted on the surface of vascular grafts for uninterrupted monitoring of arterial blood pressure. While the traditional monitoring systems are time-consuming, expensive, and not user-friendly, flexible sensor technology has emerged as a promising and dynamic practice to collect important health information at a comparatively low cost in a reliable and user-friendly way. This Review explores the importance and necessity of cardiovascular health monitoring while emphasizing the role of flexible pressure sensors in monitoring patients' health conditions to avoid adverse effects. A comprehensive discussion on the current research progress along with the real-time impact and accessibility of pressure sensors developed for cardiovascular health monitoring applications has been provided.
Collapse
Affiliation(s)
- Suvrajyoti Mishra
- School for Advanced Research in Petrochemicals: Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bhubaneswar-751024, India
| | - Smita Mohanty
- School for Advanced Research in Petrochemicals: Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bhubaneswar-751024, India
| | - Ananthakumar Ramadoss
- School for Advanced Research in Petrochemicals: Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bhubaneswar-751024, India
| |
Collapse
|
41
|
Yang J, He J, Mi L, Han F, Wen W, Zhang X, Wang S, Wu Z. Magnetic Rolling Circle Amplification-Assisted Single-Particle Collision Immunosensor for Ultrasensitive Detection of Cardiac Troponin I. Anal Chem 2022; 94:12514-12522. [PMID: 36049116 DOI: 10.1021/acs.analchem.2c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Owing to its simplicity, high throughput, and ultrasensitivity, single-particle collision electrochemistry (SPCE) has attracted great attention in biosensing, especially labeled SPCE. However, the low signal conversion efficiency and much interference from complex samples limit its wide application. Here, a new and robust SPCE immunosensor was proposed for ultrasensitive cardiac troponin I (cTnI) detection by combining target-driven rolling circle amplification (RCA) with magnetic beads (MBs). Antibody-modified MBs have good stability, dispersity, and magnetic response capacity in complex samples, enabling efficient capture and separation of cTnI with high specificity and anti-interference ability. The presence of cTnI could specifically drive the formation of magnetic immunocomplexes followed by triggering RCA and enzyme digestion reaction. By using Pt nanoparticles (Pt NPs)-modified ssDNA as signal probes, one cTnI molecule could induce the release of 4.5 × 104 Pt NPs for collision experiments, greatly enhancing signal conversion efficiency and detection sensitivity. Based on the integration of MBs with RCA, the SPCE immunosensor realized 0.57 fg/mL cTnI detection with a wide linear range of 1 fg/mL to 50 ng/mL. Furthermore, cTnI detection in serum samples of myocardial infarction patients was successfully performed, demonstrating great application prospect of the SPCE immunosensor in clinical diagnosis.
Collapse
Affiliation(s)
- Jie Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Juan He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Long Mi
- Department of Radiology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Feng Han
- Department of Radiology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
42
|
Meng J, Shen H, Chen J, Shen X, Xu Z, Wang J, Liu Y, Xu ZL. Development of Cu-doped CeO 2 nanospheres mimic nanozyme-based immunoassay for the specific screening of Bacillus cereus. Mikrochim Acta 2022; 189:312. [PMID: 35920920 DOI: 10.1007/s00604-022-05415-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/10/2022] [Indexed: 11/27/2022]
Abstract
Due to the highly similar genetic background, it is difficult to distinguish Bacillus cereus (B. cereus) with other members of B. cereus group. Herein, an antibody-based colorimetric immunoassay using Cu-doped CeO2 nanospheres as peroxidase mimics was developed for the detection of B. cereus in food. First, monoclonal antibodies (mAbs) and polyclonal antibody (pAb) with good specificity to B. cereus were prepared and characterized. Second, the regular-shaped hollow Cu/CeO2 nanospheres with highly catalytic activity and biocompatibility were synthesized as mimic nanozymes to capture secondary antibody. Finally, a sandwich colorimetric immunoassay for the specific and sensitive detection of B. cereus was developed, showing linear detection range from 3.2 × 102 to 1 × 105 CFU/mL and a limit detection of 1.7 × 102 CFU/mL. The developed immunoassay holds great potential as an effective tool for detecting B. cereus in food poisoning.
Collapse
Affiliation(s)
- Jingnan Meng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Haoran Shen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Jialin Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zeke Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
43
|
Khoris IM, Kenta T, Ganganboina AB, Park EY. Pt-embodiment ZIF-67-derived nanocage as enhanced immunoassay for infectious virus detection. Biosens Bioelectron 2022; 215:114602. [PMID: 35940003 DOI: 10.1016/j.bios.2022.114602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022]
Abstract
A facile and general strategy has been employed to develop highly-active nanozyme for immunoassay purposes. The hollow nanostructure of the Co3O4 nanocages (NCs) was anchoring the platinum nanoparticles (PtNPs) enclosed by the exposed oxides framework nd formed PtNPs@Co3O4 NCs. The embodiment of PtNPs was considered an ideal hybrid nanozyme that efficiently catalyzed the oxidation of the substrate molecules with enhanced activity. The PtNPs@Co3O4 NCs were revisited and repurposed on showing its nanozyme's activity with optimization done for the immunoassay platform. The embodiment of 32.44% Pt in the hollow nanostructures demonstrated the highest signal-to-noise responses in the immunoassay. In addition, the stepwise analysis highlighted the enhancement factor of the nanocages' catalytic mechanism. Based on their catalytic activity, these nanocages have been demonstrated to enable sub-femtogram level biosensing of norovirus-like particles (NoV-LPs) with highly selective signals in the capture-detect immunoassay format. The detection limit of the prepared immunoassay achieved 33.52 viral NoV copies/mL of the detection limit, which is 321-folds lower magnitude of the commercial ELISA. This nanocage's enhanced synergic catalytic properties could have great potential applications, including catalysis, biological labeling, and bioassays.
Collapse
Affiliation(s)
- Indra Memdi Khoris
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan
| | - Tsuruga Kenta
- Department of Applied Biological Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan
| | - Akhilesh Babu Ganganboina
- International Center for Young Scientists ICYS-NAMIKI, National Institute for Materials Science, 1-2-1 Sengen Tsukuba City, Ibaraki, 305-0047, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan; Department of Applied Biological Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
44
|
Tian M, Zhao L, Wang Y, Liu G, Zhang P. Determination of Glucose by the Catalysis of Luminol Chemiluminescence Using One-Step Synthesized Platinum/Silver Nanoparticles as a Peroxidase Mimetic. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2096626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Miaomiao Tian
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun, Jilin Province, China
| | - Liping Zhao
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun, Jilin Province, China
| | - Ya Wang
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun, Jilin Province, China
| | - Gang Liu
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun, Jilin Province, China
| | - Peng Zhang
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun, Jilin Province, China
| |
Collapse
|
45
|
Enzyme-Mimetic nano-immunosensors for amplified detection of food hazards: Recent advances and future trends. Biosens Bioelectron 2022; 217:114577. [DOI: 10.1016/j.bios.2022.114577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 01/15/2023]
|
46
|
Yu Z, Gong H, Gao Y, Li L, Xue F, Zeng Y, Li M, Liu X, Tang D. Integrated Photothermal-Pyroelectric Biosensor for Rapid and Point-of-Care Diagnosis of Acute Myocardial Infarction: A Convergence of Theoretical Research and Commercialization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202564. [PMID: 35775906 DOI: 10.1002/smll.202202564] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/31/2022] [Indexed: 01/23/2025]
Abstract
Acute myocardial infarction (AMI) survivors face a high risk of mortality as a result of increasing heart failure and irreparable myocardial injury. New portable methods for immediate diagnosis must be developed to provide patients with daily warnings. Herein, the development of a dual-mode photothermal-pyroelectric output system based on a point-of-care platform for rapid AMI detection is reported. Termed as Integrated Photothermal-Pyroelectric Biosensor for AMI (IPPBA), the method leverages cascade enzymatic amplification to convert the target signal into a thermal and pyrooelectric conversion of the testing process by delicate pyroelectric pervokite NaNbO3 nanocubes modified microelectrodes for sensitive detection of cTnI protein in whole blood. In addition, the mechanism of the proposed pyroelectric bioassay model is explored in depth based on in situ variable temperature X-ray diffraction (XRD) lattice change statistics and density function theory (DFT) calculations. With standard samples and under optimized experimental conditions, the proposed IPPBA platform exhibits excellent signal stability and ultra-low detection limit (0.05 ng mL-1 ) for the target cTn I. With further developments in digital technology (e.g., 5G signaling protocols, fully automated systems), the integrated digital bio-testing platform IPPBA is fully capable of accomplishing positive and timely diagnosis of AMI.
Collapse
Affiliation(s)
- Zhichao Yu
- Key Laboratory for Analytical Science of Food Safety and Biology, Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hexiang Gong
- Key Laboratory for Analytical Science of Food Safety and Biology, Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuan Gao
- Key Laboratory for Analytical Science of Food Safety and Biology, Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Ling Li
- The First Clinical Medical College of Fujian Medical University, Hepatopancreatobiliary Surgery Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - Fangqing Xue
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Meijin Li
- Key Laboratory for Analytical Science of Food Safety and Biology, Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology, Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
47
|
Kinnamon DS, Heggestad JT, Liu J, Chilkoti A. Technologies for Frugal and Sensitive Point-of-Care Immunoassays. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:123-149. [PMID: 35216530 PMCID: PMC10024863 DOI: 10.1146/annurev-anchem-061020-123817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunoassays are a powerful tool for sensitive and quantitative analysis of a wide range of biomolecular analytes in the clinic and in research laboratories. However, enzyme-linked immunosorbent assay (ELISA)-the gold-standard assay-requires significant user intervention, time, and clinical resources, making its deployment at the point-of-care (POC) impractical. Researchers have made great strides toward democratizing access to clinical quality immunoassays at the POC and at an affordable price. In this review, we first summarize the commercially available options that offer high performance, albeit at high cost. Next, we describe strategies for the development of frugal POC assays that repurpose consumer electronics and smartphones for the quantitative detection of analytes. Finally, we discuss innovative assay formats that enable highly sensitive analysis in the field with simple instrumentation.
Collapse
Affiliation(s)
- David S Kinnamon
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Jacob T Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Jason Liu
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| |
Collapse
|
48
|
Zhao X, Li Z, Ding Z, Wang S, Lu Y. Ultrathin porous Pd metallene as highly efficient oxidase mimics for colorimetric analysis. J Colloid Interface Sci 2022; 626:296-304. [DOI: 10.1016/j.jcis.2022.06.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 10/31/2022]
|
49
|
Zhu J, Cui Q, Wen W, Zhang X, Wang S. Cu/CuO-Graphene Foam with Laccase-like Activity for Identification of Phenolic Compounds and Detection of Epinephrine. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2114-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Han Y, Li X, Li X, Zhou Z, Li J. Recognition and Detection of Wide Field Bionic Compound Eye Target Based on Cloud Service Network. Front Bioeng Biotechnol 2022; 10:865130. [PMID: 35445001 PMCID: PMC9014010 DOI: 10.3389/fbioe.2022.865130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
In this paper, a multidisciplinary cross-fusion of bionics, robotics, computer vision, and cloud service networks was used as a research platform to study wide-field bionic compound eye target recognition and detection from multiple perspectives. The current research status of wide-field bionic compound-eye target recognition and detection was analyzed, and improvement directions were proposed. The surface microlens array arrangement was designed, and the spaced surface bionic compound eye design principle cloud service network model was established for the adopted spaced-type circumferential hierarchical microlens array arrangement. In order to realize the target localization of the compound eye system, the content of each step of the localization scheme was discussed in detail. The distribution of virtual spherical targets was designed by using the subdivision of the positive icosahedron to ensure the uniformity of the targets. The spot image was pre-processed to achieve spot segmentation. The energy symmetry-based spot center localization algorithm was explored and its localization effect was verified. A suitable spatial interpolation method was selected to establish the mapping relationship between target angle and spot coordinates. An experimental platform of wide-field bionic compound eye target recognition and detection system was acquired. A super-resolution reconstruction algorithm combining pixel rearrangement and an improved iterative inverse projection method was used for image processing. The model was trained and evaluated in terms of detection accuracy, leakage rate, time overhead, and other evaluation indexes, and the test results showed that the cloud service network-based wide-field bionic compound eye target recognition and detection performs well in terms of detection accuracy and leakage rate. Compared with the traditional algorithm, the correct rate of the algorithm was increased by 21.72%. Through the research of this paper, the wide-field bionic compound eye target recognition and detection and cloud service network were organically provide more technical support for the design of wide-field bionic compound eye target recognition and detection system.
Collapse
|