1
|
Zhang Z, Li J, Cui J, Chen Z, Zhang Z, Deng N, Zeng Y, Zhou Z, Zhou Z. Broadband Microwave Absorption of Nb 2CT x Nanosheets by a One-Step Hydrothermal Method. Inorg Chem 2025; 64:9435-9446. [PMID: 40333236 DOI: 10.1021/acs.inorgchem.4c05411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
As an emerging two-dimensional material, MXene holds great potential as a microwave-absorbing material due to its unique layered structure and flexibly tunable surface functional groups. Therefore, research on surface chemistry and interlayer engineering represents an effective strategy for optimizing the performance of MXene. In this work, we synthesized high-quality Nb2CTx nanosheets via a hydrothermal method. Detailed material characterization techniques have confirmed the synthesis of high-quality niobium-based nanosheets. The interlayer spacing, surface termination, and structural defects of the Nb2CTx nanosheets could be flexibly regulated by adjusting the duration of the hydrothermal etching process. This work reveals the etching time-dependent correlation of the electromagnetic parameters of Nb2CTx. It is noteworthy that the optimal impedance matching and microwave absorption performance were achieved after etching for 96 h, with a minimum reflection loss of -43.4 dB at an ultrathin thickness of 1.3 mm and an effective absorption bandwidth of 4.4 GHz at a thickness of 1.4 mm. This work presents a meaningful route to simultaneously adjust the nanoarchitecture and surface chemistry of MXene for advanced microwave absorption applications.
Collapse
Affiliation(s)
- Zeyang Zhang
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Jun Li
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Juan Cui
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zegeng Chen
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zhengyu Zhang
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Nandong Deng
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yulin Zeng
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zijing Zhou
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zhongxiang Zhou
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
2
|
Liu A, Qiu H, Lu X, Guo H, Hu J, Liang C, He M, Yu Z, Zhang Y, Kong J, Gu J. Asymmetric Structural MXene/PBO Aerogels for High-Performance Electromagnetic Interference Shielding with Ultra-Low Reflection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414085. [PMID: 39629529 DOI: 10.1002/adma.202414085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Indexed: 02/06/2025]
Abstract
Electromagnetic interference (EMI) shielding materials with low electromagnetic (EM) waves reflection characteristics are ideal materials for blocking EM radiation and pollution. Materials with low reflectivity must be constructed using materials with excellent EM waves absorption properties. However, materials simultaneously possessing both low reflectivity and excellent EMI shielding performance remain scarce, consequently, multilayer structures need to be developed. Poly(p-phenylene-2,6-benzobisoxazole) nanofibers (PNF) are prepared by deprotonation. PNF are combined with MXene and heterostructure MXene@Ni prepared by in-situ growth; MXene@Ni/PNF acts as an EM absorption layer while MXene/PNF acts as an EM reflective layer. Finally, (MXene@Ni/PNF)-(MXene/PNF) aerogels are prepared by layer-by-layer freeze-drying based on the layered modular design concept. Experimental characterizations revealed that (MXene@Ni/PNF)-(MXene/PNF) aerogels enable the efficient absorption-reflection-reabsorption of EM waves, effectively eliminating EMI. When the mass ratio of MXene to Ni in MXene@Ni is 1:6 and the mass fraction of MXene in the reflective layer is 80 wt.%, the (MXene@Ni/PNF)-(MXene/PNF) aerogels exhibit excellent EMI shielding performance (71 dB) and a very low reflection coefficient (R = 0.10). Finite element simulations verified that the developed asymmetric structural aerogels achieve high EMI shielding performance with low reflection characteristics. In addition, (MXene@Ni/PNF)-(MXene/PNF) aerogels display excellent infrared camouflage ability.
Collapse
Affiliation(s)
- An Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Xinghan Lu
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Jinwen Hu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Chaobo Liang
- Key Laboratory of Functional Nanocomposites of Shanxi Province, College of Materials Science and Engineering, North University of China, Taiyuan, Shanxi, 030051, P. R. China
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Ze Yu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
3
|
Vojoudi H, Soroush M. Isolation of Biomolecules Using MXenes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415160. [PMID: 39663732 DOI: 10.1002/adma.202415160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Biomolecule isolation is a crucial process in diverse biomedical and biochemical applications, including diagnostics, therapeutics, research, and manufacturing. Recently, MXenes, a novel class of two-dimensional nanomaterials, have emerged as promising adsorbents for this purpose due to their unique physicochemical properties. These biocompatible and antibacterial nanomaterials feature a high aspect ratio, excellent conductivity, and versatile surface chemistry. This timely review explores the potential of MXenes for isolating a wide range of biomolecules, such as proteins, nucleic acids, and small molecules, while highlighting key future research trends and innovative applications poised to transform the field. This review provides an in-depth discussion of various synthesis methods and functionalization techniques that enhance the specificity and efficiency of MXenes in biomolecule isolation. In addition, the mechanisms by which MXenes interact with biomolecules are elucidated, offering insights into their selective adsorption and customized separation capabilities. This review also addresses recent advancements, identifies existing challenges, and examines emerging trends that may drive the next wave of innovation in this rapidly evolving area.
Collapse
Affiliation(s)
- Hossein Vojoudi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Masoud Soroush
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Li J, Zhang W, Ge X, Han W, Wu X, Xu B, Liu HY, Liu X, Wang Y, Lu M, Zheng W. Revealing the Structural Architecture of Anions Confining Mo 2CT x MXene Layers for Robust Li + Storage. NANO LETTERS 2024. [PMID: 39570148 DOI: 10.1021/acs.nanolett.4c02314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Controllable cation preintercalation enables enhancing the electrochemical activity and kinetics of MXenes. However, the electrostatic repulsion between cations and electrolyte ions induces deteriorative electrolyte ion transport kinetics. Herein, by shifting perceptions from the cation to anion strategies, we successfully preintercalate Cl-, SO42-, and PO43- anions into Mo2CTx MXene via the utilization of diverse etching agents. Due to a smaller ionic radius and low charge, more Cl- ions can be intercalated into Mo2CTx MXene and induce higher dislocation density, larger interlayer spacing, and more negative Zeta potential value. Relying on in situ X-ray diffraction, we monitored the interlayer evolution. The lower lithium-ion concentration gradient in the Mo2CTx MXene delivers a lower concentration polarization, a fast charge and ion transfer kinetics, and an excellent lifespan, holding 540.49 mAh g-1 after 400 cycles at 200 mA g-1. The effect of anion preintercalation provides new insights into the function-oriented design of MXene materials.
Collapse
Affiliation(s)
- Junyan Li
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, International Center of Future Science, Electron Microscopy Center, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, Jilin, China
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, International Center of Future Science, Electron Microscopy Center, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, Jilin, China
| | - Xin Ge
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, International Center of Future Science, Electron Microscopy Center, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, Jilin, China
| | - Wenjuan Han
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, China
| | - Xiangyu Wu
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, International Center of Future Science, Electron Microscopy Center, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, Jilin, China
| | - Boning Xu
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, International Center of Future Science, Electron Microscopy Center, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, Jilin, China
| | - Hong-Yan Liu
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, International Center of Future Science, Electron Microscopy Center, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, Jilin, China
| | - Xin Liu
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, China
| | - Yu Wang
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, China
| | - Ming Lu
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, International Center of Future Science, Electron Microscopy Center, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, Jilin, China
| |
Collapse
|
5
|
He L, Zhuang H, Fan Q, Yu P, Wang S, Pang Y, Chen K, Liang K. Advances and challenges in MXene-based electrocatalysts: unlocking the potential for sustainable energy conversion. MATERIALS HORIZONS 2024; 11:4239-4255. [PMID: 39188198 DOI: 10.1039/d4mh00845f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
MXenes, a novel class of two-dimensional materials, have garnered significant attention for their promising electrocatalytic properties in various energy conversion applications such as water splitting, fuel cells, metal-air batteries, and nitrogen reduction reactions. Their excellent electrical conductivity, high specific surface area, and versatile surface chemistry enable exceptional catalytic performance. This review highlights recent advancements in the design and application strategies of MXenes as electrocatalysts, focusing on key reactions including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and nitrogen reduction reaction (NRR). We discuss the tunability of MXenes' layered structures and surface properties through surface modification, MXene lattice substitution, defect and morphology engineering, and heterostructure construction. Despite the considerable progress, MXenes face challenges such as restacking during catalysis, stability issues, and difficulties in large-scale production. Addressing these challenges through innovative engineering approaches and advancing industrial synthesis techniques is crucial for the broader application of MXene-based materials. Our review underscores the potential of MXenes in transforming electrocatalytic processes and highlights future research directions to optimize their catalytic efficiency and stability.
Collapse
Affiliation(s)
- Lei He
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Haizheng Zhuang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Qi Fan
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Ping Yu
- School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Shengchao Wang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Yifan Pang
- Department of Materials Science and Engineering, the Ohio State University, Columbus, OH 43210, USA
| | - Ke Chen
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Qianwan Institute of CNITECH, Ningbo 315336, China
| | - Kun Liang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Qianwan Institute of CNITECH, Ningbo 315336, China
| |
Collapse
|
6
|
Malakar A, Mandal S, Sen Gupta R, Kashyap V, Raj R, Manna K, Bose S. 'Donor-acceptor', 'interpenetrating polymer network' and 'electrostatic self-assembly' work in tandem to achieve extraordinary specific shielding effectiveness. NANOSCALE 2024; 16:15343-15357. [PMID: 39087876 DOI: 10.1039/d4nr02008a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The exploration of 'electrostatic self-assembly' on solid surfaces has garnered significant interest across various fields. With the sophistication of gadgets, managing electromagnetic interference (EMI) from stray signals, especially in stealth applications, necessitates materials that can absorb microwaves. A promising approach involves integrating lightweight self-healing polymeric materials. This study employs electrostatic self-assembly to design a carbon nanotube structure on an interpenetrating polymer network (IPN) made of PVDF and bismaleimide (BMI)-grafted dopamine hydrochloride, enhancing mechanical integrity through well-formed IPNs. Graphene oxide (GO) is introduced before IPN formation to facilitate an 'acceptor-donor' interaction via the Diels-Alder adduct between BMI and GO, which binds with multi-walled carbon nanotubes (MWCNTs). MWCNTs, modified with PQ7 or PDDA for a positive charge, self-assemble onto the IPN-GO construct, creating a lightweight and chemically stable structure capable of absorbing electromagnetic radiation. The 21 μm thick construct exhibits enhanced microwave absorption within the X-band (8.2-12.4 GHz), with a specific shielding effectiveness of 8637 dB cm2 g-1 and a green index (gs ≈ 1.41). The construct is coated with self-healable polyetherimide (PEI) containing exchangeable disulfide bonds to address maintenance challenges, providing heat-triggered self-healing properties. These innovative structures offer solutions for 5G and IoT applications where lightweight, durable, and multifunctional properties are essential for effectively shielding electronic devices from stray signals.
Collapse
Affiliation(s)
- Amit Malakar
- Department of Materials Engineering, Indian Institute of Science, Bengaluru - 560012, India.
| | - Samir Mandal
- Department of Materials Engineering, Indian Institute of Science, Bengaluru - 560012, India.
| | - Ria Sen Gupta
- Department of Materials Engineering, Indian Institute of Science, Bengaluru - 560012, India.
| | - Vinod Kashyap
- Department of Materials Engineering, Indian Institute of Science, Bengaluru - 560012, India.
| | - Rishi Raj
- Department of Materials Engineering, Indian Institute of Science, Bengaluru - 560012, India.
| | - Kunal Manna
- Department of Materials Engineering, Indian Institute of Science, Bengaluru - 560012, India.
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bengaluru - 560012, India.
| |
Collapse
|
7
|
Huang P, Ying H, Zhang S, Zhang Z, Han WQ. Unlocking Ultrahigh Initial Coulombic Efficiency of MXene Anode via Presodiation and Electrolyte Optimization. ACS NANO 2024; 18:17996-18010. [PMID: 38924447 DOI: 10.1021/acsnano.4c04909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The low initial Coulombic efficiency (ICE) greatly hinders the practical application of MXenes in sodium-ion batteries. Herein, theoretical calculations confirm that -F and -OH terminations as well as the tetramethylammonium ion (TMA+) intercalator in sediment Ti3C2Tx (s-Ti3C2Tx) MXene possess strong interaction with Na+, which impedes Na+ desorption during the charging process and results in low ICE. Consequently, Na+-intercalated sediment Ti3C2Tx (Na-s-Ti3C2Tx) is constructed through Na2S·9H2O treatment of s-Ti3C2Tx. Specifically, Na+ can first exchange with TMA+ of s-Ti3C2Tx and then combine with -F and -OH terminations, thus leading to the elimination of TMA+ and preshielding of -F and -OH. As expected, the resulting Na-s-Ti3C2Tx anode delivers considerably boosted ICE values of around 71% in carbonate-based electrolytes relative to s-Ti3C2Tx. Furthermore, electrolyte optimization is employed to improve ICE, and the results demonstrate that an ultrahigh ICE value of 94.0% is obtained for Na-s-Ti3C2Tx in the NaPF6-diglyme electrolyte. More importantly, Na-s-Ti3C2Tx exhibits a lower Na+ migration barrier and higher electronic conductivity compared with s-Ti3C2Tx based on theoretical calculations. In addition, the cyclic stability and rate performance of the Na-s-Ti3C2Tx anode in various electrolytes are comprehensively explored. The presented simple strategy in boosting ICE significantly enhances the commercialization prospect of MXenes in advanced batteries.
Collapse
Affiliation(s)
- Pengfei Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangjun Ying
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shunlong Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhao Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Nemamcha HE, Vu NN, Tran DS, Boisvert C, Nguyen DD, Nguyen-Tri P. Recent progression in MXene-based catalysts for emerging photocatalytic applications of CO 2 reduction and H 2 production: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172816. [PMID: 38679090 DOI: 10.1016/j.scitotenv.2024.172816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
The development of advanced materials for efficient photocatalytic H2 production and CO2 reduction is highly recommended for addressing environmental issues and producing clean energy sources. Specifically, MXenes have emerged as two-dimensional (2D) materials extensively used as high-performance cocatalysts in photocatalyst systems owing to their outstanding features of structure and properties such as high conductivity, large specific surface area, and abundant active sites. Nevertheless, there is a lack of deep and systematic studies concerning the application of these emerging materials for CO2 reduction reaction (CRR) and H2 production (HER). This review first outlines the essential features of MXenes, encompassing the synthesis methods, composition, surface terminations, and electronic properties, which make them highly active as cocatalysts. It then examines the recent progress in MXene-based photocatalysts, emphasizing the synergy achieved by coupling MXenes as co-catalysts with semiconductors, utilizing MXenes as a support for the consistent growth of photocatalysts, leading to finely dispersed nanoparticles, and exploiting MXene as exceptional precursors for creating MXene/metal oxide photocomposite. The roles of engineering surface terminations of MXene cocatalysts, MXene quantum dots (QDs), and distinctive morphologies in MXenes-based photocatalyst systems to enhance photocatalytic activity for both HER and CRR have been explored both experimentally and theoretically using DFT calculations. Challenges and prospects for MXene-based photocatalysts are also addressed. Finally, suggestions for further research and development of effective and economical MXenes/semiconductors strategies are proposed. This comprehensive review article serves as a valuable reference for researchers for applying MXenes in photocatalysis.
Collapse
Affiliation(s)
- Houssam-Eddine Nemamcha
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - Nhu-Nang Vu
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - D Son Tran
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - Cédrik Boisvert
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada.
| |
Collapse
|
9
|
Hu B, Gai L, Liu Y, Wang P, Yu S, Zhu L, Han X, Du Y. State-of-the-art in carbides/carbon composites for electromagnetic wave absorption. iScience 2023; 26:107876. [PMID: 37767003 PMCID: PMC10520892 DOI: 10.1016/j.isci.2023.107876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Electromagnetic wave absorbing materials (EWAMs) have made great progress in the past decades, and are playing an increasingly important role in radiation prevention and antiradar detection due to their essential attenuation toward incident EM wave. With the flourish of nanotechnology, the design of high-performance EWAMs is not just dependent on the intrinsic characteristics of single-component medium, but pays more attention to the synergistic effects from different components to generate rich loss mechanisms. Among various candidates, carbides and carbon materials are usually labeled with the features of chemical stability, low density, tunable dielectric property, and diversified morphology/microstructure, and thus the combination of carbides and carbon materials will be a promising way to acquire new EWAMs with good practical application prospects. In this review, we introduce EM loss mechanisms related to dielectric composites, and then highlight the state-of-the-art progress in carbides/carbon composites as high-performance EWAMs, including silicon carbide/carbon, MXene/carbon, molybdenum carbide/carbon, as well as some uncommon carbides/carbon composites and multicomponent composites. The critical information regarding composition optimization, structural engineering, performance reinforcement, and structure-function relationship are discussed in detail. In addition, some challenges and perspectives for the development of carbides/carbon composites are also proposed after comparing the performance of some representative composites.
Collapse
Affiliation(s)
- Bo Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lixue Gai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yonglei Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Pan Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shuping Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Li Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
10
|
Zhang Y, Ruan K, Zhou K, Gu J. Controlled Distributed Ti 3 C 2 T x Hollow Microspheres on Thermally Conductive Polyimide Composite Films for Excellent Electromagnetic Interference Shielding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211642. [PMID: 36703618 DOI: 10.1002/adma.202211642] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Flexible multifunctional polymer-based electromagnetic interference (EMI) shielding composite films have important applications in the fields of 5G communication technology, wearable electronic devices, and artificial intelligence. Based on the design of a porous/multilayered structure and using polyimide (PI) as the matrix and polymethyl methacrylate (PMMA) microspheres as the template, flexible (Fe3 O4 /PI)-Ti3 C2 Tx -(Fe3 O4 /PI) composite films with controllable pore sizes and distribution of Ti3 C2 Tx hollow microspheres are successfully prepared by sacrificial template method. Owing to the porous/multilayered structure, when the pore size of the Ti3 C2 Tx hollow microspheres is 10 µm and the mass ratio of PMMA/Ti3 C2 Tx is 2:1, the (Fe3 O4 /PI)-Ti3 C2 Tx -(Fe3 O4 /PI) composite film has the most excellent EMI shielding performance, with EMI shielding effectiveness (EMI SE) of 85 dB. It is further verified by finite element simulation that the composite film has an excellent shielding effect on electromagnetic waves. In addition, the composite film has good thermal conductivity (thermal conductivity coefficient of 3.49 W (m·K)-1 ) and mechanical properties (tensile strength of 65.3 MPa). This flexible (Fe3 O4 /PI)-Ti3 C2 Tx -(Fe3 O4 /PI) composite film with excellent EMI shielding performance, thermal conductivity, and mechanical properties has demonstrated great potential for applications in EMI shielding protection for high-power, portable, and wearable flexible electronic devices.
Collapse
Affiliation(s)
- Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
11
|
Manna K, Sen Gupta R, Bose S. A universal approach to 'host' carbon nanotubes on a charge triggered 'guest' interpenetrating polymer network for excellent 'green' electromagnetic interference shielding. NANOSCALE 2023; 15:1373-1391. [PMID: 36594198 DOI: 10.1039/d2nr05626g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The widespread use of miniaturized electronic gadgets today faces stiff reliability obstacles from factors like stray electromagnetic signals. The challenge is to design lightweight shielding materials that combine small volume and high-frequency operations to reliably reduce/eliminate electromagnetic interference. Herein, in the first of its kind, a sequential interpenetrating polymeric network (IPN) membrane was used to host a CNT construct through a stimuli-responsive trigger. The proposed construct besides being robust, sustainable, and scalable is a universal approach to fabricate a CNT construct where conventional strategies are not amenable. This approach of self-assembling counter-charged CNTs also maximizes the number of CNTs in the final construct, thereby greatly enhancing the shielding performance dominated by 90% absorption in a wide frequency band of 8.2-26.5 GHz. The IPN-CNT construct achieves specific shielding effectiveness in the range of ca. 1607-5715 dB cm2 g-1 by tuning the thickness of the CNT construct with an endearing green index (gs ≈ 1.8). The performance of such an ultra-thin, light-weight IPN-CNT construct remained unchanged when subjected to 10 000 bending cycles and on exposure to different chemical environments, indicating outstanding mechanical/chemical stability.
Collapse
Affiliation(s)
- Kunal Manna
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| | - Ria Sen Gupta
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
12
|
Gholamirad F, Ge J, Sadati M, Wang G, Taheri-Qazvini N. Tuning the Self-Assembled Morphology of Ti 3C 2T x MXene-Based Hybrids for High-Performance Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49158-49170. [PMID: 36269799 DOI: 10.1021/acsami.2c14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hybrid materials based on transition metal carbide and nitride (MXene) nanosheets have great potential for electromagnetic interference (EMI) shielding due to their excellent electrical conductivity. However, the performance of final products depends not only on the properties of constituent components but also on the morphology of the assembly. Here, via the controlled diffusion of positively charged poly(allylamine hydrochloride) (PAH) chains into the negatively charged Ti3C2Tx MXene suspension, MXene/PAH hybrids in the forms of thin films, porous structures, and fibers with distinguished internal morphologies are obtained. Our results confirm that PAH chains could effectively enhance the oxidation stability and integrity of wet and dry MXene structures. The flexibility to tune the structures allows for a thorough discussion of the relations between the morphology, electrical conductivity, and EMI shielding mechanism of the hybrids in a wide range of electrical conductivity (2.5 to 3347 S·cm-1) and thickness (7.7 to 1900 μm) values. The analysis of thin films shows the direct impact of the polymer content on the alignment and compactness of MXene nanosheets regulating the films' electrical conductivity/EMI shielding effectiveness. The colloidal behavior of the initial MXene suspension determines the interconnection of MXene nanosheets in MXene/PAH porous assemblies and the final electrical properties. In addition to the internal morphology, examining the laminated MXene/PAH fibers with geometrically different arrangements demonstrates the role of conductive network configuration on EMI shielding performance. These findings provide insights into tuning the EMI shielding effectiveness via the charge-driven bottom-up assembly of electrically conductive MXene/polyelectrolyte hybrids.
Collapse
Affiliation(s)
- Farivash Gholamirad
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Jinqun Ge
- Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Guoan Wang
- Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina29208, United States
| |
Collapse
|
13
|
Du Q, Men Q, Li R, Cheng Y, Zhao B, Che R. Electrostatic Adsorption Enables Layer Stacking Thickness-Dependent Hollow Ti 3 C 2 T x MXene Bowls for Superior Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203609. [PMID: 36251790 DOI: 10.1002/smll.202203609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Although transition metal carbides/carbonitrides (MXenes) exhibit immense potential for electromagnetic wave (EMW) absorption, their absorbing ability is hindered by facile stacking and high permittivity. Layer stacking and geometric structures are expected to significantly affect the conductivity and permittivity of MXenes. However, it is still a formidable task to simultaneously regulate layer stacking and microstructure of MXenes to realize high-performance EMW absorption. Herein, a simple and viable strategy using electrostatic adsorption is developed to integrate 2D Ti3 C2 Tx MXene nanosheets into 3D hollow bowl-like structures with tunable layer stacking thickness. Density functional theory calculations indicate an increase in the density of states of the d orbital from the Ti atom near the Fermi level and the generation of additional electrical dipoles in the MXene nanosheets constituting the bowl walls upon reducing the layer stacking thickness. The hollow MXene bowls exhibit a minimum reflection loss (RLmin ) of -53.8 dB at 1.8 mm. The specific absorbing performance, defined as RLmin (dB)/thickness (mm)/filler loading (wt%), exceeds 598 dB mm-1 , far surpassing that of the most current MXene and bowl-like materials reported in the literature. This work can guide future exploration on designing high-performance MXenes with "lightweight" and "thinness" characteristics for superior EMW absorption.
Collapse
Affiliation(s)
- Qinrui Du
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, P. R. China
| | - Qiaoqiao Men
- Henan Key Laboratory of Aeronautical Materials and Application Technology, School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, Henan, 450046, P. R. China
| | - Ruosong Li
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, P. R. China
| | - Youwei Cheng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Biao Zhao
- School of Microelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
14
|
Flexible, conductive and multifunctional cotton fabric with surface wrinkled MXene/CNTs microstructure for electromagnetic interference shielding. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Zhang Q, Fan R, Cheng W, Ji P, Sheng J, Liao Q, Lai H, Fu X, Zhang C, Li H. Synthesis of Large-Area MXenes with High Yields through Power-Focused Delamination Utilizing Vortex Kinetic Energy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202748. [PMID: 35975421 PMCID: PMC9534978 DOI: 10.1002/advs.202202748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Evaluating the delamination process in the synthesis of MXenes (2D transition metal carbides and nitrides) is critical for their development and applications. However, the preparation of large defect-free MXene flakes with high yields is challenging. Here, a power-focused delamination (PFD) strategy is demonstrated that can enhance both the delamination efficiency and yield of large Ti3 C2 Tx MXene nanosheets through repetitive precipitation and vortex shaking processes. Following this protocol, a colloidal concentration of 20.4 mg mL-1 of the Ti3 C2 Tx MXene can be achieved after five PFD cycles, and the yield of the basal-plane-defect-free Ti3 C2 Tx nanosheets reaches 61.2%, which is 6.4-fold higher than that obtained using the sonication-exfoliation method. Both nanometer-thin devices and self-supporting films exhibit excellent electrical conductivities (≈25 000 and 8260 S cm-1 for a 1.8 nm thick monolayer and 11 µm thick film, respectively). Hydrodynamic simulations reveal that the PFD method can efficiently concentrate the shear stress on the surface of the unexfoliated material, leading to the exfoliation of the nanosheets. The PFD-synthesized large MXene nanosheets exhibit superior electrical conductivities and electromagnetic shielding (shielding effectiveness per unit volume: 35 419 dB cm2 g-1 ). Therefore, the PFD strategy provides an efficient route for the preparation of high-performance single-layer MXene nanosheets with large areas and high yields.
Collapse
Affiliation(s)
- Qingxiao Zhang
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource ChemistryShanghai Normal UniversityShanghai200234P. R. China
| | - Runze Fan
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource ChemistryShanghai Normal UniversityShanghai200234P. R. China
| | - Weihua Cheng
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource ChemistryShanghai Normal UniversityShanghai200234P. R. China
| | - Peiyi Ji
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource ChemistryShanghai Normal UniversityShanghai200234P. R. China
| | - Jie Sheng
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource ChemistryShanghai Normal UniversityShanghai200234P. R. China
| | - Qingliang Liao
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource ChemistryShanghai Normal UniversityShanghai200234P. R. China
| | - Huirong Lai
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource ChemistryShanghai Normal UniversityShanghai200234P. R. China
| | - Xueli Fu
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource ChemistryShanghai Normal UniversityShanghai200234P. R. China
| | - Chenhao Zhang
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource ChemistryShanghai Normal UniversityShanghai200234P. R. China
| | - Hui Li
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource ChemistryShanghai Normal UniversityShanghai200234P. R. China
| |
Collapse
|
16
|
Wang Q, Han N, Shen Z, Li X, Chen Z, Cao Y, Si W, Wang F, Ni BJ, Thakur VK. MXene-based electrochemical (bio) sensors for sustainable applications: Roadmap for future advanced materials. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Bai X, Guan J. MXenes for electrocatalysis applications: Modification and hybridization. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64030-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Chand K, Zhang X, Chen Y. Recent Progress in MXene and Graphene based Nanocomposites for Microwave Absorption and EMI Shielding. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
19
|
Wang J, Ma X, Zhou J, Du F, Teng C. Bioinspired, High-Strength, and Flexible MXene/Aramid Fiber for Electromagnetic Interference Shielding Papers with Joule Heating Performance. ACS NANO 2022; 16:6700-6711. [PMID: 35333052 DOI: 10.1021/acsnano.2c01323] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-strength, flexible, and multifunctional characteristics are highly desirable for electromagnetic interference (EMI) shielding materials in the field of electric devices. In this work, inspired by natural nacre, we fabricated large-scale, layered MXene/amarid nanofiber (ANF) nanocomposite papers by blade-coating process plus sol-gel conversion step. The as-synthesized papers possess excellent mechanical performance, that is, exceptional tensile strength (198.80 ± 5.35 MPa), large strain (15.30 ± 1.01%), and good flexibility (folded into various models without fracture), which are ascribed to synergetic interactions of the interconnected three-dimensional network frame and hydrogen bonds between MXene and ANF. More importantly, the papers with extensive continuous conductive paths formed by MXene nanosheets present a high EMI shielding effectiveness of 13188.2 dB cm2 g-1 in the frequency range of 8.2-12.4 GHz. More interestingly, the papers show excellent Joule heating performance with a fast thermal response (<10 s) and a low driving voltage (≤4 V). As such, the large-scale MXene/ANF papers are considered as promising alternatives in a wide range of applications in electromagnetic shielding and thermal management.
Collapse
Affiliation(s)
- Jie Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaoyan Ma
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiale Zhou
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fanglin Du
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Teng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
20
|
Zhou X, Hao Y, Li Y, Peng J, Wang G, Ong W, Li N. MXenes: An emergent materials for packaging platforms and looking beyond. NANO SELECT 2022. [DOI: 10.1002/nano.202200023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xing Zhou
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Yaya Hao
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Yaxin Li
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Jiahe Peng
- Key Laboratory of Silicate Materials for Architectures & Research Center for Materials Genome Engineering Wuhan University of Technology Hubei P. R. China
| | - Guosheng Wang
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Wee‐Jun Ong
- School of Energy and Chemical Engineering Xiamen University Malaysia Selangor Darul Ehsan Malaysia
| | - Neng Li
- Key Laboratory of Silicate Materials for Architectures & Research Center for Materials Genome Engineering Wuhan University of Technology Hubei P. R. China
- Shenzhen Research Institute of Wuhan University of Technology Shenzhen China
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| |
Collapse
|
21
|
Gu H, Li X, Zhang J, Chen W. Theoretical Predictions, Experimental Modulation Strategies, and Applications of MXene-Supported Atomically Dispersed Metal Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105883. [PMID: 34918467 DOI: 10.1002/smll.202105883] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Atomically dispersed metal sites (ADMSs) attract immense attention because they can be used in the fields of energy and environmental protection as they are characterized by high atomic utilization efficiency and exhibit high activity. Various supports for anchoring isolated metal atoms are developed to construct ADMSs characterized by highly stable and well-defined structures. This can be achieved by increasing the number of anchoring sites and reinforcing metal-support interactions. MXenes, a new series of 2D nanomaterials, exhibit promising potential in stabilizing isolated metal atoms because of their large specific surface areas and unique surface properties. The high conductivity and hydrophilicity of MXenes can be attributed to the nature of surface functionalization and the properties of tunable structures of the materials. Benefiting from these excellent properties, MXenes can find their applications in various fields. Herein, the precise characterization methods that can be followed to study ADMSs, the construction of MXene-supported ADMSs using theoretical predictions, and experimental modulation strategies are summarized, and their corresponding applications in electrocatalysis, organocatalysis, and advanced battery systems are systematically illustrated. It is hoped that this review will provide insights that can be used for the further development of MXene-supported ADMSs.
Collapse
Affiliation(s)
- Hongfei Gu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xinyuan Li
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
22
|
Kong B, Yang X, Dai H, Lu H, Wu Y, Liu X, Liu W. Sensitive electrochemical determination of baicalein based on d‐Ti3C2Tx MXene/fullerene composite modified glassy carbon electrode. ELECTROANAL 2022. [DOI: 10.1002/elan.202100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bo Kong
- China Tobacco Hunan Industrial Corporation CHINA
| | | | | | - Hongbing Lu
- Technology Center of China Tobacco Hunan Industrial Corporation CHINA
| | - Yu Wu
- Technology Center of China Tobacco Hunan Industrial Corporation CHINA
| | | | - Wei Liu
- Anhui Vocational and Technical College CHINA
| |
Collapse
|
23
|
Najam T, Shah SSA, Peng L, Javed MS, Imran M, Zhao MQ, Tsiakaras P. Synthesis and nano-engineering of MXenes for energy conversion and storage applications: Recent advances and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214339] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Zhang Y, Ma Z, Ruan K, Gu J. Flexible Ti 3C 2T x /(Aramid Nanofiber/PVA) Composite Films for Superior Electromagnetic Interference Shielding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9780290. [PMID: 35211678 PMCID: PMC8832284 DOI: 10.34133/2022/9780290] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/22/2021] [Indexed: 02/05/2023]
Abstract
Multifunctional electromagnetic interference (EMI) shielding materials would solve electromagnetic radiation and pollution problems from electronic devices. Herein, the directional freeze-drying technology is utilized to prepare the aramid nanofiber/polyvinyl alcohol aerogel with a directionally porous structure (D-ANF/PVA), and the Ti3C2Tx dispersion is fully immersed into the D-ANF/PVA aerogel via ultrasonication and vacuum-assisted impregnation. Ti3C2Tx/(ANF/PVA) EMI shielding composite films with directionally ordered structure (D-Ti3C2Tx/(ANF/PVA)) are then prepared by freeze-drying and hot pressing. Constructing a directionally porous structure enables the highly conductive Ti3C2Tx nanosheets to be wrapped on the directionally porous D-ANF/PVA framework in order arrangement and overlapped with each other. And the hot pressing process effectively reduces the layer spacing between the stacked wavy D-ANF/PVA, to form a large number of Ti3C2Tx-Ti3C2Tx continuous conductive paths, which significantly improves the conductivity of the D-Ti3C2Tx/(ANF/PVA) EMI shielding composite film. When the amount of Ti3C2Tx is 80 wt%, the EMI shielding effectiveness (EMI SE) and specific SE (SSE/t) of D-Ti3C2Tx/(ANF/PVA) EMI shielding composite film achieve 70 dB and 13790 dB·cm2·g−1 (thickness and density of 120 μm and 0.423 g·cm−3), far superior to random-structured Ti3C2Tx/(ANF/PVA) (R-Ti3C2Tx/(ANF/PVA)) composite film (46 dB and 9062 dB·cm2·g−1, respectively) via blending-freeze-drying followed by hot pressing technology. Meanwhile, the D-Ti3C2Tx/(ANF/PVA) EMI shielding composite film possesses excellent flexibility and foldability.
Collapse
Affiliation(s)
- Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zhonglei Ma
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
25
|
Lee JT, Wyatt BC, Davis GA, Masterson AN, Pagan AL, Shah A, Anasori B, Sardar R. Covalent Surface Modification of Ti 3C 2T x MXene with Chemically Active Polymeric Ligands Producing Highly Conductive and Ordered Microstructure Films. ACS NANO 2021; 15:19600-19612. [PMID: 34786933 DOI: 10.1021/acsnano.1c06670] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As interest continues to grow in Ti3C2Tx and other related MXenes, advancement in methods of manipulation of their surface functional groups beyond synthesis-based surface terminations (Tx: -F, -OH, and ═O) can provide mechanisms to enhance solution processability as well as produce improved solid-state device architectures and coatings. Here, we report a chemically important surface modification approach in which "solvent-like" polymers, polyethylene glycol carboxylic acid (PEG6-COOH), are covalently attached onto MXenes via esterification chemistry. Surface modification of Ti3C2Tx with PEG6-COOH with large ligand loading (up to 14% by mass) greatly enhances dispersibility in a wide range of nonpolar organic solvents (e.g., 2.88 mg/mL in chloroform) without oxidation of Ti3C2Tx two-dimensional flakes or changes in the structure ordering. Furthermore, cooperative interactions between polymer chains improve the nanoscale assembly of uniform microstructures of stacked MXene-PEG6 flakes into ordered thin films with excellent electrical conductivity (∼16,200 S·cm-1). Most importantly, our covalent surface modification approach with ω-functionalized PEG6 ligands (ω-PEG6-COOH, where ω: -NH2, -N3, -CH═CH2) allows for control over the degree of functionalization (incorporation of valency) of MXene. We believe that installing valency onto MXenes through short, ion conducting PEG ligands without compromising MXenes' features such as solution processability, structural stability, and electrical conductivity further enhance MXenes surface chemistry tunability and performance and widens their applications.
Collapse
Affiliation(s)
- Jacob T Lee
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Brian C Wyatt
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Gregory A Davis
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Adrianna N Masterson
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Amber L Pagan
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Archit Shah
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Babak Anasori
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
26
|
Sun K, Wang F, Yang W, Liu H, Pan C, Guo Z, Liu C, Shen C. Flexible Conductive Polyimide Fiber/MXene Composite Film for Electromagnetic Interference Shielding and Joule Heating with Excellent Harsh Environment Tolerance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50368-50380. [PMID: 34652899 DOI: 10.1021/acsami.1c15467] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of flexible MXene-based multifunctional composites is becoming a hot research area to achieve the application of conductive MXene in wearable electric instruments. Herein, a flexible conductive polyimide fiber (PIF)/MXene composite film with densely stacked "rebar-brick-cement" lamellar structure is fabricated using the simple vacuum filtration plus thermal imidization technique. A water-soluble polyimide precursor, poly(amic acid), is applied to act as a binder and dispersant to ensure the homogeneous dispersion of MXene and its good interfacial adhesion with PIF after thermal imidization, resulting in excellent mechanical robustness and high conductivity (3787.9 S/m). Owing to the reflection on the surface, absorption through conduction loss and interfacial/dipolar polarization loss inside the material, and the lamellar structure that is beneficial for multiple reflection and scattering between adjacent layers, the resultant PIF/MXene composite film exhibits a high electromagnetic interference (EMI) shielding effectiveness of 49.9 dB in the frequency range of 8.2-12.4 GHz. More importantly, its EMI shielding capacity can be well maintained in various harsh environments (e.g., extreme high/low temperature, acid/salt solution, and long-term cyclic bending), showing excellent stability and durability. Furthermore, it also presents fast, stable, and long-term durable Joule heating performances based on its stable and excellent conductivity, demonstrating good thermal deicing effects under actual conditions. Therefore, we believe that the flexible conductive PIF/MXene composite film with excellent conductivity and harsh environment tolerance possesses promising potential for electromagnetic wave protection and personal thermal management.
Collapse
Affiliation(s)
- Kang Sun
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Fan Wang
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Wenke Yang
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Hu Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Caofeng Pan
- Beijing Institute of Nanoenergy and Nanosystems; National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences, Beijing 100083, China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Changyu Shen
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China
| |
Collapse
|
27
|
Qin T, Wang Z, Wang Y, Besenbacher F, Otyepka M, Dong M. Recent Progress in Emerging Two-Dimensional Transition Metal Carbides. NANO-MICRO LETTERS 2021; 13:183. [PMID: 34417663 PMCID: PMC8379312 DOI: 10.1007/s40820-021-00710-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/25/2021] [Indexed: 05/17/2023]
Abstract
As a new member in two-dimensional materials family, transition metal carbides (TMCs) have many excellent properties, such as chemical stability, in-plane anisotropy, high conductivity and flexibility, and remarkable energy conversation efficiency, which predispose them for promising applications as transparent electrode, flexible electronics, broadband photodetectors and battery electrodes. However, up to now, their device applications are in the early stage, especially because their controllable synthesis is still a great challenge. This review systematically summarized the state-of-the-art research in this rapidly developing field with particular focus on structure, property, synthesis and applicability of TMCs. Finally, the current challenges and future perspectives are outlined for the application of 2D TMCs.
Collapse
Affiliation(s)
- Tianchen Qin
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Yuqing Wang
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus, Denmark
| | | | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 77146, Olomouc, Czech Republic
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
28
|
Wang L, Zhang M, Yang B, Tan J, Ding X, Li W. Recent Advances in Multidimensional (1D, 2D, and 3D) Composite Sensors Derived from MXene: Synthesis, Structure, Application, and Perspective. SMALL METHODS 2021; 5:e2100409. [PMID: 34927986 DOI: 10.1002/smtd.202100409] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Indexed: 05/27/2023]
Abstract
With the advent of the era of intelligent manufacturing, sensors, with various detection objects, have set off a wave of enthusiasm and reached new heights in medical treatment, intelligent industry, daily life, and so on. MXene, as an emerging family of 2D transition metal carbides/nitrides, possesses impressive electrical conductivity, outstanding structural controllability, and satisfying universality with other substrates. Consequently, MXene-based sensors with various functions show a booming growth based on great research potential of MXene. To promote the orderly and efficient development of MXene application in sensors, and further accelerate market-scale application of ideal sensors, in this review, a full range research effort on current MXene-based sensors is summarized. Starting with various synthesis methods of the raw material MXene, a comprehensive summary work along with 1D, 2D, or 3D MXene-based sensors on most recent works is put forward, including the preparation method, characteristic structure, and potential sensing application of each type of MXene-based composite sensors. Ultimately, insights of the opportunities and challenges on the strength of the current reported MXene-based sensor are given.
Collapse
Affiliation(s)
- Lin Wang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Bin Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Jiaojun Tan
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Xueyao Ding
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Weiwei Li
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| |
Collapse
|
29
|
Yu L, Lu L, Zhou X, Xu L, Alhalili Z, Wang F. Strategies for Fabricating High‐Performance Electrochemical Energy‐Storage Devices by MXenes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Lu Lu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - XiaoHong Zhou
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Lyu Xu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Zahrah Alhalili
- College of Sciences and Arts Shaqra University Sajir Riyadh Saudi Arabia
| | - FengJun Wang
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| |
Collapse
|
30
|
Zheng X, Shen J, Hu Q, Nie W, Wang Z, Zou L, Li C. Vapor phase polymerized conducting polymer/MXene textiles for wearable electronics. NANOSCALE 2021; 13:1832-1841. [PMID: 33434252 DOI: 10.1039/d0nr07433k] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multifunctional electronic textiles hold great potential applications in the wearable electronics field. However, it remains challenging to seamlessly integrate the multiple functions on the textile substrates without sacrificing their intrinsic properties. Herein, we report a novel and facile vapor phase polymerization (VPP) and spray-coating strategy towards the construction of a laminated film containing a PEDOT film and Ti3C2Tx MXene sheets on the fiber surface. The fabricated PEDOT/MXene decorated cotton fabrics are integrated with excellent electrochemical performance, joule heating performance, good electromagnetic interference (EMI) shielding, and strain sensing performance. The resultant multifunctional textiles have a low sheet resistance of 3.6 Ω sq-1, and the assembled all-solid-state fabric supercapacitors exhibit an ultrahigh specific capacitance of 1000.2 mF cm-2, which exceeds the state-of-the-art MXene-based fabric supercapacitors. In addition, the PEDOT/MXene modified fabrics exhibit an exceptional joule heating performance of 193.1 °C at the applied voltage of 12 V, high EMI shielding effectiveness of 36.62 dB, and high sensitivity as strain sensors for human motion detection. This work provides a novel strategy for the structure design of multifunctional textiles and will lay the foundation for the development of multifunctional wearable electronics.
Collapse
Affiliation(s)
- Xianhong Zheng
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | | | | | | | | | | | | |
Collapse
|