1
|
Šedajová V, Nandi D, Langer P, Lo R, Hobza P, Plachá D, Bakandritsos A, Zbořil R. Direct upcycling of highly efficient sorbents for emerging organic contaminants into high energy content supercapacitors. J Colloid Interface Sci 2025; 692:137481. [PMID: 40187136 DOI: 10.1016/j.jcis.2025.137481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
The escalation of anthropogenic activities contributes to the accumulation of chemicals in life-supporting ecosystems and water reserves, while nearly 80% of the global population faces a high risk of water insecurity. Therefore, advanced nanomaterials for environmental remediation and ecosystem preservation are essential. However, their adoption has been slow, mainly due to the need for water treatment strategies that comply with sustainability criteria. This work showcases the efficient removal of emerging pharmaceutical pollutants from water using functionalized graphenes and the direct upcycling of the used sorbents into electrodes for energy storage, without the need for any intermediate treatment. Remarkably, the performance of the repurposed sorbents as supercapacitor electrodes exceeds that of the parent functionalized graphenes by up to 100% in a full cell device. This enhanced performance and cycling stability are attributed to improved charge transport and redox activity induced by the strong adsorption of the pollutants, as supported by theoretical calculations. The findings open avenues for reclaiming the value of spent sorbents, mitigating the environmental and economic burden of their disposal or regeneration, while fostering sustainable resource management, and energy storage.
Collapse
Affiliation(s)
- Veronika Šedajová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Šlechtitelů 241/27, 779 00, Olomouc - Holice, Palacký University Olomouc, Czech Republic
| | - Debabrata Nandi
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Šlechtitelů 241/27, 779 00, Olomouc - Holice, Palacký University Olomouc, Czech Republic
| | - Petr Langer
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Námĕstí 542/2, 16000 Prague, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Námĕstí 542/2, 16000 Prague, Czech Republic; IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Daniela Plachá
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic.
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Šlechtitelů 241/27, 779 00, Olomouc - Holice, Palacký University Olomouc, Czech Republic; Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Šlechtitelů 241/27, 779 00, Olomouc - Holice, Palacký University Olomouc, Czech Republic; Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic.
| |
Collapse
|
2
|
Hao X, Zhou W, Huang Z, Li Y, Li D, Xu J. High-performance soft-packaged supercapacitors with high energy density enabled by advanced boron-modified single-walled carbon nanotubes-enhanced nickel oxide. J Colloid Interface Sci 2025; 689:137200. [PMID: 40054272 DOI: 10.1016/j.jcis.2025.02.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
Soft-packaged supercapacitors (SCs) provide notable advantages, including high power density, high safety, and long lifespan, yet their application is still relatively limited due to the low energy density and insufficient cycle stability. To assess their practicality, we employed a simple in-situ nucleation assembly and high-temperature calcination strategy tofabricate boron-modified single-walled carbon nanotubes-enhanced nickel oxide (B-(NiO@SWNT10)) electrodes, characterised by rich oxygen vacancies (OV) and high specific surface area. The results demonstrated that the B-(NiO@SWNT10) electrode provided a formidable specific capacitance of 1257.7F g-1 at 1 A g-1, with excellent cycling stability (98.3 % retention over 10,000 cycles). Additionally, the B-(NiO@SWNT10)//nitrogen-doped graphene (GN) device had an outstanding energy density (53.0 Wh kg-1 at 900 W kg-1), surpassing many SCs reported to date. A soft-packaged SCs also showed robust electrochemical performance and was effective in powering electronic devices like smartphones and wearable technology, etc. This work offers a new perspective on the practical application of soft-packaged SCs in portable electronic products.
Collapse
Affiliation(s)
- Xiaojing Hao
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Weiqiang Zhou
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Zian Huang
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Yize Li
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Danqin Li
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Jingkun Xu
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| |
Collapse
|
3
|
Li Z, Guo K, Yin C, Li Y, Mertens SFL. Fabricating Graphene-Based Molecular Electronics via Surface Modification by Physisorption and Chemisorption. Molecules 2025; 30:926. [PMID: 40005236 PMCID: PMC11858784 DOI: 10.3390/molecules30040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Graphene, a one-atom-thick sp2-hybridized carbon sheet, has enormous potential for fabricating flexible transparent electronics due to its unique electronic and mechanical properties. However, the intrinsic lack of a band gap, the low reactivity, and the poor solubility of pristine graphene have largely hindered wide-ranging applications so far. One of the most attractive ways to resolve these issues is to modify the graphene surface through molecular physisorption or chemisorption. In this review, we summarize the recent progress in fabricating graphene-based molecular electronics through manipulating small functional molecules on the graphene surface towards chemical reactivity adjustment, molecular doping, and band gap opening via non-covalent and covalent interactions, and draw attention to challenges and opportunities. We also suggest future research directions for graphene-based molecular electronics.
Collapse
Affiliation(s)
- Zhi Li
- Anhui Province Key Laboratory of Specialty Polymers, Anhui Province Engineering Technology Research Center of Coal Resources Comprehensive Utilization, School of Chemical Engineering and Blasting, Anhui University of Science and Technology, Huainan 232001, China; (K.G.); (C.Y.); (Y.L.)
| | - Keying Guo
- Anhui Province Key Laboratory of Specialty Polymers, Anhui Province Engineering Technology Research Center of Coal Resources Comprehensive Utilization, School of Chemical Engineering and Blasting, Anhui University of Science and Technology, Huainan 232001, China; (K.G.); (C.Y.); (Y.L.)
| | - Chengjie Yin
- Anhui Province Key Laboratory of Specialty Polymers, Anhui Province Engineering Technology Research Center of Coal Resources Comprehensive Utilization, School of Chemical Engineering and Blasting, Anhui University of Science and Technology, Huainan 232001, China; (K.G.); (C.Y.); (Y.L.)
| | - Yanan Li
- Anhui Province Key Laboratory of Specialty Polymers, Anhui Province Engineering Technology Research Center of Coal Resources Comprehensive Utilization, School of Chemical Engineering and Blasting, Anhui University of Science and Technology, Huainan 232001, China; (K.G.); (C.Y.); (Y.L.)
| | - Stijn F. L. Mertens
- Department of Chemistry, Energy Lancaster and Materials Science Lancaster, Lancaster University, Bailrigg, Lancaster LA1 4YB, UK
| |
Collapse
|
4
|
Tang H, Zheng D, Peng Y, Geng S, Wang F, Wang H, Wang G, Xu W, Lu X. Boosting the Zn 2+ storage capacity of MoO 3 nanoribbons by modulating the electrons spin states of Mo via Ni doping. J Colloid Interface Sci 2024; 671:702-711. [PMID: 38823111 DOI: 10.1016/j.jcis.2024.05.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs) have received considerable potential for their affordability and high reliability. Among potential cathodes, α-MoO3 stands out due to its layered structure aligned with the (010) plane, offering extensive ionic insertion channels for enhanced charge storage. However, its limited electrochemical activity and poor Zn2+ transport kinetics present significant challenges for its deployment in energy storage devices. To overcome these limitations, we introduce a new strategy by doping α-MoO3 with Ni (Ni-MoO3), tuning the electron spin states of Mo. Thus modification can activate the reactivity of Ni-MoO3 towards Zn2+ storage and weaken the interaction between Ni-MoO3 and intercalated Zn2+, thereby accelerating the Zn2+ transport and storage. Consequently, the electrochemical properties of Ni-MoO3 significantly surpass those of pure MoO3, demonstrating a specific capacity of 258 mAh g-1 at 1 A g-1 and outstanding rate performance (120 mAh g-1 at 10 A g-1). After 1000 cycles at 8 A g-1, it retains 76 % of the initial capacity, with an energy density of 154.4 Wh kg-1 and a power density of 11.2 kW kg-1. This work proves that the modulation of electron spin states in cathode materials via metal ion doping can effectively boost their capacity and cycling durability.
Collapse
Affiliation(s)
- Hongwei Tang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China
| | - Dezhou Zheng
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China
| | - Yanzhou Peng
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China
| | - Shikuan Geng
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China
| | - Fuxin Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Hang Wang
- Jiangmen Small and Medium Sized Enterprise Service Center, Jiangmen 529020, PR China
| | - Guangxia Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China
| | - Wei Xu
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
5
|
Yu Z, Wang R, Tang H, Zheng D, Yu J. 3,6-Dimethoxythieno[3,2-b]thiophene-Based Bifunctional Electrodes for High-Performance Electrochromic Supercapacitors Prepared by One-Step Electrodeposition. Polymers (Basel) 2024; 16:2313. [PMID: 39204533 PMCID: PMC11359075 DOI: 10.3390/polym16162313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
An integrated visual energy system consisting of conjugated polymer electrodes is promising for combining electrochromism with energy storage. In this work, we obtained copolymer bifunctional electrodes poly(3,6-dimethoxythieno[3,2-b]thiophene-co-2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethanol)(P(TT-OMe-co-EDTM)) by one-step electrochemical copolymerization, which exhibits favorable electrochromic and capacitive energy storage properties. Because of the synergistic effect of PTT-OMe and PEDTM, the prepared copolymers show better flexibility. Moreover, the morphology and electrochemical properties of the copolymers could be adjusted by depositing different molar ratios of 3,6-dimethoxythieno[3,2-b]thiophene (TT-OMe) and 2,3-dihydrothieno[3,4-b][1,4] dioxin-3-ylmethanol (EDTM). The P(TT-OMe-co-EDTM) electrodes realized a high specific capacitance (190 F/g at 5 mV/s) and recognizable color conversion. This work provides a novel and simple way to synergistically improve electrochromic and energy storage properties and develop thiophene-based conducting polymers for electrochromic energy storage devices.
Collapse
Affiliation(s)
| | | | | | - Ding Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; (Z.Y.); (R.W.); (H.T.)
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; (Z.Y.); (R.W.); (H.T.)
| |
Collapse
|
6
|
Xu L, Liu Y, Xuan X, Xu X, Li Y, Lu T, Pan L. Heterointerface regulation of covalent organic framework-anchored graphene via a solvent-free strategy for high-performance supercapacitor and hybrid capacitive deionization electrodes. MATERIALS HORIZONS 2024; 11:2974-2985. [PMID: 38592376 DOI: 10.1039/d4mh00161c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Covalent organic frameworks (COFs) with customizable geometry and redox centers are an ideal candidate for supercapacitors and hybrid capacitive deionization (HCDI). However, their poor intrinsic conductivity and micropore-dominated pore structures severely impair their electrochemical performance, and the synthesis process using organic solvents brings serious environmental and cost issues. Herein, a 2D redox-active pyrazine-based COF (BAHC-COF) was anchored on the surface of graphene in a solvent-free strategy for heterointerface regulation. The as-prepared BAHC-COF/graphene (BAHCGO) nanohybrid materials possess high-speed charge transport offered by the graphene carrier and accelerated electrolyte ion migration within the BAHC-COF, allowing ions to effectively occupy ion storage sites inside BAHC. As a result, the BAHCGO//activated carbon asymmetric supercapacitor achieves a high energy output of 61.2 W h kg-1 and a satisfactory long-term cycling life. More importantly, BAHCGO-based HCDI possesses a high salt adsorption capacity (SAC) of 67.5 mg g-1 and excellent long-term desalination/regeneration stability. This work accelerates the application of COF-based materials in the fields of energy storage and water treatment.
Collapse
Affiliation(s)
- Liming Xu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Xiaoyang Xuan
- College of Chemistry and Chemical Engineering, Taishan University, Taian, Shandong 271000, China.
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Yuquan Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
7
|
Zhang G, Zhang Y, Wang J, Yu J, Wang K, Li G, Guan T. Nitrogen-functionalization of carbon materials for supercapacitor: Combining with nanostructure directly is superior to doping amorphous element. J Colloid Interface Sci 2024; 660:478-489. [PMID: 38246051 DOI: 10.1016/j.jcis.2024.01.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Just how heteroatomic functionalization enhances electrochemical capacity of carbon materials is a recent and widely studied field in scientific research. However, there is no consensus on whether combining with heteroatom-bearing nanostructures directly or doping amorphous elements is more advantageous. Herein, two kinds of porous carbon nanosheets were prepared from coal tar pitch through anchoring graphitic carbon nitride (PCNs/GCNs-5) or doping amorphous nitrogen element (PCNs/N). The structural characteristics and electrochemical properties of the two PCNs were revealed and compared carefully. It can be found that the amorphous nitrogen of PCNs/N will have a grievous impact on its carbon skeleton network, resulting in reduced stability in charge and discharge process, while the structural collapse of carbon network could be avoided in PCNs/GCNs-5 by the heteroatoms in the form of nanostructure. Particularly, PCNs/GCNs-5 exhibits extremely high specific capacity of 388 F g-1 at 1 A g-1, and splendid the capacitance retention rate of 98% after 10,000 cycles of charge and discharge, which are overmatch than the amorphous nitrogen doped carbon materials reported recently and PCNs/N. The combining strategy with nanostructure will inspire the design of carbon materials towards high-performance supercapacitor.
Collapse
Affiliation(s)
- Guoli Zhang
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway.
| | - Yi Zhang
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway
| | - Jianlong Wang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
| | - Jiangyong Yu
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
| | - Kaiying Wang
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway
| | - Gang Li
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway.
| | - Taotao Guan
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.
| |
Collapse
|
8
|
Noor N, Baker T, Lee H, Evans E, Angizi S, Henderson JD, Rakhsha A, Higgins D. Redox-Active Phenanthrenequinone Molecules and Nitrogen-Doped Reduced Graphene Oxide as Active Material Composites for Supercapacitor Applications. ACS OMEGA 2024; 9:10080-10089. [PMID: 38463326 PMCID: PMC10918682 DOI: 10.1021/acsomega.3c04836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 03/12/2024]
Abstract
Carbon-based supercapacitor electrodes are generally restricted in energy density, as they rely exclusively on electric double-layer capacitance (EDLC). The introduction of redox-active organic molecules to obtain pseudocapacitance is a promising route to develop electrode materials with improved energy densities. In this work, we develop a porous nitrogen-doped reduced graphene oxide and 9,10-phenanthrenequinone composite (N-HtrGO/PQ) via a facile one-step physical adsorption method. The electrochemical evaluation of N-HtrGO/PQ using cyclic voltammetry showed a high capacitance of 605 F g-1 in 1 M H2SO4 when the composite consisted of 30% 9,10-phenanthrenequinone and 70% N-HtrGO. The measured capacitance significantly exceeded pure N-HtrGO without the addition of redox-active molecules (257 F g-1). In addition to promising capacitance, the N-HtrGO/30PQ composite showed a capacitance retention of 94.9% following 20,000 charge/discharge cycles. Based on Fourier transform infrared spectroscopy, we postulate that the strong π-π interaction between PQ molecules and the N-HtrGO substrate enhances the specific capacitance of the composite by shortening pathways for electron transfer while improving structural stability.
Collapse
Affiliation(s)
- Navid Noor
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Thomas Baker
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Hyejin Lee
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
- School
of Chemical and Biological Engineering, Institute of Chemical Process
(ICP), and Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Elliot Evans
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Shayan Angizi
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | | | - Amirhossein Rakhsha
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Drew Higgins
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
9
|
Xu L, Liu Y, Ding Z, Xu X, Liu X, Gong Z, Li J, Lu T, Pan L. Solvent-Free Synthesis of Covalent Organic Framework/Graphene Nanohybrids: High-Performance Faradaic Cathodes for Supercapacitors and Hybrid Capacitive Deionization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307843. [PMID: 37948442 DOI: 10.1002/smll.202307843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Covalent organic frameworks (COFs) with flexible periodic skeletons and ordered nanoporous structures have attracted much attention as potential candidate electrode materials for green energy storage and efficient seawater desalination. Further improving the intrinsic electronic conductivity and releasing porosity of COF-based materials is a necessary strategy to improve their electrochemical performance. Herein, the employed graphene as the conductive substrate to in situ grow 2D redox-active COF (TFPDQ-COF) with redox activity under solvent-free conditions to prepare TFPDQ-COF/graphene (TFPDQGO) nanohybrids and explores their application in both supercapacitor and hybrid capacitive deionization (HCDI). By optimizing the hybridization ratio, TFPDQGO exhibits a large specific capacitance of 429.0 F g-1 due to the synergistic effect of the charge transport highway provided by the graphene layers and the abundant redox-active centers contained in the COF skeleton, and the assembled TFPDQGO//activated carbon (AC) asymmetric supercapacitor possesses a high energy output of 59.4 Wh kg-1 at a power density of 950 W kg-1 and good cycling life. Furthermore, the maximum salt adsorption capacity (SAC) of 58.4 mg g-1 and stable regeneration performance is attained for TFPDQGO-based HCDI. This study highlights the new opportunities of COF-based hybrid materials acting as high-performance supercapacitor and HCDI electrode materials.
Collapse
Affiliation(s)
- Liming Xu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Zibiao Ding
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xinjuan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhiwei Gong
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Jiabao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
10
|
Wu C, Zhu J, Zhang B, Shi H, Zhang H, Yuan S, Yin Y, Chen G, Chen C. Efficient pH-universal aqueous supercapacitors enabled by an azure C-decorated N-doped graphene aerogel. J Colloid Interface Sci 2023; 650:1871-1880. [PMID: 37517187 DOI: 10.1016/j.jcis.2023.07.142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Current aqueous supercapacitors (SCs) possess the relative low energy density, and there is therefore widespread interest in cost-effective fabrication of capacitive materials with promoted specific capacitance and/or broadened voltage window. Here, a redox-active azure C-decorated N-doped graphene aerogel (AC - NGA) is fabricated using a simple hydrothermal self-assembly method through strong noncovalent π-π interaction. AC - NGA highlights an excellent charge storage performance (a high 591F g-1 gravimetric capacitance under a current density of 1.0 A g-1 and ultrahigh voltage window of 2.3 V) under pH-universal conditions. The capacitive contribution of charge storage is 91.7%, exceeding or comparable to those of the best pseudocapacitors known. Furthermore, a symmetric AC - NGA//AC - NGA device realizes high energy and power densities (15.2-60.2 Wh kg-1 at 650-23,000 W kg-1) and excellent cycling stability in acidic, neutral, and basic aqueous solutions. This work offers a cost-effective strategy to combine redox dye molecules with heteroatom-doped graphene aerogel for building green efficient pH-universal aqueous supercapacitors.
Collapse
Affiliation(s)
- Chenghan Wu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Jiawan Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Buyuan Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Hucheng Shi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Hui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Saisai Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Yu Yin
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Guangchun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Chuanxiang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China.
| |
Collapse
|
11
|
Shi M, Das P, Wu ZS, Liu TG, Zhang X. Aqueous Organic Batteries Using the Proton as a Charge Carrier. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302199. [PMID: 37253345 DOI: 10.1002/adma.202302199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Indexed: 06/01/2023]
Abstract
Benefiting from the merits of low cost, nonflammability, and high operational safety, aqueous rechargeable batteries have emerged as promising candidates for large-scale energy-storage applications. Among various metal-ion/non-metallic charge carriers, the proton (H+ ) as a charge carrier possesses numerous unique properties such as fast proton diffusion dynamics, a low molar mass, and a small hydrated ion radius, which endow aqueous proton batteries (APBs) with a salient rate capability, a long-term life span, and an excellent low-temperature electrochemical performance. In addition, redox-active organic molecules, with the advantages of structural diversity, rich proton-storage sites, and abundant resources, are considered attractive electrode materials for APBs. However, the charge-storage and transport mechanisms of organic electrodes in APBs are still in their infancy. Therefore, finding suitable electrode materials and uncovering the H+ -storage mechanisms are significant for the application of organic materials in APBs. Herein, the latest research progress on organic materials, such as small molecules and polymers for APBs, is reviewed. Furthermore, a comprehensive summary and evaluation of APBs employing organic electrodes as anode and/or cathode is provided, especially regarding their low-temperature and high-power performances, along with systematic discussions for guiding the rational design and the construction of APBs based on organic electrodes.
Collapse
Affiliation(s)
- Mangmang Shi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, Göteborg, SE-412 96, Sweden
- School of physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Tie-Gen Liu
- The Ministry of Education Key Laboratory of Optoelectronic Information Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaoyan Zhang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, Göteborg, SE-412 96, Sweden
| |
Collapse
|
12
|
Xing P, Wei S, Zhang Y, Chen X, Dai L, Wang Y. Electrochemical Co-reduction of N 2 and CO 2 to Urea Using Bi 2S 3 Nanorods Anchored to N-Doped Reduced Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22101-22111. [PMID: 37122051 DOI: 10.1021/acsami.3c01405] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Producing "green urea" using renewable energy, N2, and CO2 is a long-considered challenge. Herein, an electrocatalyst, Bi2S3/N-reduced graphene oxide (RGO), was synthesized by loading the Bi2S3 nanorods onto the N-RGO via a hydrothermal method. The Bi2S3/N-RGO composites exhibit the highest yield of urea (4.4 mmol g-1 h-1), which is 12.6 and 3.1 times higher than that of Bi2S3 (0.35 mmol g-1 h-1) and that of N-RGO (1.4 mmol g-1 h-1), respectively. N-RGO, because of its porous and open-layer structure, improves the mass transfer efficiency and stability, while the basic groups (-OH and -NH2) promote the adsorption and activation of CO2. Bi2S3 promotes the absorption and activation of inert N2. Finally, the defect sites and the synergistic effect on the Bi2S3/N-RGO composites work simultaneously to form urea from N2 and CO2. This study provides new insights into urea synthesis under ambient conditions and a strategy for the design and development of a new material for green urea synthesis.
Collapse
Affiliation(s)
- Pingxing Xing
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Shenqi Wei
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Yulu Zhang
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Xinyi Chen
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Liyi Dai
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, No. 20 Cuiniao Road, Shanghai 202162, China
| | - Yuanyuan Wang
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, No. 20 Cuiniao Road, Shanghai 202162, China
| |
Collapse
|
13
|
Ni C, Huang S, Koudama TD, Wu X, Cui S, Shen X, Chen X. Tuning the Electronic Structure of a Novel 3D Architectured Co-N-C Aerogel to Enhance Oxygen Evolution Reaction Activity. Gels 2023; 9:gels9040313. [PMID: 37102925 PMCID: PMC10137415 DOI: 10.3390/gels9040313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Hydrogen generation through water electrolysis is an efficient technique for hydrogen production, but the expensive price and scarcity of noble metal electrocatalysts hinder its large-scale application. Herein, cobalt-anchored nitrogen-doped graphene aerogel electrocatalysts (Co-N-C) for oxygen evolution reaction (OER) are prepared by simple chemical reduction and vacuum freeze-drying. The Co (0.5 wt%)-N (1 wt%)-C aerogel electrocatalyst has an optimal overpotential (0.383 V at 10 mA/cm2), which is significantly superior to that of a series of M-N-C aerogel electrocatalysts prepared by a similar route (M = Mn, Fe, Ni, Pt, Au, etc.) and other Co-N-C electrocatalysts that have been reported. In addition, the Co-N-C aerogel electrocatalyst has a small Tafel slope (95 mV/dec), a large electrochemical surface area (9.52 cm2), and excellent stability. Notably, the overpotential of Co-N-C aerogel electrocatalyst at a current density of 20 mA/cm2 is even superior to that of the commercial RuO2. In addition, density functional theory (DFT) confirms that the metal activity trend is Co-N-C > Fe-N-C > Ni-N-C, which is consistent with the OER activity results. The resulting Co-N-C aerogels can be considered one of the most promising electrocatalysts for energy storage and energy saving due to their simple preparation route, abundant raw materials, and superior electrocatalytic performance.
Collapse
Affiliation(s)
- Chunsheng Ni
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Shuntian Huang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Tete Daniel Koudama
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiaodong Wu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Sheng Cui
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiangbao Chen
- AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
| |
Collapse
|
14
|
Shi M, Peng C, Zhang X. A Novel Aqueous Asymmetric Supercapacitor based on Pyrene-4,5,9,10-Tetraone Functionalized Graphene as the Cathode and Annealed Ti 3 C 2 T x MXene as the Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301449. [PMID: 36892168 DOI: 10.1002/smll.202301449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Asymmetric supercapacitors (ASCs), employing two dissimilar electrode materials with a large redox peak position difference as cathode and anode, have been designed to further broaden the voltage window and improve the energy density of supercapacitors. Organic molecule based electrodes can be constructed by combining redox-active organic molecules with conductive carbon-based materials such as graphene. Herein, pyrene-4,5,9,10-tetraone (PYT), a redox-active molecule with four carbonyl groups, exhibits a four-electron transfer process and can potentially deliver a high capacity. PYT is noncovalently combined with two different kinds of graphene (Graphenea [GN] and LayerOne [LO]) at different mass ratios. The PYT-functionalized GN electrode (PYT/GN 4-5) possesses a high capacity of 711 F g-1 at 1 A g-1 in 1 M H2 SO4 . To match with the PYT/GN 4-5 cathode, an annealed-Ti3 C2 Tx (A-Ti3 C2 Tx ) MXene anode with a pseudocapacitive character is prepared by pyrolysis of pure Ti3 C2 Tx . The assembled PYT/GN 4-5//A-Ti3 C2 Tx ASC delivers an outstanding energy density of 18.4 Wh kg-1 at a power density of 700 W kg-1 . The PYT-functionalized graphene holds great potential for high-performance energy storage devices.
Collapse
Affiliation(s)
- Mangmang Shi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, Göteborg, SE-412 96, Sweden
- School of physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Cheng Peng
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, Göteborg, SE-412 96, Sweden
| | - Xiaoyan Zhang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, Göteborg, SE-412 96, Sweden
| |
Collapse
|
15
|
2-aminoanthraquinone anchored on N-doped reduced graphene oxide for symmetric supercapacitor with boosting energy density. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
16
|
Li C, Yan L, Wang M, Kong J, Bao W, Chang L. Synthesis Strategies and Applications for Pitch-Based Anode: From Industrial By-Products to Power Sources. CHEM REC 2023; 23:e202200216. [PMID: 36344434 DOI: 10.1002/tcr.202200216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Indexed: 11/09/2022]
Abstract
It is significant for saving energy to manufacture superb-property batteries. Carbon is one of the most competitive anode materials in batteries, but it is hard for commercial graphite anodes to meet the increasingly higher energy-storage requirements. Moreover, the price of other better-performing carbon materials (such as graphene) is much higher than graphite, which is not conducive to massive production. Pitch, the cheap by-product in the petroleum and coal industries, has high carbon content and yield, making it possible for commercialization. Developing pitch-based anodes can not only lower raw material costs but also realize the pitch's high value-added utilization. We comprehensively reviewed the latest synthesis strategies of pitch-derived materials and then introduced their application and research progress in lithium, sodium, and potassium ion batteries (LIBs, SIBs, and PIBs). Finally, we summarize and suggest the pitch's development trend for anodes and in other fields.
Collapse
Affiliation(s)
- Cen Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.,Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lunjing Yan
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.,Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Meijun Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.,Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jiao Kong
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.,Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Weiren Bao
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.,Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Liping Chang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.,Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
17
|
He Y, Zhou W, Li D, Liang Y, Chao S, Zhao X, Zhang M, Xu J. Rare Earth Doping Engineering Tailoring Advanced Oxygen-Vacancy Co 3 O 4 with Tunable Structures for High-Efficiency Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206956. [PMID: 36504322 DOI: 10.1002/smll.202206956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Co3 O4 with high theoretical capacitance is a promising electrode material for high-end energy applications, yet the unexcited bulk electrochemical activity, low conductivity, and poor kinetics of Co3 O4 lead to unsatisfactory charge storage capacity. For boosting its energy storage capability, rare earth (RE)-doped Co3 O4 nanostructures with abundant oxygen vacancies are constructed by simple, economical, and universal chemical precipitation. By changing different types of RE (RE = La, Yb, Y, Ce, Er, Ho, Nd, Eu) as dopants, the RE-doped Co3 O4 nanostructures can be well transformed from large nanosheets to coiled tiny nanosheets and finally to ultrafine nanoparticles, meanwhile, their specific surface area, pore distribution, the ratio of Co2+ /Co3+ , oxygen vacancy content, crystalline phase, microstrain parameter, and the capacitance performance are regularly affected. Notably, Eu-doped Co3 O4 nanoparticles with good cycle stability show a maximum specific capacitance of 1021.3 F g-1 (90.78 mAh g-1 ) at 2 A g-1 , higher than 388 F g-1 (34.49 mAh g-1 ) of pristine Co3 O4 nanosheets. The assembling asymmetric supercapacitor delivers a high energy density of 48.23 Wh kg-1 at high power density of 1.2 kW kg-1 . These findings denote the significance and great potential of RE-doped Co3 O4 in the development of high-efficiency energy storage.
Collapse
Affiliation(s)
- Yao He
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Weiqiang Zhou
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Danqin Li
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Yanmei Liang
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Shixing Chao
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Xueqian Zhao
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Mingming Zhang
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Jingkun Xu
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| |
Collapse
|
18
|
Farbod M, Elahi asl E, Shojaeenezhad SS. Polypyrrole/multi-walled carbon nanotube nanocomposite as a high-performance material for supercapacitors’ electrodes. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization. J Colloid Interface Sci 2023; 630:372-381. [DOI: 10.1016/j.jcis.2022.10.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
20
|
Chao S, Zhao Y, Zhu Y, Zhou W, Zhu D, Liang Y, Li D, Wu Y, He Y, Xu J, Liu P. Intrinsically active capsaicin non-covalently modified nitrogen doped graphene for high-performance supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Ahmed SF, Mofijur M, Ahmed B, Mehnaz T, Mehejabin F, Maliat D, Hoang AT, Shafiullah GM. Nanomaterials as a sustainable choice for treating wastewater. ENVIRONMENTAL RESEARCH 2022; 214:113807. [PMID: 35798266 DOI: 10.1016/j.envres.2022.113807] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Wastewater containing toxic substances is a major threat to the health of both aquatic and terrestrial ecosystems. In order to treat wastewater, nanomaterials are currently being studied intensively due to their unprecedented properties. The unique features of nanoparticles are prompting an increasing number of studies into their use in wastewater treatment. Although several studies have been undertaken in recent years, most of them did not focus on some of the nanomaterials that are now often utilized for wastewater treatment. It is essential to investigate the most recent advances in all the types of nanomaterials that are now frequently employed for wastewater treatment. The recent advancements in common nanomaterials used for sustainable wastewater treatment is comprehensively reviewed in this paper. This paper also thoroughly assesses unique features, proper utilization, future prospects, and current limitations of green nanotechnology in wastewater treatment. Zero-valent metal and metal oxide nanoparticles, especially iron oxides were shown to be more effective than traditional carbon nanotubes (CNTs) for recovering heavy metals in wastewater. Iron oxide achieved 75.9% COD (chemical oxygen demand) removal efficiency while titanium oxide (TiO2) achieved 75.5% COD. Iron nanoparticles attained 72.1% methyl blue removal efficiency. However, since only a few types of nanomaterials have been commercialized, it is important to also focus on the economic feasibility of each nanomaterial. This study found that the large surface area, high reactivity, and strong mechanical properties of nanoparticles means they can be considered as a promising option for successful wastewater treatment.
Collapse
Affiliation(s)
- Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Bushra Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - Tabassum Mehnaz
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - Fatema Mehejabin
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - Daina Maliat
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| | - G M Shafiullah
- Discipline of Engineering and Energy, Murdoch University, Western Australia, 6150, Australia.
| |
Collapse
|
22
|
Xu A, Zhu Q, Li G, Gong C, Li X, Chen H, Cui J, Wu S, Xu Z, Yan Y. 2D Bismuth@N-Doped Carbon Sheets for Ultrahigh Rate and Stable Potassium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203976. [PMID: 36089671 DOI: 10.1002/smll.202203976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Metallic Bi, as an alloying-type anode material, has demonstrated tremendous potential for practical application of potassium-ion batteries. However, the giant volume expansion, severe structure pulverization, and sluggish dynamics of Bi-based materials result in unsatisfied rate performance and unstable cycling stability. Here, 2D bismuth@N-doped carbon sheets with BiOC bond and internal void space (2D Bi@NOC) are successfully fabricated via a self-template strategy to address these issues, which own ultrafast electrochemical kinetics and impressive long-term cycling stability for delivering an admirable capacity of 341.7 mAh g-1 after 1000 cycles at 10 A g-1 and impressive rate capability of 220.6 mAh g-1 at 50 A g-1 . Particularly, the in situ transmission electron microscopy observations visualize the real-time alloying/dealloying process and reveal that plastic carbon shell and void space can availably relieve dramatic volume stress and powerfully maintain structural integrity. Density functional theory calculation and ultraviolet photoelectron spectroscopy test certify that the robust BiOC bond is thermodynamically and kinetically beneficial for adsorption/diffusion of K+ . This work will light on designing advanced high-performance energy materials and provide important evidence for understanding the energy storage mechanism of alloy-based materials.
Collapse
Affiliation(s)
- Anding Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Qi Zhu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Guilan Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Caihong Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Xue Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Huaming Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jie Cui
- Analytical and Testing Centre, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Songping Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- Guangdong Key Laboratory of Fuel Cell Technology, Guangzhou, 510641, P. R. China
| | - Zhiguang Xu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yurong Yan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- Key Lab of Guangdong High Property & Functional Polymer Materials, Guangzhou, 510640, P. R. China
| |
Collapse
|
23
|
K.G. S, Benoy M, Duraimurugan J, Prabhu S, Siranjeevi R, Ramesh R, Suresh Kumar G, Shkir M. Synergistic effect of NiS/g-C3N4 nanocomposite for high‐performance asymmetric supercapacitors. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Shaheen Shah S, Abdul Aziz M, Al-Betar AR, Mahfoz W. Electrodeposition of polyaniline on high electroactive indium tin oxide nanoparticles-modified fluorine doped tin oxide electrode for fabrication of high-performance hybrid supercapacitor. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
25
|
Wang N, Zhang G, Guan T, Wu J, Wang J, Li K. Microphase Separation Engineering toward 3D Porous Carbon Assembled from Nanosheets for Flexible All-Solid-State Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13250-13260. [PMID: 35258277 DOI: 10.1021/acsami.1c23624] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although hierarchitectures could energize carbon materials to address the challenges encountered in emerging flexible energy storage, how to make the trade-offs among specific surface area, pore configuration, and conductivity is still a lingering issue. Herein, 3D porous carbon assembled by nanosheets (HCAs) with tunable hierarchical porous structure is acquired from amphiphilic coal tar pitch and chitosan by means of a facile microphase separation strategy without any templates. The polar molecular chains of chitosan and the surrounding pitch molecules with strong π-π* bonds self-assemble respectively to form hierarchical pores and a network of nanosheets in a stepped pyrolysis process. Due to the combined effects of the meso-dominant porous structure, high specific surface area, and nitrogen-rich nature, the as-assembled symmetric all-solid-state supercapacitor with a wide voltage range of 0-1.8 V delivers a specific capacitance of 296 F g-1 at 0.2 A g-1 and an energy density of 27 Wh kg-1 at a power density of 450 W kg-1. The strategy of microphase separation is proposed originally to design and to fabricate carbon materials with multilevel nanoarchitectural trade-offs for high-performance supercapacitors.
Collapse
Affiliation(s)
- Ning Wang
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Guoli Zhang
- Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China
| | - Taotao Guan
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, PR China
| | - Juncheng Wu
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Jianlong Wang
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, PR China
| | - Kaixi Li
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| |
Collapse
|