1
|
Vatanpour V, Tuncay G, Teber OO, Paziresh S, Tavajohi N, Koyuncu İ. Introducing the SNW-1 Covalent Organic Framework to the Polyamide Layer of the TFC-RO Membrane with Enhanced Permeability and Desalination Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65194-65210. [PMID: 39539192 DOI: 10.1021/acsami.4c14923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study investigates the synthesis and characterization of Schiff base network-1 (SNW-1) covalent organic framework (COF) nanomaterials and their application in the fabrication of thin-film nanocomposite (TFN) membranes. The embedding of SNW-1 COF in reverse osmosis (RO) membranes with a polysulfone (PSf) substrate was done using the interfacial polymerization method. The result of the study demonstrated that the porous and hydrophilic structure of the COF increased the hydrophilic properties of the produced RO membranes. When the COF was embedded with a concentration of 0.02 wt %, the hydrophilicity of the RO membrane was higher than that of the other membranes, with a contact angle value of 45.2°. Pure water flux, saline solution flux, and humic acid (HA)/sodium chloride (NaCl) foulant solution flux were measured to determine the membrane performance, and it was found that as the COF ratio increased, the fluxes increased up to a certain concentration rate. The RO membrane with a SNW-1 concentration of 0.005 wt % had the highest values of pure water flux and saline solution flux with high salt rejection (34.2 and 32.2 LMH, 97.1%, respectively) and was the most resistant membrane against fouling. This study presents the potential of the SNW-1 COF with precise design capabilities and controlled unique properties as an additive for desalination applications.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Gizem Tuncay
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Oğuz Orhun Teber
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- Nano Science and Nano Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Naser Tavajohi
- Department of Chemistry, Umeå University, Umeå 90187, Sweden
| | - İsmail Koyuncu
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| |
Collapse
|
2
|
Zhao Y, Gu H, Zhou Y, Wen C, Liu X, Wang S, Chen Z, Yang H, Wang X. COF-based membranes for liquid phase separation: Preparation, mechanism and perspective. J Environ Sci (China) 2024; 141:63-89. [PMID: 38408835 DOI: 10.1016/j.jes.2023.06.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 02/28/2024]
Abstract
Covalent organic frameworks (COFs) are a new kind of crystalline porous materials composed of organic molecules connected by covalent bonds, processes the characteristics of low density, large specific surface area, adjustable pore size and structure, and easy to functionalize, which have been widely used in the field of membrane separation technology. Recently, there are more and more researches focusing on the preparation methods, separation application, and mechanism of COF membranes, which need to be further summarized and compared. In this review, we primarily summarized several conventional preparation methods, such as two-phase interfacial polymerization, in-situ growth on substrate, unidirectional diffusion method, layer-by-layer assembly method, mixed matrix membranes, and so on. The advantages and disadvantages of each method are briefly summarized. The application potential of COF membrane in liquid separation are introduced from four aspects: dyeing wastewater treatment, heavy metal removal, seawater desalination and oil-water separation. Then, the mechanisms including pore structure, hydrophilic/hydrophobic, electrostatic repulsion/attraction and Donnan effect are introduced. For the efficient removal of different kind of pollutions, researchers can select different ligands to construct membranes with specific pore size, hydrophily, salt or organic rejection ability and functional group. The ideas for the design and preparation of COF membranes are introduced. Finally, the future direction and challenges of the next generation of COF membranes in the field of separation are prospected.
Collapse
Affiliation(s)
- Yujie Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - He Gu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yilun Zhou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Caimei Wen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
3
|
Zuo H, Lyu B, Yao J, Long W, Shi Y, Li X, Hu H, Thomas A, Yuan J, Hou B, Zhang W, Liao Y. Bioinspired Gradient Covalent Organic Framework Membranes for Ultrafast and Asymmetric Solvent Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305755. [PMID: 38227620 DOI: 10.1002/adma.202305755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/26/2023] [Indexed: 01/18/2024]
Abstract
Gradients play a pivotal role in membrane technologies, e.g., osmotic energy conversion, desalination, biomimetic actuation, selective separation, and more. In these applications, the compositional gradients are of great relevance for successful function implementation, ranging from solvent separation to smart devices; However, the construction of functional gradient in membranes is still challenging both in scale and directions. Inspired by the specific function-related, graded porous structures in glomerular filtration membranes, a general approach for constructing gradient covalent organic framework membranes (GCOMx) applying poly (ionic liquid)s (PILs) as template is reported here. With graded distribution of highly porous covalent organic framework (COF) crystals along the membrane, GCOMx exhibts an unprecedented asymmetric solvent transport when applying different membrane sides as the solvent feed surface during filtration, leading to a much-enhanced flux (10-18 times) of the "large-to-small" pore flow comparing to the reverse direction, verified by hydromechanical theoretical calculations. Upon systematic experiments, GCOMx achieves superior permeance in nonpolar (hexane ≈260.45 LMH bar-1) and polar (methanol ≈175.93 LMH bar-1) solvents, together with narrow molecular weight cut-off (MWCO, 472 g mol-1) and molecular weight retention onset (MWRO, <182 g mol-1). Interestingly, GCOMx shows significant filtration performance in simulated kidney dialysis, revealing great potential of GCOMx in bionic applications.
Collapse
Affiliation(s)
- Hongyu Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Baokang Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiaao Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wenhua Long
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinghao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technical University of Berlin, Sekretariat BA 2, 4010623, Hardenbergstr, Berlin, Germany
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Bo Hou
- School of Physics and Astronomy, Cardiff University, Queen's Building, The Parade, Wales CF24 3AA, Cardiff, CF10 3AT, UK
| | - Weiyi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
4
|
Azadi E, Singh N, Dinari M, Kim JS. Recent advances in the fabrication of organic solvent nanofiltration membranes using covalent/metal organic frameworks. Chem Commun (Camb) 2024; 60:2865-2886. [PMID: 38372347 DOI: 10.1039/d3cc06057h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Organic solvent nanofiltration (OSN) has evolved as a vital technological frontier with paramount significance in the separation and purification of organic solvents. Its implication is particularly prominent in industries such as pharmaceuticals, petrochemicals, and environmental remediation. This comprehensive review, meticulously navigates through the current state of research in OSN membranes, unveiling both the critical challenges and promising opportunities that beckon further exploration. The central focus of this review is on the unique utilization of covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) in OSN membrane design, leveraging their distinctive structural attributes-tunable porosity, robust chemical stability, and molecular sieving capabilities. These qualities position them as exceptional candidates for crafting membranes tailored to the intricacies of organic solvent environments. Our investigation extends into the fundamental principles that render COFs and MOFs adept in OSN applications, dissecting their varied fabrication methods while offering insights into the advantages and limitations of each. Moreover, we address environmental and sustainability considerations in the use of COF and MOF-based OSN membranes. Furthermore, we meticulously present the latest advancements and innovations in this burgeoning field, charting a course toward potential future directions and emerging research areas. By underscoring the challenges awaiting exploration, this review not only provides a panoramic view of the current OSN landscape but also lays the groundwork for the evolution of efficient and sustainable OSN technologies, specifically harnessing the unique attributes of COFs and MOFs.
Collapse
Affiliation(s)
- Elham Azadi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Nem Singh
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| |
Collapse
|
5
|
Asif M, Kim S, Nguyen TS, Mahmood J, Yavuz CT. Covalent Organic Framework Membranes and Water Treatment. J Am Chem Soc 2024; 146:3567-3584. [PMID: 38300989 PMCID: PMC10870710 DOI: 10.1021/jacs.3c10832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Covalent organic frameworks (COFs) are an emerging class of highly porous crystalline organic polymers comprised entirely of organic linkers connected by strong covalent bonds. Due to their excellent physicochemical properties (e.g., ordered structure, porosity, and stability), COFs are considered ideal materials for developing state-of-the-art separation membranes. In fact, significant advances have been made in the last six years regarding the fabrication and functionalization of COF membranes. In particular, COFs have been utilized to obtain thin-film, composite, and mixed matrix membranes that could achieve effective rejection (mostly above 80%) of organic dyes and model organic foulants (e.g., humic acid). COF-based membranes, especially those prepared by embedding into polyamide thin-films, obtained adequate rejection of salts in desalination applications. However, the claims of ordered structure and separation mechanisms remain unclear and debatable. In this perspective, we analyze critically the design and exploitation of COFs for membrane fabrication and their performance in water treatment applications. In addition, technological challenges associated with COF properties, fabrication methods, and treatment efficacy are highlighted to redirect future research efforts in realizing highly selective separation membranes for scale-up and industrial applications.
Collapse
Affiliation(s)
- Muhammad
Bilal Asif
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Seokjin Kim
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Thien S. Nguyen
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Javeed Mahmood
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Cafer T. Yavuz
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
6
|
Sun X, Hu Y, Fu Y, Yang J, Song D, Li B, Xu W, Wang N. Single Ru Sites on Covalent Organic Framework-Coated Carbon Nanotubes for Highly Efficient Electrocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305978. [PMID: 37688323 DOI: 10.1002/smll.202305978] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Covalent organic frameworks (COFs) with precisely controllable structures and highly ordered porosity possess great potential as electrocatalysts for hydrogen evolution reaction (HER). However, the catalytic performance of pristine COFs is limited by the poor active sites and low electron transfer. Herein, to address these issues, the conductive carbon nanotubes (CNTs) are coated by a defined structure RuBpy(H2 O)(OH)Cl2 in bipyridine-based COF (TpBpy). And this composite with single site Ru incorporated can be used as HER electrocatalyst in alkaline conditions. A series of crucial issues are carefully discussed through experiments and density functional theory (DFT) calculations, such as the coordination structure of the atomically dispersion Ru ions, the catalytic mechanism of the embedded catalytic site, and the effect of COF and CNTs on the electrocatalytic properties. According to DFT calculations, the embedded single sites Ru act as catalytic sites for H2 generation. Benefitting from increasing the catalyst conductivity and the charge transfer, the as-prepared c-CNT-0.68@TpBpy-Ru shows an excellent HER overpotential of 112 mV at 10 mA cm-2 under alkaline conditions as well as an excellent durability up to 12 h, which is superior to that of most of the reported COFs electrocatalysts in alkaline solution.
Collapse
Affiliation(s)
- Xuzhuo Sun
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yanping Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Yuying Fu
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jing Yang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Dengmeng Song
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Bo Li
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Ning Wang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| |
Collapse
|
7
|
Interfacial synthesis: a scalable fabrication method of two-dimensional membranes. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2023.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Li Y, Gao Q, Xu X, Li P, Zhao S. Solvent-evolution-coupled single ion diffusion into charged nanopores. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Cao HL, Yang C, Qian HL, Yan XP. Urea-linked covalent organic framework functionalized polytetrafluoroethylene film for selective and rapid thin film microextraction of rhodamine B. J Chromatogr A 2022; 1673:463133. [PMID: 35584564 DOI: 10.1016/j.chroma.2022.463133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 12/01/2022]
Abstract
Incorporation of highly selective and stable adsorbent with facile extraction technology is desired in practical analysis. Here we show the rational preparation of a urea-linked covalent organic framework functionalized polytetrafluoroethylene film (COF-117-PTFE) with ordered porous structure, rich functional groups, and large surface area-to-volume ratio as the effective adsorbent for convenient, selective and rapid thin film microextraction (TFME) of rhodamine B (RB). The COF-117-PTFE based TFME coupled with high performance liquid chromatography-fluorescence detector (HPLC-FLD) successfully realized the determination of RB with the limit of detection of 0.007 μg L-1, the linear range of 0.1 - 100 μg L-1. The relative standard deviation (RSD) of intraday (n = 5) and interday (n = 5) for the determination of 10 μg L-1 RB were 2.3% and 6.8%, respectively. The absolute recoveries were 80.3%, 71.2% and 67.9% in river water, chili powder and Sichuan pepper powder, respectively. The recoveries for RB spiking in complicated real samples (dry chili, chili powder, dry Sichuan pepper, Sichuan pepper powder and river water) ranged from 90.4% to 107.5%. The developed COF-117-PTFE based TFME-HPLC-FLD method is promising in practical application. This work reveals the high potential of functionalized COF film as the adsorbent for effective extraction of trace contaminants in complicated samples.
Collapse
Affiliation(s)
- Hui-Ling Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Lei R, Zha Z, Hao Z, Wang J, Wang Z, Zhao S. Ultrathin and high-performance covalent organic frameworks composite membranes generated by oligomer triggered interfacial polymerization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Interfacial polymerization of a covalent organic framework layer on titanium dioxide@graphene oxide/polyacrylonitrile mixed-matrix membranes for high-performance dye separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Metal-organic and covalent organic frameworks for the remediation of aqueous dye solutions: Adsorptive, catalytic and extractive processes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Liang X, Tian Y, Yuan Y, Kim Y. Ionic Covalent Organic Frameworks for Energy Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105647. [PMID: 34626010 DOI: 10.1002/adma.202105647] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks (COFs) are a class of porous crystalline materials whose facile preparation, functionality, and modularity have led to their becoming powerful platforms for the development of molecular devices in many fields of (bio)engineering, such as energy storage, environmental remediation, drug delivery, and catalysis. In particular, ionic COFs (iCOFs) are highly useful for constructing energy devices, as their ionic functional groups can transport ions efficiently, and the nonlabile and highly ordered all-covalent pore structures of their backbones provide ideal pathways for long-term ionic transport under harsh electrochemical conditions. Here, current research progress on the use of iCOFs for energy devices, specifically lithium-based batteries and fuel cells, is reviewed in terms of iCOF backbone-design strategies, synthetic approaches, properties, engineering techniques, and applications. iCOFs are categorized as anionic COFs or cationic COFs, and how each of these types of iCOFs transport lithium ions, protons, or hydroxides is illustrated. Finally, the current challenges to and future opportunities for the utilization of iCOFs in energy devices are described. This review will therefore serve as a useful reference on state-of-the-art iCOF design and application strategies focusing on energy devices.
Collapse
Affiliation(s)
- Xiaoguang Liang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ye Tian
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yufei Yuan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
14
|
Nam YT, Kang JH, Jang JD, Bae JH, Jung HT, Kim DW. Recent Developments in Nanoporous Graphene Membranes for Organic Solvent Nanofiltration: A Short Review. MEMBRANES 2021; 11:membranes11100793. [PMID: 34677558 PMCID: PMC8538602 DOI: 10.3390/membranes11100793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022]
Abstract
Graphene-based membranes are promising candidates for efficient organic solvent nanofiltration (OSN) processes because of their unique structural characteristics, such as mechanical/chemical stability and precise molecular sieving. Recently, to improve organic solvent permeance and selectivity, nanopores have been fabricated on graphene planes via chemical and physical methods. The nanopores serve as an additional channel for facilitating ultrafast solvent permeation while filtering organic molecules by size exclusion. This review summarizes the recent developments in nanoporous graphene (NG)-based membranes for OSN applications. The membranes are categorized depending on the membrane structure: single-layer NG, multilayer NG, and graphene-based composite membranes hybridized with other porous materials. Techniques for nanopore generation on graphene, as well as the challenges faced and the perspectives required for the commercialization of NG membranes, are also discussed.
Collapse
Affiliation(s)
- Yoon-Tae Nam
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Yuseong-gu, Daejeon 34141, Korea; (Y.-T.N.); (J.-D.J.)
| | - Jun-Hyeok Kang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea; (J.-H.K.); (J.-H.B.)
| | - Jae-Dong Jang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Yuseong-gu, Daejeon 34141, Korea; (Y.-T.N.); (J.-D.J.)
| | - Jun-Hyuk Bae
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea; (J.-H.K.); (J.-H.B.)
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Yuseong-gu, Daejeon 34141, Korea; (Y.-T.N.); (J.-D.J.)
- Correspondence: (H.-T.J.); (D.-W.K.)
| | - Dae-Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea; (J.-H.K.); (J.-H.B.)
- Correspondence: (H.-T.J.); (D.-W.K.)
| |
Collapse
|
15
|
Wang S, Yang L, Xu K, Chen H, Huang N. De Novo Fabrication of Large-Area and Self-Standing Covalent Organic Framework Films for Efficient Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44806-44813. [PMID: 34519198 DOI: 10.1021/acsami.1c14420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks (COFs) have aroused extensive attention from various fields owing to their numerous advantages, including permanent porosity, high crystallinity, strong robustness, and well-ordered channels. However, the poor processability of the crystallite powder has greatly impeded their further utilization in many advanced devices and frontier areas. In this work, we fabricate a series of COF films using an interfacial polymerization strategy at a liquid-liquid interface under ambient conditions. The as-synthesized freestanding films are continuous, flexible, and defect-free and have large areas of up to 4 × 6 cm2. In addition, the pore sizes of these COF films can be well controlled based on the principle of reticular chemistry. These films exhibit high chemical stability even in acidic and basic aqueous solutions. More significantly, the highly robust COF films can serve as a nanofiltration membrane for efficient separation of pollutant molecules with different dimensions. These films show high selectivity for the separation of mixed molecule feed and excellent recyclability without a significant loss in the rejection rate.
Collapse
Affiliation(s)
- Shizhao Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liting Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kai Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongzheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Mallakpour S, Azadi E, Hussain CM. Emerging new-generation hybrids based on covalent organic frameworks for industrial applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj00609f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review highlights the advancement of COF hybrid-based materials for diverse industrial applications.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|