1
|
Zhao Z, Liu W, Liu H. Flexible and Durable Direct Ink Writing 3D-Printed Conductive Fabrics for Smart Wearables. ACS OMEGA 2025; 10:14138-14149. [PMID: 40256565 PMCID: PMC12004193 DOI: 10.1021/acsomega.4c11367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Functional fabrics have broad applications in smart wearables, offering diverse functions, such as sensing, energy harvesting, and actuation. The use of 3D printing to deposit functional materials onto textile fabrics has emerged as a transformative approach in smart wearable development due to the advantages it offers. However, achieving the desired functionalities while maintaining the fabric's flexibility, wearing comfort, washability, and durability of the printed material remains a challenge. In this study, direct ink writing (DIW) 3D printing technology was employed to print polybutylene succinate (PBS) solutions containing carbon nanotubes (CNTs) onto two types of fabrics. Various properties of the printed fabrics were assessed to examine the influence of printing solutions, fabric structures, and postprinting processes on printing performance. The printed fabrics exhibited excellent electrical conductivity, mechanical strength, gauge factor, and stability under repeated strains. These characteristics highlight their potential for use in smart wearable devices such as strain- and motion-detecting sensors. Analysis of the printed fabric morphologies revealed that factors such as fiber content, yarn structure, and surface roughness of the substrate fabric, along with the rheological properties and surface tension of the printing solution, played key roles in determining the wetting and penetration behaviors of the solution on the substrate. The solution's ability to penetrate and bond with fibers provided the printed fabrics with enhanced washability and abrasion resistance, demonstrating the advantages of DIW printing technology in developing textile-based sensors for smart wearables. Additionally, by using biobased and biodegradable nontoxic Cyrene as the solvent for processing, the printed fabric is safer for smart wearables, and the process is more environmentally friendly than commonly used toxic solvents for PBS.
Collapse
Affiliation(s)
- Zihui Zhao
- Department
of Apparel Merchandising, Design and Textiles, Washington State University, Pullman, Washington 99164, United States
| | - Wangcheng Liu
- Composite
Materials and Engineering Center, Washington
State University, Pullman, Washington 99164, United States
| | - Hang Liu
- Department
of Apparel Merchandising, Design and Textiles, Washington State University, Pullman, Washington 99164, United States
- Composite
Materials and Engineering Center, Washington
State University, Pullman, Washington 99164, United States
| |
Collapse
|
2
|
Yang G, Lin R, Li H, Chen Y, Liu M, Luo Z, Wang K, Tu J, Xu Y, Fan Z, Zhou Y, Pan Y, Zhao Z, Liu R. Implantable wireless suture sensor for in situ tendon and ligament strain monitoring. SCIENCE ADVANCES 2025; 11:eadt3811. [PMID: 40020052 PMCID: PMC11870077 DOI: 10.1126/sciadv.adt3811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
Tendon and ligament ruptures are prevalent, and severe sports injuries require surgical repair. In clinical practice, monitoring of tissue strain is critical to alert severe postoperative complications such as graft reinjury and loosening. Here, we present a sensor system that integrates a strain sensor and communication coil onto surgical silk sutures, enabling in situ monitoring and wireless readout of tissue strains via surgical implantation. The flexible sensor shows excellent adaptability to soft tissues, providing a strain monitoring range of 0 to 10% with a minimum detection threshold of 0.25% and maintaining stability more than 300,000 stretching cycles. The wireless sensor could be integrated with complex structures in surgical scenarios involving lateral collateral ligament injury and anterior cruciate ligament reconstruction, enabling distinct responses to graft stretching, reinjury, and loosening. Animal experiments demonstrate that the sensor can acquire real-time, clinical-grade strain data while exhibiting high biocompatibility. The sensor system shows considerable potential in evaluating preclinical implant performance and monitoring implant-related surgical complications.
Collapse
Affiliation(s)
- Guangmin Yang
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Center of Orthopaedics & Sport Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Rongzan Lin
- School of Biomedical Engineering, Tsinghua University, Beijing 100084 China
| | - Haojie Li
- School of Biomedical Engineering, Tsinghua University, Beijing 100084 China
| | - Yuqiu Chen
- School of Biomedical Engineering, Tsinghua University, Beijing 100084 China
| | - Meiling Liu
- School of Biomedical Engineering, Tsinghua University, Beijing 100084 China
| | - Ziyang Luo
- School of Biomedical Engineering, Tsinghua University, Beijing 100084 China
| | - Kewei Wang
- School of Biomedical Engineering, Tsinghua University, Beijing 100084 China
| | - Jinying Tu
- School of Biomedical Engineering, Tsinghua University, Beijing 100084 China
| | - Yue Xu
- School of Biomedical Engineering, Tsinghua University, Beijing 100084 China
| | - Zixiao Fan
- School of Biomedical Engineering, Tsinghua University, Beijing 100084 China
| | - Yizhi Zhou
- School of Biomedical Engineering, Tsinghua University, Beijing 100084 China
| | - Yongwei Pan
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Center of Orthopaedics & Sport Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhe Zhao
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Center of Orthopaedics & Sport Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ran Liu
- School of Biomedical Engineering, Tsinghua University, Beijing 100084 China
| |
Collapse
|
3
|
Craighero M, Li Q, Zeng Z, Choi C, Kim Y, Yoon H, Liu T, Sowinski P, Haraguchi S, Hwang B, Mihiretie B, Fabiano S, Müller C. Poly(benzodifurandione) Coated Silk Yarn for Thermoelectric Textiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406770. [PMID: 39099342 PMCID: PMC11481370 DOI: 10.1002/advs.202406770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Indexed: 08/06/2024]
Abstract
Thermoelectric textile devices represent an intriguing avenue for powering wearable electronics. The lack of air-stable n-type polymers has, until now, prevented the development of n-type multifilament yarns, which are needed for textile manufacturing. Here, the thermomechanical properties of the recently reported n-type polymer poly(benzodifurandione) (PBFDO) are explored and its suitability as a yarn coating material is assessed. The outstanding robustness of the polymer facilitates the coating of silk yarn that, as a result, displays an effective bulk conductivity of 13 S cm-1, with a projected half-life of 3.2 ± 0.7 years at ambient conditions. Moreover, the n-type PBFDO coated silk yarn with a Young's modulus of E = 0.6 GPa and a strain at break of εbreak = 14% can be machine washed, with only a threefold decrease in conductivity after seven washing cycles. PBFDO and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) coated silk yarns are used to fabricate two out-of-plane thermoelectric textile devices: a thermoelectric button and a larger thermopile with 16 legs. Excellent air stability is paired with an open-circuit voltage of 17 mV and a maximum output power of 0.67 µW for a temperature difference of 70 K. Evidently, PBFDO coated multifilament silk yarn is a promising component for the realization of air stable thermoelectric textile devices.
Collapse
Affiliation(s)
- Mariavittoria Craighero
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg412 96Sweden
| | - Qifan Li
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Zijin Zeng
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg412 96Sweden
- Hot Disk ABSven Hultins gatan 9AGöteborg41258Sweden
| | - Chunghyeon Choi
- Department of Intelligent Semiconductor EngineeringChung‐Ang UniversitySeoul06974Republic of Korea
| | - Youngseok Kim
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg412 96Sweden
| | - Hyungsub Yoon
- Department of Intelligent Semiconductor EngineeringChung‐Ang UniversitySeoul06974Republic of Korea
| | - Tiefeng Liu
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Przemyslaw Sowinski
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg412 96Sweden
| | - Shuichi Haraguchi
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg412 96Sweden
| | - Byungil Hwang
- School of Integrative EngineeringChung‐Ang UniversitySeoul06974Republic of Korea
| | | | - Simone Fabiano
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Christian Müller
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg412 96Sweden
| |
Collapse
|
4
|
Shao B, Chen Z, Su H, Peng S, Song M. The Latest Advances in Ink-Based Nanogenerators: From Materials to Applications. Int J Mol Sci 2024; 25:6152. [PMID: 38892343 PMCID: PMC11172637 DOI: 10.3390/ijms25116152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Nanogenerators possess the capability to harvest faint energy from the environment. Among them, thermoelectric (TE), triboelectric, piezoelectric (PE), and moisture-enabled nanogenerators represent promising approaches to micro-nano energy collection. These nanogenerators have seen considerable progress in material optimization and structural design. Printing technology has facilitated the large-scale manufacturing of nanogenerators. Although inks can be compatible with most traditional functional materials, this inevitably leads to a decrease in the electrical performance of the materials, necessitating control over the rheological properties of the inks. Furthermore, printing technology offers increased structural design flexibility. This review provides a comprehensive framework for ink-based nanogenerators, encompassing ink material optimization and device structural design, including improvements in ink performance, control of rheological properties, and efficient energy harvesting structures. Additionally, it highlights ink-based nanogenerators that incorporate textile technology and hybrid energy technologies, reviewing their latest advancements in energy collection and self-powered sensing. The discussion also addresses the main challenges faced and future directions for development.
Collapse
Affiliation(s)
- Bingqian Shao
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Zhitao Chen
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Hengzhe Su
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Shuzhe Peng
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Mingxin Song
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Ali MA, Singh M, Zhang S, Kaneko D, Okajima MK, Kaneko T. Metal-Assisted Injection Spinning of Ultra Strong Fibers from Megamolecular LC Polysaccharides. Polymers (Basel) 2024; 16:1099. [PMID: 38675018 PMCID: PMC11054878 DOI: 10.3390/polym16081099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The molecular orientation of liquid crystalline (LC) hydrogels has the potential to induce a range of functionalities that can deliver great mechanical strength. Sacran is a supergiant LC polysaccharide isolated from the cyanobacterium Aphanothece sacrum with a high amount of anionic functional groups such as sulfates and carboxylates. In this article, ultra-strong sacran hydrogels and their dried fibers were produced by cross-linking under injection flow with trivalent metal ions such as Al3+, Cr3+, Fe3+, In3+, and rare-earth metal ions such Er3+ and Sr3+. Crossed-polarizing microscopy and X-ray diffraction imaging revealed a uniaxial molecular orientation in the LC gel fiber, resulting in outstanding mechanical characteristics.
Collapse
Affiliation(s)
- Mohammad Asif Ali
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, China; (M.A.A.); (D.K.)
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technologies, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan; (M.S.); (S.Z.)
| | - Maninder Singh
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technologies, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan; (M.S.); (S.Z.)
| | - Shuo Zhang
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technologies, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan; (M.S.); (S.Z.)
| | - Daisaku Kaneko
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, China; (M.A.A.); (D.K.)
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technologies, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan; (M.S.); (S.Z.)
| | - Maiko Kaneko Okajima
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, China; (M.A.A.); (D.K.)
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technologies, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan; (M.S.); (S.Z.)
| | - Tatsuo Kaneko
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, China; (M.A.A.); (D.K.)
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technologies, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan; (M.S.); (S.Z.)
| |
Collapse
|
6
|
Paleti SHK, Kim Y, Kimpel J, Craighero M, Haraguchi S, Müller C. Impact of doping on the mechanical properties of conjugated polymers. Chem Soc Rev 2024; 53:1702-1729. [PMID: 38265833 PMCID: PMC10876084 DOI: 10.1039/d3cs00833a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 01/25/2024]
Abstract
Conjugated polymers exhibit a unique portfolio of electrical and electrochemical behavior, which - paired with the mechanical properties that are typical for macromolecules - make them intriguing candidates for a wide range of application areas from wearable electronics to bioelectronics. However, the degree of oxidation or reduction of the polymer can strongly impact the mechanical response and thus must be considered when designing flexible or stretchable devices. This tutorial review first explores how the chain architecture, processing as well as the resulting nano- and microstructure impact the rheological and mechanical properties. In addition, different methods for the mechanical characterization of thin films and bulk materials such as fibers are summarized. Then, the review discusses how chemical and electrochemical doping alter the mechanical properties in terms of stiffness and ductility. Finally, the mechanical response of (doped) conjugated polymers is discussed in the context of (1) organic photovoltaics, representing thin-film devices with a relatively low charge-carrier density, (2) organic thermoelectrics, where chemical doping is used to realize thin films or bulk materials with a high doping level, and (3) organic electrochemical transistors, where electrochemical doping allows high charge-carrier densities to be reached, albeit accompanied by significant swelling. In the future, chemical and electrochemical doping may not only allow modulation and optimization of the electrical and electrochemical behavior of conjugated polymers, but also facilitate the design of materials with a tunable mechanical response.
Collapse
Affiliation(s)
- Sri Harish Kumar Paleti
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Youngseok Kim
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Joost Kimpel
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Mariavittoria Craighero
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Shuichi Haraguchi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 41296 Göteborg, Sweden.
| |
Collapse
|
7
|
Wu Y, Rytkin E, Bimrose M, Li S, Choi YS, Lee G, Wang Y, Tang L, Madrid M, Wickerson G, Chang JK, Gu J, Zhang Y, Liu J, Tawfick S, Huang Y, King WP, Efimov IR, Rogers JA. A Sewing Approach to the Fabrication of Eco/bioresorbable Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305017. [PMID: 37528504 DOI: 10.1002/smll.202305017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/15/2023] [Indexed: 08/03/2023]
Abstract
Eco/bioresorbable electronics represent an emerging class of technology defined by an ability to dissolve or otherwise harmlessly disappear in environmental or biological surroundings after a period of stable operation. The resulting devices provide unique capabilities as temporary biomedical implants, environmental sensors, and related systems. Recent publications report schemes to overcome challenges in fabrication that follow from the low thermostability and/or high chemical reactivity of the eco/bioresorbable constituent materials. Here, this work reports the use of high-speed sewing machines, as the basis for a high-throughput manufacturing technique that addresses many requirements for these applications, without the need for high temperatures or reactive solvents. Results demonstrate that a range of eco/bioresorbable metal wires and polymer threads can be embroidered into complex, user-defined conductive patterns on eco/bioresorbable substrates. Functional electronic components, such as stretchable interconnects and antennas are possible, along with fully integrated systems. Examples of the latter include wirelessly powered light-emitting diodes, radiofrequency identification tags, and temporary cardiac pacemakers. These advances add to a growing range of options in high-throughput, automated fabrication of eco/bioresorbable electronics.
Collapse
Affiliation(s)
- Yunyun Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Eric Rytkin
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Miles Bimrose
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shupeng Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yeon Sik Choi
- Department of Materials Science and Engineering, Yonsei University, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Geumbee Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yue Wang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lichao Tang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Micah Madrid
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Grace Wickerson
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jan-Kai Chang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Wearifi Inc, Evanston, IL, 60208, USA
| | - Jianyu Gu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yamin Zhang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Jiaqi Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Sameh Tawfick
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - William P King
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
8
|
Xu X, Xue P, Gao M, Li Y, Xu Z, Wei Y, Zhang Z, Liu Y, Wang L, Liu H, Cheng B. Assembled one-dimensional nanowires for flexible electronic devices via printing and coating: Techniques, applications, and perspectives. Adv Colloid Interface Sci 2023; 321:102987. [PMID: 37852138 DOI: 10.1016/j.cis.2023.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/10/2023] [Accepted: 08/26/2023] [Indexed: 10/20/2023]
Abstract
The rapid progress in flexible electronic devices has necessitated continual research into nanomaterials, structural design, and fabrication processes. One-dimensional nanowires, characterized by their distinct structures and exceptional properties, are considered essential components for various flexible electronic devices. Considerable attention has been directed toward the assembly of nanowires, which presents significant advantages. Printing and coating techniques can be used to assemble nanowires in a relatively simple, efficient, and cost-competitive manner and exhibit potential for scale-up production in the foreseeable future. This review aims to provide an overview of nanowire assembly using printing and coating techniques, such as bar coating, spray coating, dip coating, blade coating, 3D printing, and so forth. The application of assembled nanowires in flexible electronic devices is subsequently discussed. Finally, further discussion is presented on the potential and challenges of flexible electronic devices based on assembled nanowires via printing and coating.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Pan Xue
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Meng Gao
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yibin Li
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zijun Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yu Wei
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhengjian Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yang Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Lei Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| | - Hongbin Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Bowen Cheng
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
9
|
Teng CP, Tan MY, Toh JPW, Lim QF, Wang X, Ponsford D, Lin EMJ, Thitsartarn W, Tee SY. Advances in Cellulose-Based Composites for Energy Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103856. [PMID: 37241483 DOI: 10.3390/ma16103856] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
The various forms of cellulose-based materials possess high mechanical and thermal stabilities, as well as three-dimensional open network structures with high aspect ratios capable of incorporating other materials to produce composites for a wide range of applications. Being the most prevalent natural biopolymer on the Earth, cellulose has been used as a renewable replacement for many plastic and metal substrates, in order to diminish pollutant residues in the environment. As a result, the design and development of green technological applications of cellulose and its derivatives has become a key principle of ecological sustainability. Recently, cellulose-based mesoporous structures, flexible thin films, fibers, and three-dimensional networks have been developed for use as substrates in which conductive materials can be loaded for a wide range of energy conversion and energy conservation applications. The present article provides an overview of the recent advancements in the preparation of cellulose-based composites synthesized by combining metal/semiconductor nanoparticles, organic polymers, and metal-organic frameworks with cellulose. To begin, a brief review of cellulosic materials is given, with emphasis on their properties and processing methods. Further sections focus on the integration of cellulose-based flexible substrates or three-dimensional structures into energy conversion devices, such as photovoltaic solar cells, triboelectric generators, piezoelectric generators, thermoelectric generators, as well as sensors. The review also highlights the uses of cellulose-based composites in the separators, electrolytes, binders, and electrodes of energy conservation devices such as lithium-ion batteries. Moreover, the use of cellulose-based electrodes in water splitting for hydrogen generation is discussed. In the final section, we propose the underlying challenges and outlook for the field of cellulose-based composite materials.
Collapse
Affiliation(s)
- Choon Peng Teng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Ming Yan Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Jessica Pei Wen Toh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Qi Feng Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiaobai Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Chemistry, University College London, London WC1H 0AJ, UK
- Institute for Materials Discovery, University College London, London WC1E 7JE, UK
| | - Esther Marie JieRong Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Si Yin Tee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| |
Collapse
|
10
|
Patch D, O’Connor N, Meira D, Scott J, Koch I, Weber K. Parsimonious methodology for synthesis of silver and copper functionalized cellulose. CELLULOSE (LONDON, ENGLAND) 2023; 30:3455-3472. [PMID: 36994235 PMCID: PMC9959961 DOI: 10.1007/s10570-023-05099-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 02/11/2023] [Indexed: 06/19/2023]
Abstract
UNLABELLED Metal nanomaterials, such as silver and copper, are often incorporated into commercial textiles to take advantage of their Antibacterial and antiviral properties. The goal of this study was to identify the most parsimonious method for the synthesis of silver, copper, or silver/copper bimetallic treated textiles. To accomplish this eight different methods were employed to synthesize silver, copper, and silver/copper functionalized cotton batting textiles. Using silver and copper nitrate as precursors, different reagents were used to initiate/catalyze the deposition of metal, including: (1) no additive, (2) sodium bicarbonate, (3) green tea, (4) sodium hydroxide, (5) ammonia, (6, 7) sodium hydroxide/ammonia at a 1:2 and 1:4 ratio, and (8) sodium borohydride. The use of sodium bicarbonate as a reagent to reduce silver onto cotton has not been used previously in literature and was compared to established methods. All synthesis methods were performed at 80 °C for one hour following textile addition to the solutions. The products were characterized by x-ray fluorescence (XRF) analysis for quantitative determination of the metal content and x-ray absorption near edge structure (XANES) analysis for silver and copper speciation on the textile. Scanning electron microscopy (SEM) with energy dispersive x-ray (EDX) and size distribution inductively coupled plasma mass spectrometry (ICP-MS) were used to further characterize the products of the sodium bicarbonate, sodium hydroxide, and sodium borohydride synthesis methods following ashing of the textile. For the silver treatment methods (1 mM Ag +), sodium bicarbonate and sodium hydroxide resulted in the highest amounts of silver on the textile (8900 mg Ag/kg textile and 7600 mg Ag/kg textile) and for copper treatment (1 mM Cu +) the sodium hydroxide and sodium hydroxide/ammonium hydroxide resulted in the highest amounts of copper on the textile (3800 mg Ag/kg textile and 2500 mg Ag/kg textile). Formation of copper oxide was dependent on the pH of the solution, with 4 mM ammonia and other high pH solutions resulting in majority of the copper on the textile existing as copper oxide, with smaller amounts of ionic-bound copper. The identified parsimonious methods will lend themselves to the efficient manufacturing of antibacterial and antiviral textiles, or the development of multifunctionalized smart textiles. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10570-023-05099-7.
Collapse
Affiliation(s)
- David Patch
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4 Canada
| | - Natalia O’Connor
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4 Canada
| | - Debora Meira
- Argonne National Laboratory, Lemont, IL 60439 USA
| | - Jennifer Scott
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4 Canada
| | - Iris Koch
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4 Canada
| | - Kela Weber
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4 Canada
| |
Collapse
|
11
|
Serrano-Garcia W, Bonadies I, Thomas SW, Guarino V. New Insights to Design Electrospun Fibers with Tunable Electrical Conductive-Semiconductive Properties. SENSORS (BASEL, SWITZERLAND) 2023; 23:1606. [PMID: 36772646 PMCID: PMC9919353 DOI: 10.3390/s23031606] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 05/14/2023]
Abstract
Fiber electronics, such as those produced by the electrospinning technique, have an extensive range of applications including electrode surfaces for batteries and sensors, energy storage, electromagnetic interference shielding, antistatic coatings, catalysts, drug delivery, tissue engineering, and smart textiles. New composite materials and blends from conductive-semiconductive polymers (C-SPs) offer high surface area-to-volume ratios with electrical tunability, making them suitable for use in fields including electronics, biofiltration, tissue engineering, biosensors, and "green polymers". These materials and structures show great potential for embedded-electronics tissue engineering, active drug delivery, and smart biosensing due to their electronic transport behavior and mechanical flexibility with effective biocompatibility. Doping, processing methods, and morphologies can significantly impact the properties and performance of C-SPs and their composites. This review provides an overview of the current literature on the processing of C-SPs as nanomaterials and nanofibrous structures, mainly emphasizing the electroactive properties that make these structures suitable for various applications.
Collapse
Affiliation(s)
- William Serrano-Garcia
- Advanced Materials Bio & Integration Research (AMBIR) Laboratory, Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Irene Bonadies
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Sylvia W Thomas
- Advanced Materials Bio & Integration Research (AMBIR) Laboratory, Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d'Oltremare, Pad.20, 80125 Naples, Italy
| |
Collapse
|
12
|
Brooke R, Lay M, Jain K, Francon H, Say MG, Belaineh D, Wang X, Håkansson KMO, Wågberg L, Engquist I, Edberg J, Berggren M. Nanocellulose and PEDOT:PSS composites and their applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Robert Brooke
- Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden
| | - Makara Lay
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
- INM- Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Karishma Jain
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hugo Francon
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mehmet Girayhan Say
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
| | - Dagmawi Belaineh
- Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden
| | - Xin Wang
- Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden
| | | | - Lars Wågberg
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Isak Engquist
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| | - Jesper Edberg
- Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden
| | - Magnus Berggren
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| |
Collapse
|
13
|
Aziz T, Farid A, Haq F, Kiran M, Ullah A, Zhang K, Li C, Ghazanfar S, Sun H, Ullah R, Ali A, Muzammal M, Shah M, Akhtar N, Selim S, Hagagy N, Samy M, Al Jaouni SK. A Review on the Modification of Cellulose and Its Applications. Polymers (Basel) 2022; 14:3206. [PMID: 35956720 PMCID: PMC9371096 DOI: 10.3390/polym14153206] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/21/2022] Open
Abstract
The latest advancements in cellulose and its derivatives are the subject of this study. We summarize the characteristics, modifications, applications, and properties of cellulose. Here, we discuss new breakthroughs in modified cellulose that allow for enhanced control. In addition to standard approaches, improvements in different techniques employed for cellulose and its derivatives are the subject of this review. The various strategies for synthetic polymers are also discussed. The recent advancements in polymer production allow for more precise control, and make it possible to make functional celluloses with better physical qualities. For sustainability and environmental preservation, the development of cellulose green processing is the most abundant renewable substance in nature. The discovery of cellulose disintegration opens up new possibilities for sustainable techniques. Based on the review of recent scientific literature, we believe that additional chemical units of cellulose solubility should be used. This evaluation will evaluate the sustainability of biomass and processing the greenness for the long term. It appears not only crucial to dissolution, but also to the greenness of any process.
Collapse
Affiliation(s)
- Tariq Aziz
- School of Engineering, Westlake University, Hangzhou 310024, China or
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Mehwish Kiran
- Department of Horticulture, Faculty of Agriculture, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Asmat Ullah
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710021, China
| | - Kechun Zhang
- School of Engineering, Westlake University, Hangzhou 310024, China or
| | - Cheng Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shakira Ghazanfar
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Hongyue Sun
- BW Advanced Materials Co. Ltd., Shanghai 200120, China
| | - Roh Ullah
- School of Chemical and Biological Engineering, Beijing Institute of Technology (BIT), Beijing 100000, China
| | - Amjad Ali
- Institute of Polymer Material, School of Material Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Muzammal
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Islamabad 44000, Pakistan
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | - Nashwa Hagagy
- Biology Department, Faculty of Science & Arts, University of Jeddah, Khulais 21921, Saudi Arabia
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Mennatalla Samy
- Department of Communications and Computers Engineering, The Higher Institute of Engineering, El-Shorouk City 11837, Egypt
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Abdu Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Shak Sadi M, Kumpikaitė E. Advances in the Robustness of Wearable Electronic Textiles: Strategies, Stability, Washability and Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2039. [PMID: 35745378 PMCID: PMC9229712 DOI: 10.3390/nano12122039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023]
Abstract
Flexible electronic textiles are the future of wearable technology with a diverse application potential inspired by the Internet of Things (IoT) to improve all aspects of wearer life by replacing traditional bulky, rigid, and uncomfortable wearable electronics. The inherently prominent characteristics exhibited by textile substrates make them ideal candidates for designing user-friendly wearable electronic textiles for high-end variant applications. Textile substrates (fiber, yarn, fabric, and garment) combined with nanostructured electroactive materials provide a universal pathway for the researcher to construct advanced wearable electronics compatible with the human body and other circumstances. However, e-textiles are found to be vulnerable to physical deformation induced during repeated wash and wear. Thus, e-textiles need to be robust enough to withstand such challenges involved in designing a reliable product and require more attention for substantial advancement in stability and washability. As a step toward reliable devices, we present this comprehensive review of the state-of-the-art advances in substrate geometries, modification, fabrication, and standardized washing strategies to predict a roadmap toward sustainability. Furthermore, current challenges, opportunities, and future aspects of durable e-textiles development are envisioned to provide a conclusive pathway for researchers to conduct advanced studies.
Collapse
Affiliation(s)
| | - Eglė Kumpikaitė
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų Str. 56, LT-51424 Kaunas, Lithuania;
| |
Collapse
|
15
|
Chu X, Wang R, Zhao H, Kuang M, Yan J, Wang B, Ma H, Cui M, Zhang X. Cross-Links-Entanglements Integrated Networks Contributing to Highly Resilient, Soft, and Self-Adhesive Elastomers with Low Hysteresis for Green Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16631-16640. [PMID: 35369688 DOI: 10.1021/acsami.2c00828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Green wearable electronics are attracting increasing attention to eliminate harmful byproducts generated by traditional devices. Although various degradable materials have been explored for green wearable electronics, the development of degradable elastomers with integrated characteristics of low modulus, self-adhesion, high resilient, and low hysteresis remains challenging. In this work, a degradable elastomer poly(1,8-octanediol-co-citrate-co-caprolactone) (POCL) is reported, in which a loosely cross-linked network contains plenty of entangled flexible chains. The coexistence of covalent cross-links and entanglements of long polymer chains endows the elastomer with good resilience and low hysteresis, in addition to low modulus and self-adhesion. Taking advantage of the unique mechanical properties, epidermal strain sensors based on the POCL elastomer were prepared, which exhibited good adhesion to human skin, high sensitivity, high response rate, and excellent fatigue resistance. We also fabricated stretchable electroluminescent devices using this degradable elastomer and demonstrated the recyclability of the nondegradable materials in the electronic device.
Collapse
Affiliation(s)
- Xuemei Chu
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Rui Wang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Hui Zhao
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Minxuan Kuang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Jiao Yan
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Bin Wang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Huiling Ma
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Meng Cui
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Xiuqin Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| |
Collapse
|
16
|
Chakraborty S, Simon R, Vadakkekara A, N.L. M. Microwave assisted synthesis of poly(ortho-phenylenediamine-co-aniline) and functionalised carbon nanotube nanocomposites for fabric-based supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Lund A, Wu Y, Fenech-Salerno B, Torrisi F, Carmichael TB, Müller C. Conducting materials as building blocks for electronic textiles. MRS BULLETIN 2021; 46:491-501. [PMID: 34720389 PMCID: PMC8550728 DOI: 10.1557/s43577-021-00117-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 05/07/2023]
Abstract
ABSTRACT To realize the full gamut of functions that are envisaged for electronic textiles (e-textiles) a range of semiconducting, conducting and electrochemically active materials are needed. This article will discuss how metals, conducting polymers, carbon nanotubes, and two-dimensional (2D) materials, including graphene and MXenes, can be used in concert to create e-textile materials, from fibers and yarns to patterned fabrics. Many of the most promising architectures utilize several classes of materials (e.g., elastic fibers composed of a conducting material and a stretchable polymer, or textile devices constructed with conducting polymers or 2D materials and metal electrodes). While an increasing number of materials and devices display a promising degree of wash and wear resistance, sustainability aspects of e-textiles will require greater attention.
Collapse
Affiliation(s)
- Anja Lund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yunyun Wu
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Benji Fenech-Salerno
- Molecular Sciences Research Hub, Imperial College London, White City Campus, London, UK
| | - Felice Torrisi
- Molecular Sciences Research Hub, Imperial College London, White City Campus, London, UK
| | | | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|