1
|
Wang D, Xin Y, Fan W, Li P, Zhou W, Liu J, Qian L, Ning H, Zhang Y, Ying Y, Yao D, Yang Z, Zheng Y. Type I Porous Liquids with Super-Low Viscosities: the Construction through a Rather Simple One-Step Covalent Linkage Strategy and Its Facile Regulation by a Mixed-Ligand Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408466. [PMID: 39632698 DOI: 10.1002/smll.202408466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Porous liquids (PLs) are a novel class of flowing liquid systems that possess accessible permanent porosity, exhibiting great prospects in gas capture and separation. Nevertheless, the further development of PLs lies in the facile synthesis and regulation of PLs with low viscosities. Herein, a novel strategy of preparing type I PLs with super-low viscosity is proposed through a simple one-step covalent linkage reaction using UiO-66-NH2 as the pore generator and monoglycidyl ether terminated polydimethylsiloxane (E-PDMS) as the sterically hindered solvent, respectively. More importantly, the idea that PLs can be regulated like advanced porous materials (APMs) is proposed and demonstrated, that is, PLs can be regulated by modulating pore generators with the mixed-ligands method. As expected, the resultant PLs not only demonstrate a promising potential in CO2 sorption as a flowing sorbent but also exhibit a superior CO2/N2 selective separation. Meanwhile, positron annihilation lifetime spectrum (PALS) and molecular dynamics (MD) simulations further verify the accessible permanent porosity and the favorable CO2 selective sorption. This work provides a simple and facile method to prepare type I PLs with super-low viscosities, shedding light on the precise regulation of PLs toward task-specific applications.
Collapse
Affiliation(s)
- Dechao Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Yangyang Xin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Wendi Fan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Peipei Li
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
| | - Wenwu Zhou
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Jianwei Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Libing Qian
- School of Nuclear Technology and Chemistry & Biology, Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Hailong Ning
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yating Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Yunpan Ying
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dongdong Yao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Zhiyuan Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Yaping Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| |
Collapse
|
2
|
Zhang X, Li J, Lu F, Xie F, Xu X, Su L, Gao X, Zheng L. Porous liquids: a novel porous medium for efficient carbon dioxide capture. Phys Chem Chem Phys 2024; 26:22832-22845. [PMID: 39177483 DOI: 10.1039/d4cp02482f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Porous liquids (PLs) are the combination of porous solid material and flowing liquid, which provides alternative options to solve difficulties in the development of porous solids. With the booming development of PLs since 2015, plenty of syntheses and applications have been reported with a specific focus on gas adsorption. Given the lack of a comprehensive review, this paper reviews the application of PLs in CO2 capture. To start with, ground-breaking case studies are reviewed to help understand the progress of PLs research. Then, as a major part of this paper, studies of PLs for CO2 capture are reviewed separately. Moreover, five basic properties of porous liquids, including stability, viscosity, selectivity, porosity, capacity, and the influencing factors are systemically reviewed respectively. Furthermore, gas storage and release mechanisms in PLs are briefly outlined, and potential processing methods of PLs used for CO2 capture are discussed.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China.
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, No 58, Renmin Avenue, Haikou 570228, China.
| | - Jiayi Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, No 58, Renmin Avenue, Haikou 570228, China.
| | - Fei Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, No 58, Renmin Avenue, Haikou 570228, China.
| | - Fengjin Xie
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China.
| | - Xinming Xu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China.
| | - Long Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, No 58, Renmin Avenue, Haikou 570228, China.
| | - Xinpei Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, No 58, Renmin Avenue, Haikou 570228, China.
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China.
| |
Collapse
|
3
|
Hurlock M, Christian MS, Rimsza JM, Nenoff TM. Design Principles Guiding Solvent Size Selection in ZIF-Based Type 3 Porous Liquids for Permanent Porosity. ACS MATERIALS AU 2024; 4:224-237. [PMID: 38496053 PMCID: PMC10941279 DOI: 10.1021/acsmaterialsau.3c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 03/19/2024]
Abstract
Porous liquids (PLs), which are solvent-based systems that contain permanent porosity due to the incorporation of a solid porous host, are of significant interest for the capture of greenhouse gases, including CO2. Type 3 PLs formed by using metal-organic frameworks (MOFs) as the nanoporous host provide a high degree of chemical turnability for gas capture. However, pore aperture fluctuation, such as gate-opening in zeolitic imidazole framework (ZIF) MOFs, complicates the ability to keep the MOF pores available for gas adsorption. Therefore, an understanding of the solvent molecular size required to ensure exclusion from MOFs in ZIF-based Type 3 PLs is needed. Through a combined computational and experimental approach, the solvent-pore accessibility of exemplar MOF ZIF-8 was examined. Density functional theory (DFT) calculations identified that the lowest-energy solvent-ZIF interaction occurred at the pore aperture. Experimental density measurements of ZIF-8 dispersed in various-sized solvents showed that ZIF-8 adsorbed solvent molecules up to 2 Å larger than the crystallographic pore aperture. Density analysis of ZIF dispersions was further applied to a series of possible ZIF-based PLs, including ZIF-67, -69, -71(RHO), and -71(SOD), to examine the structure-property relationships governing solvent exclusion, which identified eight new ZIF-based Type 3 PL compositions. Solvent exclusion was driven by pore aperture expansion across all ZIFs, and the degree of expansion, as well as water exclusion, was influenced by ligand functionalization. Using these results, a design principle was formulated to guide the formation of future ZIF-based Type 3 PLs that ensures solvent-free pores and availability for gas adsorption.
Collapse
Affiliation(s)
- Matthew
J. Hurlock
- Nanoscale Sciences
Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Matthew S. Christian
- Geochemistry Department, Sandia National
Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jessica M. Rimsza
- Geochemistry Department, Sandia National
Laboratories, Albuquerque, New Mexico 87185, United States
| | - Tina M. Nenoff
- Advanced Science and
Technology, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
4
|
Tong Z, Gao F, Chen S, Song L, Hu J, Hou Y, Lu J, Leung MKH, Zhan X, Zhang Q. Slippery Porous-Liquid-Infused Porous Surface (SPIPS) with On-Demand Responsive Switching between "Defensive" and "Offensive" Antifouling Modes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308972. [PMID: 37917884 DOI: 10.1002/adma.202308972] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Slippery liquid-infused porous surfaces (SLIPS) have received widespread attention in the antifouling field. However, the reduction in antifouling performance caused by lubricant loss limits their application in marine antifouling. Herein, inspired by the skin of a poison dart frog which contains venom glands and mucus, a porous liquid (PL) based on ZIF-8 is prepared as a lubricant and injected into a silicone polyurethane (SPU) matrix to construct a new type of SLIPS for marine antifouling applications: the slippery porous-liquid-infused porous surface (SPIPS). The SPIPS consists of a responsive antifoulant-releasing switch between "defensive" and "offensive" antifouling modes to intelligently enhance the antifouling effect after lubricant loss. The SPIPS can adjust antifouling performance to meet the antifouling requirements under different light conditions. The wastage of antifoulants is reduced, thereby effectively maintaining the durability and service life of SLIPS materials. The SPIPS exhibits efficient lubricant self-replenishment, self-cleaning, anti-protein, anti-bacterial, anti-algal, and self-healing (97.48%) properties. Furthermore, it shows satisfactory 360-day antifouling performance in actual marine fields during boom seasons, demonstrating the longest antifouling lifespan in the field tests of reported SLIPS coatings. Hence, the SPIPS can effectively promote the development of SLIPS for neritic antifouling.
Collapse
Affiliation(s)
- Zheming Tong
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Feng Gao
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Sifan Chen
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Lina Song
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Jiankun Hu
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| | - Jianguo Lu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Michael K H Leung
- School of Energy and Environment, Ability R&D Energy Research Centre, City University of Hong Kong, Hong Kong, 999077, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| |
Collapse
|
5
|
Ginot L, El Bakkouche A, Giusti F, Dourdain S, Pellet‐Rostaing S. Hydrophobic Porous Liquids with Controlled Cavity Size and Physico-Chemical Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305906. [PMID: 38036426 PMCID: PMC10811500 DOI: 10.1002/advs.202305906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Developing greener hydrometallurgical processes implies offering alternatives to conventional solvents used for liquid-liquid extraction (LLE) of metals. In this context, it is proposed to substitute the organic phase by a hydrophobic silica-based porous liquid (PL). Two different sulfonated hollow silica particles (HSPs) are modified with various polyethoxylated fatty amines (EthAs) forming a canopy that provides both the targeted hydrophobicity and liquefying properties. This study shows that these properties can be tuned by varying the number of ethylene oxide units in the EthA: middle-range molecular weight EthAs allow obtaining a liquid at room temperature, while too short or too long EthA leads to solid particles. Viscosity is also impacted by the density and size of the silica spheres: less viscous PLs are obtained with small low-density spheres, while for larger spheres (c.a. 200 nm) the density has a less significant impact on viscosity. According to this approach, hydrophobic PLs are successfully synthesized. When contacted with an aqueous phase, the most hydrophobic PLs obtained allow a subsequent phase separation. Preliminary extraction tests on three rare earth elements have further shown that functionalization of the PL is necessary to observe metal extraction.
Collapse
Affiliation(s)
- Lorianne Ginot
- ICSM, CEA, CNRS, ENSCMUniv MontpellierMarcoule30207France
| | | | - Fabrice Giusti
- ICSM, CEA, CNRS, ENSCMUniv MontpellierMarcoule30207France
| | | | | |
Collapse
|
6
|
Ju X, Yang Z, Wang J, Cui B, Xin Y, Zheng Y, Wang D. Converting Nanoflower-like Layered Double Hydroxides into Solvent-Free Nanofluids for CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56181-56191. [PMID: 38010839 DOI: 10.1021/acsami.3c13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Due to the flexibility and versatility of the layered crystal structure of layered double hydroxides (LDHs), they have shown great potential in various fields. However, LDH nanosheets (LDH-NSs) are easy to agglomerate, leading to the problem of accumulation, which hinders their further application. Accordingly, once LDHs are combined with solvent-free nanofluids (SFNs), the advantages of LDHs and SFNs could be combined to achieve an extraordinary performance. However, the stacked structure of traditional LDHs is not conducive to the exposure of hydroxyl functional groups, and hydroxyl sites are key to the conversion of LDHs to SFNs. Therefore, in this work, nanoflower-like LDHs (NFLs) with abundant exposed hydroxyl groups were prepared and combined with organic oligomers to achieve a solid-to-liquid transition. The formation mechanism of NFLs and the grafting mechanism of OS-PEA on their surface were identified. The prepared NFL-F3 still has good fluidity and dispersion stability in different solvents after storage for 100 days. The high-saturated grafting density on the surface of NFLs increased the steric hindrance effect of the nanoparticles, thereby improving the dispersion stability and reducing the viscosity of NFL-F3. Notably, the CO2 sorption performance of NFL-F3 is significantly improved, which is attributed to the voids between polymers, physical sorption, and good fluidity caused by high-saturation grafting on the surface of NFL-F3. Finally, by combining the sorption behavior and model fitting, it was confirmed that the physical effect was dominant in CO2 sorption by the NFL-F, which saved energy for the sorption-desorption process of its industrial application. Moreover, NFL-F3 has a good CO2/N2 separation performance and cycle stability. We envision that this general strategy will open up new insights into the construction of innovative low-viscosity LDH-based SFNs with high CO2 capacity and facilitate CO2/N2 selectivity and offer new directions for LDH utilizations.
Collapse
Affiliation(s)
- Xiaoqian Ju
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710021, P. R. China
| | - Zhiyuan Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710021, P. R. China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi'an 710021, P. R. China
| | - Jingwen Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710021, P. R. China
| | - Baolu Cui
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710021, P. R. China
| | - Yangyang Xin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Yaping Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Dechao Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710021, P. R. China
| |
Collapse
|
7
|
Hu J, Liu Z, Tang S, Yao M, Zhang D, Cui M, Yang D, Tang J, Qiao X, Zhang Z. One-step synthesis of a ZIF-8/90-based type I porous liquid. Dalton Trans 2023; 52:17213-17218. [PMID: 37946556 DOI: 10.1039/d3dt02423g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
A Type I porous liquid based on the mixed-linker zeolitic imidazolate framework, ZIF-8/90-PL, has been prepared by a one-step imine condensation reaction and characterized by X-ray diffraction, FT-IR spectroscopy, TGA and rheology analysis. This facile preparation strategy of a porous liquid has enormous industrial production and application potential, with over one kilogram of ZIF-8/90-PL being successfully prepared. ZIF-8/90-PL can be directly used as a liquid absorbent or be co-processed with alumina hollow fibers to form a composite membrane with improved selectivity in the context of CO2 separation from CH4 or N2. This simple synthesis method is expected to be extended to other metal-organic frameworks.
Collapse
Affiliation(s)
- Jingqiu Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
| | - Zhaofang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
| | - Shuangyin Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
| | - Meng Yao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
| | - Dezhen Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
| | - Mifen Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
| | - Dong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
| | - Jihai Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, China.
| | - Xu Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, China.
| | - Zhuxiu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China
| |
Collapse
|
8
|
Li X, Mao Z, He Z, Su F, Li M, Jiang M, Chao S, Zheng Y, Liang J. Hierarchical Yolk-Shell Porous Ionic Liquids with Lower Viscosity for Efficient C 3H 6/C 3H 8 Adsorption and Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37879671 DOI: 10.1021/acsami.3c10874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Yolk-shell metal-organic framework (YS-MOF) liquids are candidate materials in large-size species with high-efficiency separation, owing to their hierarchical porosity, faster mass transfer, better compatibility, and higher solution processability than MOF liquids with micropores. Nevertheless, facile synthesis strategies of yolk-shell porous ionic liquids (YSPILs) with regulations of size and morphology are an ongoing challenge. Herein, we propose a general strategy to construct YSPILs based on Z67@PDA with tunable core sizes and morphologies. Benefiting from the unique hierarchical yolk-shell structure, as-prepared YSPILs exhibit promise in C3H6/C3H8 capture and separation with the increased sizes of core in yolk-shell ZIF-67@PDA. Advanced YS-MOF liquids have improved the adsorption properties and increased our ability to tailor chemical composition and pore architecture. Impressively, the adsorption capacity of C3H6 and C3H8 of YSPILs exhibits an approximately 3-fold enhancement compared with that of the neat ILs, confirming that the accessible porosities are retained. Effective C3H6/C3H8 separation performance of YSPILs over PILs based on ZIF-67, revealing the hierarchical porosity of YS-Z67@PDA liquids, benefits larger-size gas separation. Therefore, we believe that this work can not only help us to rationally design novel hierarchically porous ionic liquids but also promote candidate applications in large-size species separation, catalysis, and nanoreactors.
Collapse
Affiliation(s)
- Xiaoqian Li
- Department of Ultrasonic Medicine, 3D Printing Research Center, Tang Du Hospital, Air Force Medical University, No. 569 of Xin Si Road, Xi'an, Shaanxi 710038. P. R. China
| | - Zhuojun Mao
- Department of Ultrasonic Medicine, 3D Printing Research Center, Tang Du Hospital, Air Force Medical University, No. 569 of Xin Si Road, Xi'an, Shaanxi 710038. P. R. China
| | - Zhongjie He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Fangfang Su
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Mingtao Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Maogang Jiang
- Department of Ultrasonic Medicine, 3D Printing Research Center, Tang Du Hospital, Air Force Medical University, No. 569 of Xin Si Road, Xi'an, Shaanxi 710038. P. R. China
| | - Shuaijun Chao
- School of Mechanical Engineering, Xi'an Jiaotong University, No. 28, Xian Ning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yaping Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Jiahe Liang
- Department of Ultrasonic Medicine, 3D Printing Research Center, Tang Du Hospital, Air Force Medical University, No. 569 of Xin Si Road, Xi'an, Shaanxi 710038. P. R. China
| |
Collapse
|
9
|
Lee J, Lee J, Kim JY, Kim M. Covalent connections between metal-organic frameworks and polymers including covalent organic frameworks. Chem Soc Rev 2023; 52:6379-6416. [PMID: 37667818 DOI: 10.1039/d3cs00302g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Hybrid composite materials combining metal-organic frameworks (MOFs) and polymers have emerged as a versatile platform for a broad range of applications. The crystalline, porous nature of MOFs and the flexibility and processability of polymers are synergistically integrated in MOF-polymer composite materials. Covalent bonds, which form between two distinct materials, have been extensively studied as a means of creating strong molecular connections to facilitate the dispersion of "hard" MOF particles in "soft" polymers. Numerous organic transformations have been applied to post-synthetically connect MOFs with polymeric species, resulting in a variety of covalently connected MOF-polymer systems with unique properties that are dependent on the characteristics of the MOFs, polymers, and connection modes. In this review, we provide a comprehensive overview of the development and strategies involved in preparing covalently connected MOFs and polymers, including recently developed MOF-covalent organic framework composites. The covalent bonds, grafting strategies, types of MOFs, and polymer backbones are summarized and categorized, along with their respective applications. We highlight how this knowledge can serve as a basis for preparing macromolecular composites with advanced functionality.
Collapse
Affiliation(s)
- Jonghyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jooyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jin Yeong Kim
- Department of Chemistry Education, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
10
|
Qiu L, Peng H, Yang Z, Fan J, Li M, Yang S, Driscoll DM, Ren L, Mahurin SM, He LN, Dai S. Revolutionizing Porous Liquids: Stabilization and Structural Engineering Achieved by a Surface Deposition Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302525. [PMID: 37321653 DOI: 10.1002/adma.202302525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Facile approaches capable of constructing stable and structurally diverse porous liquids (PLs) that can deliver high-performance applications are a long-standing, captivating, and challenging research area that requires significant attention. Herein, a facile surface deposition strategy is demonstrated to afford diverse type III-PLs possessing ultra-stable dispersion, external structure modification, and enhanced performance in gas storage and transformation by leveraging the expeditious and uniform precipitation of selected metal salts. The Ag(I) species-modified zeolite nanosheets are deployed as the porous host to construct type III-PLs with ionic liquids (ILs) containing bromide anion , leading to stable dispersion driven by the formation of AgBr nanoparticles. The as-afforded type-III PLs display promising performance in CO2 capture/conversion and ethylene/ethane separation. Property and performance of the as-produced PLs can be tuned by the cation structure of the ILs, which can be harnessed to achieve polarity reversal of the porous host via ionic exchange. The surface deposition procedure can be further extended to produce PLs from Ba(II)-functionalized zeolite and ILs containing [SO4 ]2- anion driven by the formation of BaSO4 salts. The as-produced PLs are featured by well-maintained crystallinity of the porous host, good fluidity and stability, enhanced gas uptake capacity, and attractive performance in small gas molecule utilization.
Collapse
Affiliation(s)
- Liqi Qiu
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Honggen Peng
- School of Resources and Environment/School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Juntian Fan
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Meijia Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shize Yang
- Eyring Materials Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Darren M Driscoll
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Lei Ren
- School of Resources and Environment/School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shannon M Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
11
|
Borne I, Saigal K, Jones CW, Lively RP. Thermodynamic Evidence for Type II Porous Liquids. Ind Eng Chem Res 2023; 62:11689-11696. [PMID: 37520782 PMCID: PMC10375470 DOI: 10.1021/acs.iecr.3c01201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Porous liquids are an emerging class of microporous materials where intrinsic, stable porosity is imbued in a liquid material. Many porous liquids are prepared by dispersing porous solids in bulky solvents; these can be contrasted by the method of dissolving microporous molecules. We highlight the latter "Type II" porous liquids-which are stable thermodynamic solutions with demonstrable colligative properties. This feature significantly impacts the ultimate utility of the liquid for various end-use applications. We also describe a facile method for determining if a Type II porous liquid candidate is "porous" based on assessing the partial molar volume of the porous host molecule dissolved in the solvent by measuring the densities of candidate solutions. Conventional CO2 isotherms confirm the porosity of the porous liquids and corroborate the facile density method.
Collapse
|
12
|
A novel magnetic loading porous liquid absorbent for removal of Cu(II) and Pb(II) from the aqueous solution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
13
|
Sheridan TR, Gaidimas MA, Kramar BV, Goswami S, Chen LX, Farha OK, Hupp JT. Noncovalent Surface Modification of Metal-Organic Frameworks: Unscrambling Adsorption Properties via Isothermal Titration Calorimetry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11199-11209. [PMID: 36067497 DOI: 10.1021/acs.langmuir.2c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite the importance of noncovalent interactions in the utilization of metal-organic frameworks (MOFs), using these interactions to functionalize MOFs has rarely been explored. The ease of functionalization and potential for surface-selective functionalization makes modification via noncovalent interactions promising for the creation of porous photocatalytic assemblies. Using isothermal titration calorimetry, photoluminescence measurements, and desorption experiments, we have explored the nature and magnitude of the interactions of [Ru(bpy)2(bpy-R)]2+-functionalized dyes with the surface of MIL-96, where R = C3, C8, C12, and C18 alkyl chains of either straight-chain or cyclic conformations. The orientation of the dyes appears to be flat against the surface with respect to the long alkyl chains, and the surface concentration approaches a monolayer at high initial concentrations of dye. Strangely, the dodecyl-functionalized dye, despite having a smaller interaction energy and larger footprint than either octyl-functionalized dye, achieves the highest maximum surface concentration. Based on photoluminescence spectra, desorption experiments, and ITC data, we believe this is due to the core of the dye being lifted from the surface as the chain length increases. Our understanding of these interactions is important for further utilization of this method for the functionalization of the internal and external surface areas of MOFs.
Collapse
Affiliation(s)
- Thomas R Sheridan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Madeleine A Gaidimas
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Boris V Kramar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Zwitterionic ionic liquids modulating two-dimensional hierarchically porous zeolitic imidazolate framework composites. J Colloid Interface Sci 2022; 620:365-375. [DOI: 10.1016/j.jcis.2022.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/17/2023]
|
15
|
Chakraborty S, Nalupurackal G, Gunaseelan M, Roy S, Lokesh M, Goswami J, Datta P, Mahapatra PS, Roy B. Facets of optically and magnetically induced heating in ferromagnetically doped-NaYF 4 particles. JOURNAL OF PHYSICS COMMUNICATIONS 2022; 7:065008. [PMID: 37398924 PMCID: PMC7614712 DOI: 10.1088/2399-6528/acde43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Upconverting particles like Yb and Er-doped NaYF4 are known to heat up after illumination with light at pump wavelength due to inefficient upconversion processes. Here we show that NaYF4 particles which have been co-doped not only with Yb and Er but also Fe improves the photothermal conversion efficiency. In addition, we show for the first time that alternating magnetic fields also heat up the ferromagnetic particles. Thereafter we show that a combination of optical and magnetic stimuli significantly increases the heat generated by the particles.
Collapse
Affiliation(s)
- Snigdhadev Chakraborty
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Gokul Nalupurackal
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, Indian Institute of Technology Madras, Chennai, 600036, India
| | - M Gunaseelan
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, Indian Institute of Technology Madras, Chennai, 600036, India
- Department of Physics, Rathinam Research Hub, Rathinam College of Arts and Science, Coimbatore, 641021, India
| | - Srestha Roy
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Muruga Lokesh
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Jayesh Goswami
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Priyankan Datta
- Department of Mechanical engineering, Indian Institute of Technology Madras, India
| | | | - Basudev Roy
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
16
|
Mahdavi H, Smith SJD, Mulet X, Hill MR. Practical considerations in the design and use of porous liquids. MATERIALS HORIZONS 2022; 9:1577-1601. [PMID: 35373794 DOI: 10.1039/d1mh01616d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The possibility of creating well-controlled empty space within liquids is conceptually intriguing, and from an application perspective, full of potential. Since the concept of porous liquids (PLs) arose several years ago, research efforts in this field have intensified. This review highlights the design, synthesis, and applicability of PLs through a thorough examination of the current state-of-the-art. Following a detailed examination of the fundamentals of PLs, we examine the different synthetic approaches proposed to date, discuss the nature of PLs, and their pathway from the laboratory to practical application. Finally, possible challenges and opportunities are outlined.
Collapse
Affiliation(s)
| | - Stefan J D Smith
- Department of Chemical Engineering, Monash University, Australia.
- CSIRO, Bag 10, Clayton South, VIC 3169, Australia.
| | - Xavier Mulet
- CSIRO, Bag 10, Clayton South, VIC 3169, Australia.
| | - Matthew R Hill
- Department of Chemical Engineering, Monash University, Australia.
- CSIRO, Bag 10, Clayton South, VIC 3169, Australia.
| |
Collapse
|
17
|
Mukesh C, Sarmad S, Samikannu A, Nikjoo D, Siljebo W, Mikkola JP. Pore size-excluded low viscous porous liquids for CO2 sorption at room temperature and thermodynamic modeling study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Egleston BD, Mroz A, Jelfs KE, Greenaway RL. Porous liquids - the future is looking emptier. Chem Sci 2022; 13:5042-5054. [PMID: 35655552 PMCID: PMC9093153 DOI: 10.1039/d2sc00087c] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023] Open
Abstract
The development of microporosity in the liquid state is leading to an inherent change in the way we approach applications of functional porosity, potentially allowing access to new processes by exploiting the fluidity of these new materials. By engineering permanent porosity into a liquid, over the transient intermolecular porosity in all liquids, it is possible to design and form a porous liquid. Since the concept was proposed in 2007, and the first examples realised in 2015, the field has seen rapid advances among the types and numbers of porous liquids developed, our understanding of the structure and properties, as well as improvements in gas uptake and molecular separations. However, despite these recent advances, the field is still young, and with only a few applications reported to date, the potential that porous liquids have to transform the field of microporous materials remains largely untapped. In this review, we will explore the theory and conception of porous liquids and cover major advances in the area, key experimental characterisation techniques and computational approaches that have been employed to understand these systems, and summarise the investigated applications of porous liquids that have been presented to date. We also outline an emerging discovery workflow with recommendations for the characterisation required at each stage to both confirm permanent porosity and fully understand the physical properties of the porous liquid.
Collapse
Affiliation(s)
- Benjamin D Egleston
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| | - Austin Mroz
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| | - Rebecca L Greenaway
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
19
|
Li X, Zhang J, Su F, Wang D, Yao D, Zheng Y. Construction and Application of Porous Ionic Liquids. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Xin Y, Wang D, Yao D, Ning H, Li X, Ju X, Zhang Y, Yang Z, Xu Y, Zheng Y. Post-synthetic modification of UiO-66-OH toward porous liquids for CO 2 capture. NEW J CHEM 2022. [DOI: 10.1039/d1nj04829e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rather simple and feasible strategy to construct MOF porous liquids with low viscosities for CO2 capture.
Collapse
Affiliation(s)
- Yangyang Xin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Dechao Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Dongdong Yao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Hailong Ning
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710021, P. R. China
| | - Xiaoqian Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Xiaoqian Ju
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710021, P. R. China
| | - Yichi Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Zhiyuan Yang
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710021, P. R. China
| | - Yahong Xu
- Key Laboratory for Light-weight Materials, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yaping Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| |
Collapse
|
21
|
Yang L, Sun L, Zhao Y, Sun J, Deng Q, Wang H, Deng W. Digital-intellectual design of microporous organic polymers. Phys Chem Chem Phys 2021; 23:22835-22853. [PMID: 34633004 DOI: 10.1039/d1cp03456a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microporous organic polymers (MOPs) are a new class of microporous materials. Due to their high porosity, large pore volume, and large surface area, MOPs exhibit excellent performance in gas adsorption and storage, membrane separation, ion capture, heterogeneous catalysis, light energy conversion and storage, capacitance, and other fields. However, selecting high-performance materials for specific applications from thousands of candidate MOPs is a key problem. Traditional design strategies for new materials with targeted properties, including trial-and-error and relying on the experiences of domain experts, are time- and cost-consuming. With the rapid development of computation technology and theoretical chemistry, the discovery of new materials is no longer a purely experimental subject. Breaking away from the traditional trial-and-error strategy for materials discovery, materials design is emerging and gaining increasing attention. In addition, the ability to collect "big data" has greatly improved and has further stimulated the development of new methods for materials design and discovery. In this perspective, we examine how data-driven techniques combine artificial intelligence (AI) and human expertise, playing a significant role in the design of MOPs. Such analytics can significantly reduce time-to-insight and accelerate the cost-effective materials discovery, which is the goal for designing future MOPs.
Collapse
Affiliation(s)
- Li Yang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China.
| | - Lei Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China.
| | - Yanliang Zhao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China.
| | - Jikai Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China.
| | - Qiwen Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China.
| | - Honglei Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China.
| | - Weiqiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China. .,State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
22
|
Bhattacharjee A, Kumar R, Sharma KP. Composite Porous Liquid for Recyclable Sequestration, Storage and In Situ Catalytic Conversion of Carbon Dioxide at Room Temperature. CHEMSUSCHEM 2021; 14:3303-3314. [PMID: 34196112 DOI: 10.1002/cssc.202100931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Permanent pores combined with fluidity renders flow processability to porous liquids otherwise not seen in porous solids. Although porous liquids have been utilized for sequestration of different gases and their separation, there is still a dearth of studies for deploying in situ chemical reactions to convert adsorbed gases into utility chemicals. Here, we show the design and development of a new type of solvent-less and hybrid (meso-)porous liquid composite, which, as demonstrated for the first time, can be used for in situ carbon mineralization of adsorbed CO2 . The recyclable porous liquid composite comprising polymer-surfactant modified hollow silica nanorods and carbonic anhydrase enzyme not only sequesters (5.5 cm3 g-1 at 273 K and 1 atm) and stores CO2 but is also capable of driving an in situ enzymatic reaction for hydration of CO2 to HCO3 - ion, subsequently converting it to CaCO3 due to reaction with pre-dissolved Ca2+ . Light and electron microscopy combined with X-ray diffraction reveals the nucleation and growth of calcite and aragonite crystals. Moreover, the liquid-like property of the porous composite material can be harnessed by executing the same reaction via diffusion of complimentary Ca2+ and HCO3 - ions through different compartments separated by an interfacial channel. These studies provide a proof of concept of deploying chemical reactions within porous liquids for developing utility chemical from adsorbed molecules.
Collapse
Affiliation(s)
- Archita Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Raj Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Kamendra P Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
23
|
Yang Z, Ju X, Liao H, Meng Z, Ning H, Li Y, Chen Z, Long J. Preparation of Activated Carbon Doped with Graphene Oxide Porous Materials and Their High Gas Adsorption Performance. ACS OMEGA 2021; 6:19799-19810. [PMID: 34368567 PMCID: PMC8340399 DOI: 10.1021/acsomega.1c02416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
It is still a great challenge to develop a new porous carbon adsorbent with excellent separation performance and to recover low-concentration CH4 in coal mine gas. This work provides a new idea for the study of CH4 adsorption on activated carbon (AC) composites. Composite materials with microporous structures were prepared from coconut-shell activated carbon (CAC) doped with graphene oxide (GO) by a chemical activation process in this paper. The expansion and dissociation of GO at high temperatures indirectly improve the specific surface area (SSA) of the composite. The interlayer aggregation is reduced, the activation effect is improved, and a new low-cost adsorption material is prepared. The SSA of CAC-50 is more than 3000 m2·g-1. A high SSA and a narrow pore size distribution lead to a higher total adsorption capacity of CH4. The breakthrough test also confirmed that AC/GOs had a better adsorption capacity for CH4. The separation performance of the CH4/N2 mixture is not good at room temperature, which is due to the influence of a high SSA and average pore size. As a low-cost and rich material, CAC has a wide range of application prospects. The composite is a potential material for recovering low-concentration CH4 from the coal mine, which is worthy of attention. In the future, the selectivity of AC/GOs to CH4 can be increased by loading functional groups or modification.
Collapse
Affiliation(s)
- Zhiyuan Yang
- College
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an, Shaanxi 710054, China
- Key
Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an, Shaanxi 710021, China
| | - Xiaoqian Ju
- College
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an, Shaanxi 710054, China
| | - Hongbin Liao
- College
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an, Shaanxi 710054, China
| | - Zhuoyue Meng
- College
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an, Shaanxi 710054, China
| | - Hailong Ning
- College
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an, Shaanxi 710054, China
| | - Yinyan Li
- College
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an, Shaanxi 710054, China
| | - Zhiping Chen
- College
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an, Shaanxi 710054, China
| | - Jiang Long
- Key
Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an, Shaanxi 710021, China
| |
Collapse
|
24
|
Liu S, Meng L, Fan J. Hollow Silica‐Based Porous Liquids Functionalized Mixed Matrix Membranes for CO
2
Capture. ChemistrySelect 2021. [DOI: 10.1002/slct.202100664] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shuo Liu
- College of chemical engineering Shaanxi Institute of Technology Xi'an 710300 P. R. China
| | - Long Meng
- College of chemical engineering Shaanxi Institute of Technology Xi'an 710300 P. R. China
| | - Jinwen Fan
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an 710021 P. R. China
| |
Collapse
|
25
|
Ning H, Yang Z, Yin Z, Wang D, Meng Z, Wang C, Zhang Y, Chen Z. A Novel Strategy to Enhance the Performance of CO 2 Adsorption Separation: Grafting Hyper-cross-linked Polyimide onto Composites of UiO-66-NH 2 and GO. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17781-17790. [PMID: 33827219 DOI: 10.1021/acsami.1c00917] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene oxide (GO) is widely used to improve the pore structure, dispersion capacity, adsorption selectivity, resistance to acids and bases, and thermal stability of metal-organic frameworks (MOFs). However, it remains a daunting challenge to enhance selectivity simply by modifying the pore surface polarity and producing a suitable pore structure for CO2 molecules through a combination of GO with MOFs. Herein, we demonstrate a novel porous hyper-cross-linked polyimide-UiO-graphene composite adsorbent for CO2 capture via in situ chemical knitting and condensation reactions. Specifically, a network of polyimides rich in carbonyl and nitrogen atoms with amino terminations was synthesized via the reaction of 4,4'-oxydiphthalic anhydride (ODPA) and 2,4,6-trimethyl-1,3-phenylenediamine (DAM). The product plays a crucial role in the separation of CO2 from N2. As expected, the resulting composite (PI-UiO/GO-1) exhibited a 3-fold higher CO2 capacity (8.24 vs 2.8 mmol·g-1 at 298 K and 30 bar), 4.2 times higher CO2/N2 selectivity (64.71 vs 15.43), and significantly improved acid-base resistance stability compared with those values of pristine UiO-66-NH2. Furthermore, breakthrough experiments verified that the porous composites can effectively separate CO2 from simulated fuel gas (CO2/N2 = 15/85 vol %) with great potential in industrial applications. More importantly, this strategy can be extended to prepare other MOF-based composites. This clearly advances the development of MOF-polymer materials for gas capture.
Collapse
Affiliation(s)
- Hailong Ning
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| | - Zhiyuan Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi'an, 710021, People's Republic of China
| | - Zhiqiang Yin
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| | - Dechao Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
| | - Zhuoyue Meng
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| | - Changguo Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| | - Yating Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| | - Zhiping Chen
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| |
Collapse
|