1
|
Ikram M, Mahmud MAP, Kalyar AA, Alomayri T, Almahri A, Hussain D. 3D-bioprinting of MXenes: Developments, medical applications, challenges, and future roadmap. Colloids Surf B Biointerfaces 2025; 251:114568. [PMID: 40020571 DOI: 10.1016/j.colsurfb.2025.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
MXenes is a member of 2D transition metals carbides and nitrides with promising application prospects in energy storage, sensing, nanomedicine, tissue engineering, catalysis, and electronics. In the current era, MXenes have been widely applied in biomedical applications due to their unique rheological and electrochemical attributes. They have a larger surface area with more active sites, higher conductivity, lower cytotoxicity, and greater biocompatibility, making them highly suitable candidates for in-vivo biomedical applications. Due to recent advancemnets in MXenes 3D bioprinting, they are widely applied in regenerative medicine to combat challenges in suitable transplantation of tissues and organs. However, 3D bioprinting of MXenes has several complexities based on cell type, cytotoxicity, cell viability, and differentiation. To address these intricacies, surface modifications of MXene materials are done, which makes them highly fascinating for the 3D printing of tissues and organs. In the current review, we summarized recent progress in 3D bioprinting of MXene materials to construct scaffolds with desired rheological and biological properties, focusing on their potential applications in cancer phototherapy, tissue engineering, bone regeneration, and biosensing. We also discussed parameters affecting their biomedical applications and possible solutions by applying surface modifications. In addition, we addressed current challenges and future roadmaps for 3D bioprinting of MXene materials, such as generating high throughput 3D printed tissue constructs, drug delivery, drug discovery, and toxicology.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, United States of America.
| | - M A Parvez Mahmud
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Amina Akbar Kalyar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Pakistan
| | - Thamer Alomayri
- Department of Physics, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Albandary Almahri
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
2
|
Javaherchi P, Zarepour A, Khosravi A, Heydari P, Iravani S, Zarrabi A. Innovative applications of MXenes in dialysis: enhancing filtration efficiency. NANOSCALE 2025; 17:4301-4327. [PMID: 39810585 DOI: 10.1039/d4nr04329d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
MXenes, a family of two-dimensional transition metal carbides and nitrides, exhibit exceptional properties such as high electrical conductivity, large surface area, and chemical versatility, making them ideal candidates for various dialysis applications. One prominent application of MXenes lies in the efficient removal of toxic metals and harmful dyes from wastewater. Their unique structure allows for rapid adsorption and selective separation, significantly improving purification processes. MXenes show great promise in the therapeutic management of acute kidney injury, where their biocompatibility and ability to facilitate toxin removal can mitigate damage to renal tissues. In hemodialysis, MXenes can enhance membrane performance through improved permeability and selectivity, leading to more effective clearance of waste products. Despite the potential of MXene-based composites in dialysis applications, several challenges loom large on the horizon. The stability of MXenes in physiological environments is a critical concern, as they can undergo oxidation or degradation, which may compromise their functionality over time. The scalability of synthesis processes remains a significant barrier; producing high-quality MXene materials in sufficient quantities for clinical use is not yet fully realized. Moreover, ensuring biocompatibility is paramount, as any adverse reactions could lead to inflammation or other complications in patients. The integration of MXenes into existing dialysis systems requires meticulous engineering to maintain optimal filtration properties while avoiding clogging or fouling. The future of MXenes and their composites in dialysis presents a promising horizon, teeming with potential innovations. The development of hybrid materials that utilize MXenes alongside other nanomaterials can lead to multifunctional systems, capable of addressing multiple challenges faced in dialysis treatments. Advancements in fabrication techniques may allow for tailored porosity, enabling customized dialysis solutions for individual patients. Research into surface modifications and composites can enhance their stability and functionality, potentially overcoming current limitations. The purpose of this review is to provide a comprehensive understanding of the current landscape of MXenes in dialysis, highlighting their applications, challenges, and future directions. This review explores the diverse applications of MXenes in the field of dialysis, focusing on their roles in the removal of toxic metals and dyes, therapy for acute kidney injury, and hemodialysis enhancement.
Collapse
Affiliation(s)
- Pouya Javaherchi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Parisa Heydari
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
3
|
Oh MW, Son BH, Yoon JS, Yoo Y, Kim Y, Choi SB, Ahn YH, Cho WB, Park DJ. Fabrication of a uniform quantum dot film with a high quantum yield. NANOTECHNOLOGY 2024; 36:035705. [PMID: 39406256 DOI: 10.1088/1361-6528/ad86c6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
We present a method that uses viscosity-lowering materials to fabricate flexible polydimethylsiloxane-based quantum dot (QD) films with high quantum yield (QY) and improved uniformity. We found that the aggregation of individual QDs was prevented, and the QY improved simultaneously in films that contained surfactants. These films showed an improved absorption of approximately 27% in the near-UV and blue light regions, along with an improved photoluminescence of approximately 18%, indicating improved light conversion from the UV to the visible frequency region.
Collapse
Affiliation(s)
- Min Woo Oh
- School of Nano Convergence Technology and Center of Nano Convergence Technology, Hallymdaehaggil 1, Chuncheon 24252, Republic of Korea
| | - Byung Hee Son
- Cheorwon Plasma Research Institute, Hokook-ro 4620, Cheorwon-gun 24062, Republic of Korea
- Department of Physics and Division of Energy System Research, Ajou University, Suwon 16499, Republic of Korea
| | - Jee Sang Yoon
- School of Nano Convergence Technology and Center of Nano Convergence Technology, Hallymdaehaggil 1, Chuncheon 24252, Republic of Korea
| | - Yonghwan Yoo
- Cheorwon Plasma Research Institute, Hokook-ro 4620, Cheorwon-gun 24062, Republic of Korea
| | - Yongduk Kim
- Cheorwon Plasma Research Institute, Hokook-ro 4620, Cheorwon-gun 24062, Republic of Korea
| | - Soo Bong Choi
- Department of Physics, Incheon National University, Incheon 22012, Republic of Korea
| | - Yeong Hwan Ahn
- Department of Physics and Division of Energy System Research, Ajou University, Suwon 16499, Republic of Korea
| | - Won Bae Cho
- Department of Nano-Semiconductor Engineering, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Doo Jae Park
- School of Nano Convergence Technology and Center of Nano Convergence Technology, Hallymdaehaggil 1, Chuncheon 24252, Republic of Korea
| |
Collapse
|
4
|
Avinashi SK, Mishra RK, Singh R, Shweta, Rakhi, Fatima Z, Gautam CR. Fabrication Methods, Structural, Surface Morphology and Biomedical Applications of MXene: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47003-47049. [PMID: 39189322 DOI: 10.1021/acsami.4c07894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Recently, two-dimensional (2-D) layered materials have revealed outstanding properties and play a crucial role for numerous advanced applications. The emerging transition metal carbides and nitrides, known as MXene with empirical formula Mn+1XnTx, have generated widespread attention and demonstrated impressive potential in various fields. The fabrication of 2-D novel MXene and its composites and their characterizations are applicable to vast applications in different areas such as energy storage, gas sensors, catalysis, and biomedical applications. In this review, the main focus is on the various synthesis methods, their properties, and biomedical applications. This review provides detailed illustrations of MXenes for many biomedical applications, including bioimaging, drug delivery, therapies, biosensors, tissue engineering, and antibacterial reagents. The challenges and future prospects were highlighted in a comprehensive manner, and the existing problems and potential for MXene-based biomaterials were analyzed with the goal of accelerating their use in the biomedical field.
Collapse
Affiliation(s)
- Sarvesh Kumar Avinashi
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Rajat Kumar Mishra
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Rahul Singh
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Shweta
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Rakhi
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Zaireen Fatima
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Chandki Ram Gautam
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| |
Collapse
|
5
|
Ruiyi L, Mengyu W, Xinyi Z, Zaijun L, Xiaohao L. Self-powered sensing platform for monitoring uric acid in sweat using cobalt nanocrystal-graphene quantum dot-Ti 3C 2T X monolithic film electrode with excellent supercapacitor and sensing behavior. Mikrochim Acta 2024; 191:530. [PMID: 39127988 DOI: 10.1007/s00604-024-06611-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The synthesis of cobalt nanocrystal-graphene quantum dot-Ti3C2TX monolithic film electrode (Co-GQD-Ti3C2TX) is reported via self-assembly of Ti3C2TX nanosheets induced by protonated arginine-functionalized graphene quantum dot and subsequent reduction of cobalt (III). The resulting Co-GQD-Ti3C2TX shows good monolithic architecture, mechanical property, dispersibility and conductivity. The structure achieves excellent supercapacitor and sensing behavior. The self-charging supercapacitor produced by printing viscous Co-GQD-Ti3C2TX hydrogel on the back of flexible solar cell surface provides high specific capacitance (296 F g-1 at 1 A g-1), high-rate capacity (153 F g-1 at 20 A g-1), capacity retention (98.1% over 10,000-cycle) and energy density (29.6 W h kg-1 at 299.9 W kg-1). The electrochemical chip produced by printing Co-GQD-Ti3C2TX hydrogel on paper exhibits sensitive electrochemical response towards uric acid. The increase of uric acid between 0.01 and 800 μM causes a linear increase in differential pulse voltammetry signal with a detection limit of 0.0032 μM. The self-powered sensing platform integrating self-charging supercapacitor, electrochemical chip and micro electrochemical workstation was contentedly applied to monitoring uric acid in sweats and shows one broad application prospect in wearable electronic health monitoring device.
Collapse
Affiliation(s)
- Li Ruiyi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wei Mengyu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhou Xinyi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Li Zaijun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Liu Xiaohao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
6
|
Zorrón M, Cabrera AL, Sharma R, Radhakrishnan J, Abbaszadeh S, Shahbazi M, Tafreshi OA, Karamikamkar S, Maleki H. Emerging 2D Nanomaterials-Integrated Hydrogels: Advancements in Designing Theragenerative Materials for Bone Regeneration and Disease Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403204. [PMID: 38874422 PMCID: PMC11336986 DOI: 10.1002/advs.202403204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
This review highlights recent advancements in the synthesis, processing, properties, and applications of 2D-material integrated hydrogels, with a focus on their performance in bone-related applications. Various synthesis methods and types of 2D nanomaterials, including graphene, graphene oxide, transition metal dichalcogenides, black phosphorus, and MXene are discussed, along with strategies for their incorporation into hydrogel matrices. These composite hydrogels exhibit tunable mechanical properties, high surface area, strong near-infrared (NIR) photon absorption and controlled release capabilities, making them suitable for a range of regeneration and therapeutic applications. In cancer therapy, 2D-material-based hydrogels show promise for photothermal and photodynamic therapies, and drug delivery (chemotherapy). The photothermal properties of these materials enable selective tumor ablation upon NIR irradiation, while their high drug-loading capacity facilitates targeted and controlled release of chemotherapeutic agents. Additionally, 2D-materials -infused hydrogels exhibit potent antibacterial activity, making them effective against multidrug-resistant infections and disruption of biofilm generated on implant surface. Moreover, their synergistic therapy approach combines multiple treatment modalities such as photothermal, chemo, and immunotherapy to enhance therapeutic outcomes. In bio-imaging, these materials serve as versatile contrast agents and imaging probes, enabling their real-time monitoring during tumor imaging. Furthermore, in bone regeneration, most 2D-materials incorporated hydrogels promote osteogenesis and tissue regeneration, offering potential solutions for bone defects repair. Overall, the integration of 2D materials into hydrogels presents a promising platform for developing multifunctional theragenerative biomaterials.
Collapse
Affiliation(s)
- Melanie Zorrón
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Agustín López Cabrera
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Riya Sharma
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Janani Radhakrishnan
- Department of BiotechnologyNational Institute of Animal BiotechnologyHyderabad500 049India
| | - Samin Abbaszadeh
- Department of Pharmacology and ToxicologySchool of PharmacyUrmia University of Medical SciencesUrmia571478334Iran
| | - Mohammad‐Ali Shahbazi
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1GroningenAV, 9713The Netherlands
| | - Omid Aghababaei Tafreshi
- Microcellular Plastics Manufacturing LaboratoryDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Smart Polymers & Composites LabDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation11570 W Olympic BoulevardLos AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| |
Collapse
|
7
|
Ali I, Chang LM, Farheen J, Huang J, Gu ZG. Facile Synthesis of Novel Ti 2C Nano Bipyramids for Photothermal and Photodynamic Therapy of Breast Cancer. Chempluschem 2024; 89:e202300544. [PMID: 38235954 DOI: 10.1002/cplu.202300544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 01/19/2024]
Abstract
Photo-responsive synergetic therapeutics achieved significant attraction in cancer theranostic due to the versatile characteristics of nanomaterials. There have been substantial efforts in developing the simplest nano-design with exceptional synergistic properties and multifunctionalities. In this work, biocompatible Ti2C MXene nano bipyramids (MNBPs) were synthesized by hydrothermal method with dual functionalities of photothermal and photodynamic therapies. The MNBPs shape was obtained from two-dimensional (2D) Ti2C nanosheets by controlling the temperature of the reaction mixture. The structure of these Ti2C MNBPs was characterized by a high-resolution transmission electron microscope, scanning electron microscope, atomic force microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. The Ti2C NBPs have shown exceptional photothermal properties with increased temperature to 72.3 °C under 808 nm laser irradiation. The designed nano bipyramids demonstrated excellent cellular uptake and biocompatibility. The Ti2C NBP has established a remarkable photothermal therapy (PTT) effect against 4T1 breast cancer cells. Moreover, Ti2C NBPs showed a profound response to UV light (6 mW/cm2) and produced reactive oxygen species, making them useful for photodynamic therapy (PDT). These in-vitro studies pave a new path to tune the properties of photo-responsive MXene nanosheets, indicating a potential use in biomedical applications.
Collapse
Affiliation(s)
- Israt Ali
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Mei Chang
- Fuzhou University, College of Chemistry, Fuzhou, 350108, China
| | - Jabeen Farheen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiandong Huang
- Fuzhou University, College of Chemistry, Fuzhou, 350108, China
| | - Zhi-Gang Gu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Noh S, Shin J, Lee J, Oh HM, Yu YT, Kim JS. Improvement in Photoelectrochemical Water Splitting Performance of GaN-nanowire Photoanode Using MXene. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8016-8023. [PMID: 38294420 DOI: 10.1021/acsami.3c15698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The photoelectrochemical water splitting (PEC-WS) performance of a photoanode consisting of GaN nanowires (NWs) is significantly improved using a Ti3C2-MXene coating as an intermediate layer to promote carrier transfer toward the electrolyte. The maximum current density and applied-bias photon-to-current efficiency of the photoanode comprising GaN NWs coated with Ti3C2-MXene (MGNWs) are measured to be 34.24 mA/cm2 and 14.47% at 1.2 and 0.4 V versus a reversible hydrogen electrode (RHE), respectively. These values are much higher than those of the GaN-NW photoanode without Ti3C2-MXene (4.04 mA/cm2 and 1.95%) and also markedly exceed those of previously reported photoanodes. After 8 days of PEC-WS, the current density was measured to be 31.07 mA/cm2, which corresponds to 97.58% of that measured immediately after the reaction started. Based on the time dependence of the current density, the hydrogen evolution rate over the reaction time is calculated to be 0.58 mmol/cm2·h. The results confirm that the PEC-WS performance of the optimized MGNW photoanode is superior to and more stable than those of previously reported photoanodes.
Collapse
Affiliation(s)
- Siyun Noh
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Jaehyeok Shin
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Jinseong Lee
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Hye Min Oh
- Department of Physics, Kunsan National University, Gunsan 54150, South Korea
| | - Yeon-Tae Yu
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Jin Soo Kim
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| |
Collapse
|
9
|
Bilal M, Singh AK, Iqbal HM, Boczkaj G. Enzyme-conjugated MXene nanocomposites for biocatalysis and biosensing. CHEMICAL ENGINEERING JOURNAL 2023; 474:145020. [DOI: 10.1016/j.cej.2023.145020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
10
|
Sagadevan S, Oh WC. Comprehensive utilization and biomedical application of MXenes - A systematic review of cytotoxicity and biocompatibility. J Drug Deliv Sci Technol 2023; 85:104569. [DOI: 10.1016/j.jddst.2023.104569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
11
|
Yoon J, Kim S, Park KH, Lee S, Kim SJ, Lee H, Oh T, Koo CM. Biocompatible and Oxidation-Resistant Ti 3 C 2 T x MXene with Halogen-Free Surface Terminations. SMALL METHODS 2023; 7:e2201579. [PMID: 36929585 DOI: 10.1002/smtd.202201579] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Surface chemistry influences not only physicochemical properties but also safety and applications of MXene nanomaterials. Fluorinated Ti3 C2 Tx MXene, synthesized using conventional HF-based etchants, raises concerns regarding harmful effects on electronics and toxicity to living organisms. In this study, well-delaminated halogen-free Ti3 C2 Tx flakes are synthesized using NaOH-based etching solution. The transversal surface plasmon mode of halogen-free Ti3 C2 Tx MXene (833 nm) confirmed red-shift compared to conventional Ti3 C2 Tx (752 nm), and the halogen-free Ti3 C2 Tx MXene has a different density of state by the high proportion of -O and -OH terminations. The synthesized halogen-free Ti3 C2 Tx exhibits a lower water contact angle (34.5°) and work function (3.6 eV) than those of fluorinated Ti3 C2 Tx (49.8° and 4.14 eV, respectively). The synthesized halogen-free Ti3 C2 Tx exhibits high biocompatibility with the living cells, as evidenced by no noticeable cytotoxicity, even at very high concentrations (2000 µg mL⁻1 ), at which fluorinated Ti3 C2 Tx caused ≈50% reduction in cell viability upon its oxidation. Additionally, the oxidation stability of halogen-free Ti3 C2 Tx is enhanced unexpectedly, which cumulatively provides a good rationale for pursuing the halogen-free routes for synthesizing MXene materials for their uses in biomedical and therapeutic applications.
Collapse
Affiliation(s)
- Jaeeun Yoon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Solutions to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seongchan Kim
- Biomaterials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Ki Hong Park
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seungjun Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seon Joon Kim
- Solutions to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nano and Information Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyojin Lee
- Biomaterials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Taegon Oh
- Solutions to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nano and Information Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Chong Min Koo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
12
|
Singh B, Bahadur R, Maske P, Gandhi M, Singh D, Srivastava R. Preclinical safety assessment of red emissive gold nanocluster conjugated crumpled MXene nanosheets: a dynamic duo for image-guided photothermal therapy. NANOSCALE 2023; 15:2932-2947. [PMID: 36692237 DOI: 10.1039/d2nr05773e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Red emissive gold nanoclusters have potential as biological fluorescent probes, but lack sufficient light-to-heat conversion efficiency for photothermal therapy (PTT). MXene nanomaterials, on the other hand, have shown promise in PTT due to their strong near-infrared absorption abilities, but their instability caused by restacking of the sheets can decrease their available surface area. One approach to address this issue is to design sheets with wrinkles or folds. However, the crumpled or 3D MXene materials reported in the literature are actually aggregates of multiple nanosheets rather than a single sheet that is folded. In this study, a modified method for crumpling a single MXene sheet and further conjugating it with red emissive gold nanoclusters and folic acid was developed. A detailed in vitro toxicity study was performed in various cell lines and cellular uptake in cancer cells was studied using AFM to understand its interaction at the nano-bio interface. The material also demonstrated excellent utility as a bioimaging and PTT agent in vitro, with its high fluorescence allowing bioimaging at a lower concentration of 12 μg mL-1 and a photothermal conversion efficiency of 43.51%. In vitro analyses of the cell death mechanisms induced by PTT were conducted through studies of apoptosis, cell proliferation, and ROS production. In vivo acute toxicity tests were conducted on male and female Wistar rats through oral and intravenous administration (20 mg kg-1 dose), and toxicity was evaluated using various measures including body weight, hematology, serum biochemistry, and H&E staining. The findings from these studies suggest that the MXene gold nanoconjugate could be useful in a range of biomedical applications, with no observed toxicity following either oral or intravenous administration.
Collapse
Affiliation(s)
- Barkha Singh
- Centre for Research in Nano Technology & Science (CRNTS), Sophisticated Analytical Instrument Facility (SAIF), IIT Bombay, Powai, Mumbai, 400076, India.
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India.
| | - Rohan Bahadur
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India.
| | - Priyanka Maske
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India.
| | - Mayuri Gandhi
- Centre for Research in Nano Technology & Science (CRNTS), Sophisticated Analytical Instrument Facility (SAIF), IIT Bombay, Powai, Mumbai, 400076, India.
| | - Dipty Singh
- Department of Neuroendocrinology, National Institute for Research in Reproductive and Child Health (NIRRCH), Parel, Mumbai, 400012, India.
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
13
|
Singh B, Patnaik C, Bahadur R, Gandhi M, De A, Srivastava R. Synthesis and degradation mechanism of renally excretable gold core-shell nanoparticles for combined photothermal and photodynamic therapy. NANOSCALE 2023; 15:1273-1288. [PMID: 36541678 DOI: 10.1039/d2nr05283k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photothermal therapy (PTT) has emerged as a very potent therapeutic approach in the treatment of tumors. Gold nanoparticles have gained considerable scientific interest as a photosensitizer due to their absorbance in the near-infrared regions. However, their biodegradation and excretion from the body is a challenge. Various biodegradable systems consisting of liposomes and polymers have been synthesized, but their precise manufacturing and decomposition mechanisms have not yet been explored. Using zein nanoparticles as a template, we have fabricated a glutathione-functionalized gold core shell type of formulation. The scalability of the one-step seedless gold coating process is also reported. The synthesis procedure of these tunable nanoparticles is understood with TEM. The thermal degradation of the material under the physiological conditions is thoroughly examined using UV and TEM. In vitro PTT effectiveness on breast cancer cells is assessed after an extensive in vitro toxicity research. The mechanism of cell death is studied using ROS and cell cycle analysis. The material exhibited good efficacy as a PTT agent in mice and showed non-toxicity up to 14 days. The renal clearance study of the material in mice shows its disintegration into renal clearable minute gold seeds. All the findings suggest biodegradable glutathione-functionalized gold core-shell nanoparticles as potential photothermal cancer treatment agents.
Collapse
Affiliation(s)
- Barkha Singh
- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India.
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India.
| | - Chetna Patnaik
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
| | - Rohan Bahadur
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India.
| | - Mayuri Gandhi
- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India.
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India.
| |
Collapse
|
14
|
Wang W, Yin Y, Gunasekaran S. Oxygen-terminated few-layered Ti3C2Tx MXene nanosheets as peroxidase-mimic nanozyme for colorimetric detection of kanamycin. Biosens Bioelectron 2022; 218:114774. [DOI: 10.1016/j.bios.2022.114774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/21/2022]
|
15
|
Fabrication and cytotoxicity evaluation of polyethyleneimine conjugated fluorescent MXene nanosheets as cancer theranostics agent. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
16
|
Rhouati A, Berkani M, Vasseghian Y, Golzadeh N. MXene-based electrochemical sensors for detection of environmental pollutants: A comprehensive review. CHEMOSPHERE 2022; 291:132921. [PMID: 34798114 DOI: 10.1016/j.chemosphere.2021.132921] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 05/28/2023]
Abstract
Since the discovery of MXenes at Drexel University in the United States in 2011, there has been extensive research regarding various applications of MXenes including environmental remediation. MXenes with a general formula of Mn+1XnTx are a class of two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides with unique chemical and physical characteristics as nanomaterials. MXenes feature characteristics such as high conductivity, hydrophobicity, and large specific surface areas that are attracting attention from researchers in many fields including environmental water engineering such as desalination and wastewater treatment as well as designing and building efficient sensors to detect hazardous pollutants in water. In this study, we review recent developments in MXene-based nanocomposites for electrochemical (bio) sensing with a particular focus on the detection of hazardous pollutants, such as organic components, pesticides, nitrite, and heavy metals. Integration of these 2D materials in electrochemical enzyme-based and affinity-based biosensors for environmental pollutants is also discussed. In addition, a summary of the key challenges and future remarks are presented. Although this field is relatively new, future research on biosensors of MXene-based nanocomposites need to exploit the remarkable properties of these 2D materials.
Collapse
Affiliation(s)
- Amina Rhouati
- Laboratoire Bioengineering, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Nasrin Golzadeh
- Science, Technology, Engineering, And Mathematics (STEM) Knowledge Translations Institute, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Li X, Tang Y, Liu L, Zhang Y, Sheng R, NuLi Y. Ti 3C 2 MXene with pillared structure for hybrid magnesium-lithium batteries cathode material with long cycle life and high rate capability. J Colloid Interface Sci 2021; 608:2455-2462. [PMID: 34763892 DOI: 10.1016/j.jcis.2021.10.175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022]
Abstract
Cationic surfactants (CS) pillared Ti3C2 composites (Ti3C2/CS) were prepared by a facile electrostatic assembly method, which have large interlayer spacing and slight N-doping. In hybrid magnesium-lithium batteries (HMLBs), the Ti3C2/CS composites exhibit excellent performance by utilizing both Li+ and Mg2+ as charge carriers. Among these composites, the Ti3C2/CTAB (CTC) electrode displays a reversible capacity of 115.9 and 60 mAh g-1 in APC/LiCl (APCL) and APC electrolytes at 0.1 A g-1, and it also exhibits excellent high rate performance and ultralong cycle performance. It is verified that CS is vital to significantly improve the diffusion kinetics of Mg2+ on the electrode surface. The CS can act as the conductive "bridge" which connects different Ti3C2 layers and the interlayer pillar which expands the interlayer distance. In addition, the N element in CS is effective in neutralizing electronegativity and enhancing electrical conductivity for the CTC electrode. The electrode design strategy can adapt to the synthesis of cathode materials with high rate capability in HMLBs.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Yakun Tang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Lang Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China.
| | - Yue Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Rui Sheng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Yanna NuLi
- School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China
| |
Collapse
|
18
|
Singh B, Bahadur R, Rangara M, Gandhi MN, Srivastava R. Influence of Surface States on the Optical and Cellular Property of Thermally Stable Red Emissive Graphitic Carbon Dots. ACS APPLIED BIO MATERIALS 2021; 4:4641-4651. [DOI: 10.1021/acsabm.1c00379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Barkha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Rohan Bahadur
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Misah Rangara
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Maharashtra 400614, India
| | - Mayuri N. Gandhi
- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| |
Collapse
|