1
|
Jiang Y, Yuan H, Pan H, Zhang G. Bithieno[3,4-c]pyrrole-4,6-dione-Based Wide-Bandgap Donor Polymers for Efficient Polymer Solar Cells. Macromol Rapid Commun 2025; 46:e2400603. [PMID: 39108066 DOI: 10.1002/marc.202400603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 01/11/2025]
Abstract
The polymer solar cells (PSCs) have garnered substantial interest owing to their lightweight, cost-effectiveness, and flexibility, making them ideal for large-scale roll-to-roll manufacturing. In this study, two wide-bandgap (WBG) donor polymers, PFBiTPD and PClBiTPD, utilizing bithieno[3,4-c]pyrrole-4,6-dione (BiTPD) as the electron-accepting unit and fluorinated/chlorinated benzo[1,2-b:4,5-b']dithiophene (BDT) as the electron-donating moiety are designed and synthesized. The polymers demonstrated large optical bandgaps (exceeding 1.80 eV) and are blended with ITIC-4F to form the active layers in PSCs. The PFBiTPD-based devices showed a well-dispersed fibrillar network, facilitating efficient charge generation and transport. Thus, these devices attained a power conversion efficiency (PCE) of 8.60%, featuring a fill factor (FF) of 62.89%, an open-circuit voltage (Voc) of 0.88 V and a short-circuit current density (Jsc) of 15.54 mA cm-2. In contrast, PClBiTPD-based devices displayed lower performance due to less favorable morphology. The study underscores the importance of polymer design and morphology control in optimizing the photovoltaic performance of PSCs.
Collapse
Affiliation(s)
- Yu Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecules of Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Hua Yuan
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecules of Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Hui Pan
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecules of Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Guangjun Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecules of Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|
2
|
Khokhlov AR, Keshtov ML, Shikin DY, Godovsky DY, Sergeev VN, Liu J, Kalinkin DP, Alekseev VG, S SS, Sharma GD. Non-fused Nonfullerene Acceptors with an Asymmetric Benzo[1,2-b:3,4-b', 6,5-b"]trithiophene (BTT) Donor Core and Different AcceptorTerminal Units for Organic Solar Cells. Chemistry 2024; 30:e202403193. [PMID: 39374185 DOI: 10.1002/chem.202403193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Here in, we have designed two new unfused non-fullerene small molecules using asymmetric benzo[1,2-b:3.4-b', 6,5-b"]trithiophene (BTT) as the central donor core and different terminal units i. e., 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (NFA-4) and 1,3-diethyl-2-thioxodi hydropyrimidine-4,6 (1H,5H)-dione (NFA-5) and examined their optical and electrochemical properties. Using a wide band-gap copolymer D18, organic solar cells (OSCs) based on bulk heterojunction of D18:NFA-4 and D18:NFA-5 showed overall power conversion efficiency (PCE) of about 17.07 % and 11.27 %, respectively. The increased PCE for the NFA-4-based OSC, compared to NFA-5 counterpart, is due higher value of short circuit current (JSC), open circuit voltage (VOC), and fill factor (FF). Following the addition of small amount of NFA-5 to the binary bulk heterojunction D18:NFA-4, the ternary organic solar cells attained a PCE of 18.05 %, surpassing that of the binary counterparts due to the higher values of which is higher than that for the binary counterparts and attributed to the increased values of JSC, FF, and VOC. The higher value of JSC is linked to the efficient use to excitons transferred from NFA-5 to NFA-4 with a greated dipole moment than NFA-5 and subsequently dissociated into a free charge carrier efficiently.
Collapse
Affiliation(s)
- A R Khokhlov
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Vavilova St., 28, 119991, Moscow, Russian Federation
| | - M L Keshtov
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Vavilova St., 28, 119991, Moscow, Russian Federation
| | - D Ya Shikin
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Vavilova St., 28, 119991, Moscow, Russian Federation
| | - D Y Godovsky
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Vavilova St., 28, 119991, Moscow, Russian Federation
| | - V N Sergeev
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Vavilova St., 28, 119991, Moscow, Russian Federation
| | - J Liu
- Changchun Institute of Applied Chemistry CAS, Ren Min Street, Changchun, 130022, P.R. China
| | - D P Kalinkin
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Vavilova St., 28, 119991, Moscow, Russian Federation
| | - V G Alekseev
- Department of Inorganic and Analytical Chemistry, Tver State University, Sadovyiper. 35, Tver, 170002, Russian Federation
| | - Shyam Shankar S
- Department of Physics and Electronics Communication Engineering, The LNM Institute of Information Technology, Jamdoli, Jaipur (Raj.), 302031, India
| | - Ganesh D Sharma
- Department of Physics and Electronics Communication Engineering, The LNM Institute of Information Technology, Jamdoli, Jaipur (Raj.), 302031, India
| |
Collapse
|
3
|
Zhang Y, Chen J, Yang J, Fu M, Cao Y, Dong M, Yu J, Dong S, Yang X, Shao L, Hu Z, Cai H, Liu C, Huang F. Sensitive SWIR Organic Photodetectors with Spectral Response Reaching 1.5 µm. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406950. [PMID: 39152933 DOI: 10.1002/adma.202406950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Indexed: 08/19/2024]
Abstract
The performance of organic photodetectors (OPDs) sensitive to the short-wavelength infrared (SWIR) light lags behind commercial indium gallium arsenide (InGaAs) photodetectors primarily due to the scarcity of organic semiconductors with efficient photoelectric responses exceeding 1.3 µm. Limited by the Energy-gap law, ultralow-bandgap organic semiconductors usually suffer from severe non-radiative transitions, resulting in low external quantum efficiency (EQE). Herein, a difluoro-substituted quinoid terminal group (QC-2F) with exceptionally strong electron-negativity is developed for constructing a new non-fullerene acceptor (NFA), Y-QC4F with an ultralow bandgap of 0.83 eV. This subtle structural modification significantly enhances intermolecular packing order and density, enabling an absorption onset up to 1.5 µm while suppressing non-radiation recombination in Y-QC4F films. SWIR OPDs based on Y-QC4F achieve an impressive detectivity (D*) over 1011 Jones from 0.4 to 1.5 µm under 0 V bias, with a maximum of 1.68 × 1012 Jones at 1.16 µm. Furthermore, the resulting OPDs demonstrate competitive performance with commercial photodetectors for high-quality SWIR imaging even under 1.4 µm irradiation.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jingwen Chen
- Lumidar Technology Co., Ltd., Guangzhou, 510530, P. R. China
| | - Jie Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Muyi Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yunhao Cao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Minghao Dong
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jiangkai Yu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Sheng Dong
- Lumidar Technology Co., Ltd., Guangzhou, 510530, P. R. China
| | - Xiye Yang
- Lumidar Technology Co., Ltd., Guangzhou, 510530, P. R. China
| | - Lin Shao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhengwei Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Houji Cai
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chunchen Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fei Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
4
|
Dhingra S, Gupta SP, Shah A, Singh DP, Pal SK. Temperature-dependent hole mobility in pyrene-thiophene-based room-temperature discotic liquid crystals. Chem Commun (Camb) 2024; 60:2922-2925. [PMID: 38372127 DOI: 10.1039/d3cc05707k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
π-Conjugated pyrene-thiophene-based room-temperature discotic liquid crystals armed with four peripheral aliphatic chains are reported to study their potential use in a hole-transporting organic semiconductor. The charge carrier mobility studies using the ToF method revealed room temperature hole mobility in the order of 10-4 cm2 V-1 s-1 for both mesogens. However, the mobility values for compound 1a were observed in the order of 10-3 cm2 V-1 s-1 at high temperatures. Such molecular systems can potentially be used in nonlinear organic electronic applications.
Collapse
Affiliation(s)
- Shallu Dhingra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli-140306, India.
| | | | - Asmita Shah
- Université du Littoral Côte d'Opale, UR 4476, UDSMM, Unité de Dynamique et Structure des Matériaux Moléculaires, Calais cedex 62228, France
| | - Dharmendra Pratap Singh
- Université du Littoral Côte d'Opale, UR 4476, UDSMM, Unité de Dynamique et Structure des Matériaux Moléculaires, Calais cedex 62228, France
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli-140306, India.
| |
Collapse
|
5
|
Sun Y, Chen J, Wang W, Zhu L. α-Galactosidase interacts with persistent organic pollutants to induce oxidative stresses in rice (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122353. [PMID: 37562527 DOI: 10.1016/j.envpol.2023.122353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
Persistent organic pollutants (POPs) in agricultural soil often triggered metabolic alterations and phytotoxicity in plants, ultimately threatening crop quality. Unraveling the phytotoxic mechanisms of POPs in crops is critical for evaluating their environmental risks. Herein, the molecular mechanism of POP-induced phytotoxicity in rice (Oryza sativa L.) was analyzed using metabolic profile, enzyme activity, and gene expression as linkages, including polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, polychlorinated biphenyls, and phthalate esters. Despite no observable changes in phenotypic traits (e.g., biomass and length of aboveground), the levels of reactive oxygen species (ROS) were promoted under stresses of the tested POPs, particularly 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), dibutyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP). Metabolomics analysis revealed that ROS contents positively correlated with metabolic perturbation levels (r = 0.83), among which the galactose metabolism was significantly inhibited when exposed to DBP, DEHP, or BDE-47. The α-Galactosidase (α-Gal) involved in galactose metabolism was targeted as the key enzyme for the phytotoxicity of DBP, DEHP, and BDE-47, which was revealed by the inhibition of saccharide levels (45.5-82.1%), the catalytic activity of α-Gal (18.5-24.3%), and the gene expression (28.5-34.5%). Molecular docking simulation suggested that the three POPs occupied the active sites of α-Gal and formed a stable protein-ligand complex, thus inhibiting the catalytic activity of α-Gal. Partial least-squares regression analysis indicated that α-Gal activity was negatively associated with hydrogen bond acceptor, rotatable bond, and topological polar surface area of POPs. The results offered novel insights into the molecular mechanisms of phytotoxicity of POPs and provided important information for evaluating the environmental risk of POPs.
Collapse
Affiliation(s)
- Yingying Sun
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Jie Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Wei Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
6
|
Zeng G, Li H, Tan F, Xin Y, Zhang S. A narrow band gap non-fullerene electron acceptor based on a dithieno-3,2- b:2',3'-dlpyrrole unit for high performance organic solar cells with minimal highest occupied molecular orbital offset. RSC Adv 2023; 13:14703-14711. [PMID: 37197679 PMCID: PMC10183802 DOI: 10.1039/d3ra01021j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
Here, a new narrow band gap non-fullerene small molecular acceptor (NFSMA) based on a dithieno-3,2-b:2',3'-dlpyrrole(DTP) unit, namely SNIC-F, was designed and synthesized. Due to the strong electron-donating ability of the DTP-based fused-ring core, SNIC-F showed a strong intramolecular-charge transfer (ICT) effect and thus gave a narrow band gap of 1.32 eV. Benefiting from the low band gap and efficient charge separation, when pairing with a copolymer PBTIBDTT, the device optimized by 0.5% 1-CN gave a high short circuit current (Jsc) of 19.64 mA cm-2. In addition, a high open-circuit voltage (Voc) of 0.83 V was obtained due to the near 0 eV highest occupied molecular orbital (HOMO) offset between PBTIBDTT and SNIC-F. As a result, a high power conversion efficiency (PCE) of 11.25% was obtained, and the PCE was maintained above 9.2% as the active layer thickness increased from 100 nm to 250 nm. Our work indicated that designing a narrow band gap NFSMA-based DTP unit and blending it with a polymer donor with small HOMO offset is an efficient strategy for achieving high performance OSCs.
Collapse
Affiliation(s)
- Guang Zeng
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Hanming Li
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Fang Tan
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Company Ltd Shenzhen 518132 P. R. China
| | - Yue Xin
- School of Applied Physics and Materials, Wuyi University 22 Dongcheng village Jiangmen 529020 P. R. China
| | - Shengdong Zhang
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| |
Collapse
|
7
|
Zhang G, Lin FR, Qi F, Heumüller T, Distler A, Egelhaaf HJ, Li N, Chow PCY, Brabec CJ, Jen AKY, Yip HL. Renewed Prospects for Organic Photovoltaics. Chem Rev 2022; 122:14180-14274. [PMID: 35929847 DOI: 10.1021/acs.chemrev.1c00955] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic photovoltaics (OPVs) have progressed steadily through three stages of photoactive materials development: (i) use of poly(3-hexylthiophene) and fullerene-based acceptors (FAs) for optimizing bulk heterojunctions; (ii) development of new donors to better match with FAs; (iii) development of non-fullerene acceptors (NFAs). The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices. The discovery of Y6-type acceptors (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-thiadiazolo[3,4-e]-thieno[2″,3″:4',5']thieno-[2',3':4,5]pyrrolo-[3,2-g]thieno-[2',3':4,5]thieno-[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) with an A-DA' D-A configuration has further propelled the PCEs to go beyond 15% due to smaller Eloss values (∼0.5 eV) and higher external quantum efficiencies. Subsequently, the PCEs of Y6-series single-junction devices have increased to >19% and may soon approach 20%. This review provides an update of recent progress of OPV in the following aspects: developments of novel NFAs and donors, understanding of the structure-property relationships and underlying mechanisms of state-of-the-art OPVs, and tasks underpinning the commercialization of OPVs, such as device stability, module development, potential applications, and high-throughput manufacturing. Finally, an outlook and prospects section summarizes the remaining challenges for the further development of OPV technology.
Collapse
Affiliation(s)
- Guichuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Feng Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Thomas Heumüller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Andreas Distler
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Hans-Joachim Egelhaaf
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Ning Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
8
|
Effect of Polymer Chain Regularity on the Photovoltaic Performance of Organic Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Hao J, Sun M, Li D, Zhang T, Li J, Zhou D. An IFI6-based hydrogel promotes the healing of radiation-induced skin injury through regulation of the HSF1 activity. J Nanobiotechnology 2022; 20:288. [PMID: 35717249 PMCID: PMC9206756 DOI: 10.1186/s12951-022-01466-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
Radiation-induced skin injury (RISI) is a common complication of radiotherapy. Interferon-alpha inducible protein 6 (IFI6) significantly reduces the radiation sensitivity of HaCaT cells. Sodium alginate (SA) has substantial moisturizing properties. Graphene oxide (GO) is a suitable substrate with physical antibacterial properties. Therefore, we designed materials to modify IFI6 using the biogule of polydopamine (PDA) connected to GO/SA. The structure, size, morphology, and elemental compositions of IFI6-PDA@GO/SA were analyzed. Cytological studies suggested that IFI6-PDA@GO/SA is non-toxic to HaCaT cells, with antibacterial properties. It promotes migration and vascularization and inhibits apoptosis. These cells express IFI6 after irradiation. The mouse model suggested that IFI6-PDA@GO/SA promotes wound healing and reduces reactive oxygen species expression. IFI6-PDA@GO/SA accelerates RISI healing, possibly by initiating the SSBP1/HSF1 signaling pathway. In addition, IFI6-PDA@GO/SA improves the immune microenvironment. This study constitutes the first use of IFI6 as a RISI wound-healing material.
Collapse
Affiliation(s)
- Jie Hao
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Mengyi Sun
- Department of Rehabilitation, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830092, China
| | - Dong Li
- Department of Oncology, The General Hospital of Western Theater Command of PLA, Chengdu, 610083, China
| | - Tao Zhang
- Department of Oncology, The General Hospital of Western Theater Command of PLA, Chengdu, 610083, China.
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Daijun Zhou
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, 400038, China. .,Department of Oncology, The General Hospital of Western Theater Command of PLA, Chengdu, 610083, China.
| |
Collapse
|
10
|
Wang Y, Zhang C, Yang B, Yuan L, Gong J, Liu Z, Wu Y, Chen H. The Halogenation Effects of Electron Acceptor ITIC for Organic Photovoltaic Nano-Heterojunctions. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3417. [PMID: 34947765 PMCID: PMC8708652 DOI: 10.3390/nano11123417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 02/01/2023]
Abstract
Molecular engineering plays a critical role in the development of electron donor and acceptor materials for improving power conversion efficiency (PCE) of organic photovoltaics (OPVs). The halogenated acceptor materials in OPVs have shown high PCE. Here, to investigate the halogenation mechanism and the effects on OPV performances, based on the density functional theory calculations with the optimally tuned screened range-separated hybrid functional and the consideration of solid polarization effects, we addressed the halogenation effects of acceptor ITIC, which were modeled by bis-substituted ITIC with halogen and coded as IT-2X (X = F, Cl, Br), and PBDB-T:ITIC, PBDB-T:IT-2X (X = F, Cl, Br) complexes on their geometries, electronic structures, excitations, electrostatic potentials, and the rate constants of charge transfer, exciton dissociation (ED), and charge recombination processes at the heterojunction interface. The results indicated that halogenation of ITIC slightly affects molecular geometric structures, energy levels, optical absorption spectra, exciton binding energies, and excitation properties. However, the halogenation of ITIC significantly enlarges the electrostatic potential difference between the electron acceptor and donor PBDB-T with the order from fluorination and chlorination to bromination. The halogenation also increases the transferred charges of CT states for the complexes. Meanwhile, the halogenation effects on CT energies and electron process rates depend on different haloid elements. No matter which kinds of haloid elements were introduced in the halogenation of acceptors, the ED is always efficient in these OPV devices. This work provides an understanding of the halogenation mechanism, and is also conducive to the designing of novel materials with the aid of the halogenation strategy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou 730050, China; (Y.W.); (B.Y.); (L.Y.); (J.G.)
| | - Cairong Zhang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou 730050, China; (Y.W.); (B.Y.); (L.Y.); (J.G.)
| | - Bing Yang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou 730050, China; (Y.W.); (B.Y.); (L.Y.); (J.G.)
| | - Lihua Yuan
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou 730050, China; (Y.W.); (B.Y.); (L.Y.); (J.G.)
| | - Jijun Gong
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou 730050, China; (Y.W.); (B.Y.); (L.Y.); (J.G.)
| | - Zijiang Liu
- Department of Physics, Lanzhou City University, Lanzhou 730070, China;
| | - Youzhi Wu
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
| | - Hongshan Chen
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China;
| |
Collapse
|
11
|
Schweda B, Reinfelds M, Hofstadler P, Trimmel G, Rath T. Recent Progress in the Design of Fused-Ring Non-Fullerene Acceptors-Relations between Molecular Structure and Optical, Electronic, and Photovoltaic Properties. ACS APPLIED ENERGY MATERIALS 2021; 4:11899-11981. [PMID: 35856015 PMCID: PMC9286321 DOI: 10.1021/acsaem.1c01737] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organic solar cells are on the dawn of the next era. The change of focus toward non-fullerene acceptors has introduced an enormous amount of organic n-type materials and has drastically increased the power conversion efficiencies of organic photovoltaics, now exceeding 18%, a value that was believed to be unreachable some years ago. In this Review, we summarize the recent progress in the design of ladder-type fused-ring non-fullerene acceptors in the years 2018-2020. We thereby concentrate on single layer heterojunction solar cells and omit tandem architectures as well as ternary solar cells. By analyzing more than 700 structures, we highlight the basic design principles and their influence on the optical and electrical structure of the acceptor molecules and review their photovoltaic performance obtained so far. This Review should give an extensive overview of the plenitude of acceptor motifs but will also help to understand which structures and strategies are beneficial for designing materials for highly efficient non-fullerene organic solar cells.
Collapse
Affiliation(s)
- Bettina Schweda
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Matiss Reinfelds
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Petra Hofstadler
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Gregor Trimmel
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Thomas Rath
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| |
Collapse
|
12
|
Ma S, Feng H, Liu X, Hu Z, Yang X, Liang Y, Zhang J, Huang F, Cao Y. Dodecacyclic-Fused Electron Acceptors with Multiple Electron-Deficient Units for Efficient Organic Solar Cells. CHEMSUSCHEM 2021; 14:3544-3552. [PMID: 33847443 DOI: 10.1002/cssc.202100592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Fused aromatic cores in non-fullerene electron acceptors (NFEAs) play a significant role in determining their optoelectronic properties and photovoltaic performance. In this work, a dodecacyclic-fused core with three electron-deficient units is synthesized through a double intramolecular Cadogan reduction cyclization. Terminal groups with different halogen substitution (F or Cl) are grafted onto the dodecacyclic-fused core to afford MS-4F and MS-4Cl, both of which showed strong and broad absorption, narrow bandgaps around 1.40 eV, and variable molecular packing model in pristine and blend films. Photovoltaic performance of solar cells containing MS-4F and MS-4Cl as NFEAs were investigated with resultant power conversion efficiencies (PCEs) of 11.75 % and 11.79 %, respectively. The mechanism study indicates that both of PBDB-T : MS-4F- and PBDB-T : MS-4Cl-based devices displayed high hole and electron mobility values, efficient charge transfer, and low charge recombination etc. These results indicate that designing multiple-fused aromatic cores with multiple electron-deficient units is a promising strategy to obtain high-performance NFEAs.
Collapse
Affiliation(s)
- Shanshan Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Hexiang Feng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiang Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhicheng Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiye Yang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yuanying Liang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jie Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
13
|
Gon M, Wakabayashi J, Nakamura M, Tanaka K, Chujo Y. Controlling Energy Gaps of π-Conjugated Polymers by Multi-Fluorinated Boron-Fused Azobenzene Acceptors for Highly Efficient Near-Infrared Emission. Chem Asian J 2021; 16:696-703. [PMID: 33527711 DOI: 10.1002/asia.202100037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/31/2021] [Indexed: 11/09/2022]
Abstract
We demonstrate that multi-fluorinated boron-fused azobenzene (BAz) complexes can work as a strong electron acceptor in electron donor-acceptor (D-A) type π-conjugated polymers. Position-dependent substitution effects were revealed, and the energy level of the lowest unoccupied molecular orbital (LUMO) was critically decreased by fluorination. As a result, the obtained polymers showed near-infrared (NIR) emission (λPL =758-847 nm) with high absolute photoluminescence quantum yield (ΦPL =7-23%) originating from low-lying LUMO energy levels of the BAz moieties (-3.94 to -4.25 eV). Owing to inherent solid-state emissive properties of the BAz units, deeper NIR emission (λPL =852980 nm) was detected in film state. Clear solvent effects prove that the NIR emission is from a charge transfer state originating from a strong D-A interaction. The effects of fluorination on the frontier orbitals are well understandable and predictable by theoretical calculation with density functional theory. This study demonstrates the effectiveness of fluorination to the BAz units for producing a strong electron-accepting unit through fine-tuning of energy gaps, which can be the promising strategy for designing NIR absorptive and emissive materials.
Collapse
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Junko Wakabayashi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masashi Nakamura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|