1
|
Mendoza S, Gharib M. Bremsstrahlung radiation from toroidal plasmas generated through hydrodynamic shear. Sci Rep 2025; 15:10494. [PMID: 40140425 PMCID: PMC11947207 DOI: 10.1038/s41598-025-88250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/28/2025] [Indexed: 03/28/2025] Open
Abstract
In this work, we investigate the anomalous appearance of bright visible light from a toroidal argon plasma generated through extreme hydrodynamic shear. In ambients of nitrogen or helium, the spectral content is easily correlated to the plasma's color. In an argon ambient however, infrared spectral lines dominate the spectrum, while the plasma appears light blue, nearly white, to the naked eye. We determine that this luminescence is a visible broadband continuum emitted by electrons scattering off neutral argon atoms, a form of radiation called bremsstrahlung radiation ([Formula: see text]). Using multispectral imaging, we calculate the temperature, Te, of bremsstrahlung-producing electrons spatially throughout the plasma, up to the ionization energy of argon atoms 15.76 eV. We further provide a method of calculating electron density, ne, from the same data. We find that in both the Te and ne fields, two distinct phases appear; a small inner ring of high Te, low ne, and an outer diffusive region with low Te, high ne. The boundary between these disparate phases is extremely small, less than 10 µm, indicating an element of self-confinement intrinsic to this plasma configuration.
Collapse
Affiliation(s)
- Sean Mendoza
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Morteza Gharib
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
2
|
Martinet A, Miebach L, Weltmann K, Emmert S, Bekeschus S. Biomimetic Hydrogels - Tools for Regenerative Medicine, Oncology, and Understanding Medical Gas Plasma Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2403856. [PMID: 39905967 PMCID: PMC11878268 DOI: 10.1002/smll.202403856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Biomimetic hydrogels enable biochemical, cell biology, and tissue-like studies in the third dimension. Smart hydrogels are also frequently used in tissue engineering and as drug carriers for intra- or extracutaneous regenerative medicine. They have also been studied in bio-sensor development, 3D cell culture, and organoid growth optimization. Yet, many hydrogel types, adjuvant components, and cross-linking methods have emerged over decades, diversifying and complexifying such studies. Here, an evaluative overview is provided, mapping potential applications to the corresponding hydrogel tuning. Strikingly, hydrogels are ideal for studying locoregional therapy modalities, such as cold medical gas plasma technology. These partially ionized gases produce various reactive oxygen species (ROS) types along with other physico-chemical components such as ions and electric fields, and the spatio-temporal effects of these components delivered to diseased tissues remain largely elusive to date. Hence, this work outlines the promising applications of hydrogels in biomedical research in general and cold plasma science in particular and underlines the great potential of these smart scaffolds for current and future research and therapy.
Collapse
Affiliation(s)
- Alice Martinet
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| | - Lea Miebach
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| | - Klaus‐Dieter Weltmann
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
| | - Steffen Emmert
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
| | - Sander Bekeschus
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| |
Collapse
|
3
|
Kim MJ, Park JH, Seok JM, Jung J, Hwang TS, Lee HC, Lee JH, Park SA, Byun JH, Oh SH. BMP-2-immobilized PCL 3D printing scaffold with a leaf-stacked structure as a physically and biologically activated bone graft. Biofabrication 2024; 16:025014. [PMID: 38306679 DOI: 10.1088/1758-5090/ad2537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Although three-dimensional (3D) printing techniques are used to mimic macro- and micro-structures as well as multi-structural human tissues in tissue engineering, efficient target tissue regeneration requires bioactive 3D printing scaffolds. In this study, we developed a bone morphogenetic protein-2 (BMP-2)-immobilized polycaprolactone (PCL) 3D printing scaffold with leaf-stacked structure (LSS) (3D-PLSS-BMP) as a bioactive patient-tailored bone graft. The unique LSS was introduced on the strand surface of the scaffold via heating/cooling in tetraglycol without significant deterioration in physical properties. The BMP-2 adsorbed on3D-PLSS-BMPwas continuously released from LSS over a period of 32 d. The LSS can be a microtopographical cue for improved focal cell adhesion, proliferation, and osteogenic differentiation.In vitrocell culture andin vivoanimal studies demonstrated the biological (bioactive BMP-2) and physical (microrough structure) mechanisms of3D-PLSS-BMPfor accelerated bone regeneration. Thus, bioactive molecule-immobilized 3D printing scaffold with LSS represents a promising physically and biologically activated bone graft as well as an advanced tool for widespread application in clinical and research fields.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji Min Seok
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - Jiwoon Jung
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Tae Sung Hwang
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hee-Chun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon 34054, Republic of Korea
| | - Su A Park
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
4
|
Singh I, Dixit K, Gupta P, George SM, Sinha N, Balani K. 3D-Printed Multifunctional Ag/CeO 2/ZnO Reinforced Hydroxyapatite-Based Scaffolds with Effective Antibacterial and Mechanical Properties. ACS APPLIED BIO MATERIALS 2023; 6:5210-5223. [PMID: 37955988 DOI: 10.1021/acsabm.3c00457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Conventional three-dimensional (3D)-printed hydroxyapatite (HA)-based constructs have limited utility in bone tissue engineering due to their poor mechanical properties, elevated risk of microbial infection, and limited pore interconnectivity. 3D printing of complex multiple components to fabricate fully interconnected scaffolds is a challenging task; here, in this work, we have developed a procedure for fabrication of printable ink for complex systems containing multinanomaterials, i.e., HAACZ (containing 1 wt % Ag, 4 wt % CeO2, and 6 wt % ZnO) with better shear thinning and shape retention properties. Moreover, 3D-printed HAACZ scaffolds showed a modulus of 143.8 GPa, a hardness of 10.8 GPa, a porosity of 59.6%, effective antibacterial properties, and a fully interconnected pore network to be an ideal construct for bone healing. Macropores with an average size of ∼469 and ∼433 μm within the scaffolds of HA and HAACZ and micropores with an average size of ∼0.6 and ∼0.5 μm within the strut of HA and HAACZ were developed. The distribution of fully interconnected micropores was confirmed using computerized tomography, whereas the distribution of micropores within the strut was visualized using Voronoi tessellation. The water contact angle studies revealed the most suitable hydrophilic range of water contact angles of ∼71.7 and ∼76.6° for HA and HAACZ, respectively. HAACZ scaffolds showed comparable apatite formation and cytocompatibility as that of HA. Antibacterial studies revealed effective antibacterial properties for the HAACZ scaffold as compared to HA. There was a decrease in bacterial cell density for HAACZ from 1 × 105 to 1.2 × 103 cells/mm2 against Gram-negative (Escherichia coli) and from 1.9 × 105 to 5.6 × 103 bacterial cells/mm2 against Gram-positive (Staphylococcus aureus). Overall, the 3D-printed HAACZ scaffold resulted in mechanical properties, comparable to those of the cancellous bone, interconnected macro- and microporosities, and excellent antibacterial properties, which could be utilized for bone healing.
Collapse
Affiliation(s)
- Indrajeet Singh
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Kartikeya Dixit
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Pankaj Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Suchi Mercy George
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Niraj Sinha
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Kantesh Balani
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
5
|
Madar Saheb MA, Kanagaraj M, Kannan S. Exploring the Biomedical Potential of PLA/Dysprosium Phosphate Composites via Extrusion-Based 3D Printing: Design, Morphological, Mechanical, and Multimodal Imaging and Finite Element Modeling. ACS APPLIED BIO MATERIALS 2023; 6:5414-5425. [PMID: 37949434 DOI: 10.1021/acsabm.3c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The present investigation demonstrates the feasibility of dysprosium phosphate (DyPO4) as an efficient additive in polylactide (PLA) to develop 3D printed scaffolds through the material extrusion (MEX) principle for application in bone tissue engineering. Initially, uniform sized particles of DyPO4 with tetragonal crystal setting are obtained and subsequently blended with different concentrations of PLA to extrude in the form of filaments. A maximum of 20 wt % DyPO4 in PLA matrix has been successfully drawn to yield a defect free filament. The resultant filaments were 3D printed through material extrusion methodology. The structural and morphological analysis confirmed the successful reinforcement of DyPO4 throughout the PLA matrix in all of the 3D printed components. All of the PLA/DyPO4 composites exhibited magnetic resonance imaging and computed tomography contrasting properties, which were dependent on the dysprosium content in the PLA matrix. The detailed mechanical evaluation of the 3D printed PLA/DyPO4 composites ensured good strength accomplished by the reinforcement of 5 wt % DyPO4 in PLA matrix, beyond which a gradual decline in the strength is noticed. Representative volume elements models were developed to realize the intrinsic property of the PLA/DyPO4 composite, and finite element analysis under both static and dynamic loading conditions has been performed to account for the reliability of experimental results.
Collapse
Affiliation(s)
| | - Murugan Kanagaraj
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India
| | - Sanjeevi Kannan
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India
| |
Collapse
|
6
|
Liguori A, Xu H, Hazarika D, Hakkarainen M. Simple Non-Equilibrium Atmospheric Plasma Post-Treatment Strategy for Surface Coating of Digital Light Processed 3D-Printed Vanillin-Based Schiff-Base Thermosets. ACS APPLIED POLYMER MATERIALS 2023; 5:8506-8517. [PMID: 37854301 PMCID: PMC10580284 DOI: 10.1021/acsapm.3c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
A simple non-equilibrium atmospheric plasma post-treatment strategy was developed for the surface coating of three-dimensional (3D) structures produced by digital light processing 3D printing. The influence of non-equilibrium atmospheric plasma on the chemical and physical properties of vanillin-derived Schiff-base thermosets and the dip-coating process was investigated and compared to the influence of traditional post-treatment with UV-light. As a comparison, thermosets without post-treatment were also subjected to the coating procedure. The results document that UV post-treatment can induce the completion of the curing of the printed thermosets if complete curing is not reached during printing. Conversely, the plasma post-treatment does not contribute to the curing of the thermoset but causes some opening of the imine bonds and the regeneration of aldehyde functions. As a consequence, no great differences are observed between the not post-treated and plasma post-treated samples in terms of mechanical, thermal, and solvent-resistant properties. In contrast to the UV post-treatment, the plasma post-treatment of the thermosets induces a noticeable increase of the thermoset hydrophilicity ascribed to the reformation of amines on the thermoset surface. The successful coating process and the greatest uniformity of the lignosulfonate coating on the surface of plasma post-treated samples are considered to be due to the presence of these amines and aldehydes. The investigation of the UV shielding properties and antioxidant activities documents the increase of both properties with the increasing amount and uniformity of the formed coating. Interestingly, evident antioxidant properties are also shown by the noncoated thermosets, which are deduced to their chemical structures.
Collapse
Affiliation(s)
- Anna Liguori
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| | - Huan Xu
- School
of Materials Science and Physics, China
University of Mining and Technology, 221116 Xuzhou, China
| | - Doli Hazarika
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| | - Minna Hakkarainen
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| |
Collapse
|
7
|
Sawyer M, Eixenberger J, Nielson O, Manzi J, Francis C, Montenegro-Brown R, Subbaraman H, Estrada D. Correlative Imaging of Three-Dimensional Cell Culture on Opaque Bioscaffolds for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2023; 6:3717-3725. [PMID: 37655758 PMCID: PMC10521016 DOI: 10.1021/acsabm.3c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Three-dimensional (3D) tissue engineering (TE) is a prospective treatment that can be used to restore or replace damaged musculoskeletal tissues, such as articular cartilage. However, current challenges in TE include identifying materials that are biocompatible and have properties that closely match the mechanical properties and cellular microenvironment of the target tissue. Visualization and analysis of potential 3D porous scaffolds as well as the associated cell growth and proliferation characteristics present additional problems. This is particularly challenging for opaque scaffolds using standard optical imaging techniques. Here, we use graphene foam (GF) as a 3D porous biocompatible substrate, which is scalable, reproducible, and a suitable environment for ATDC5 cell growth and chondrogenic differentiation. ATDC5 cells are cultured, maintained, and stained with a combination of fluorophores and gold nanoparticles to enable correlative microscopic characterization techniques, which elucidate the effect of GF properties on cell behavior in a 3D environment. Most importantly, the staining protocol allows for direct imaging of cell growth and proliferation on opaque scaffolds using X-ray MicroCT, including imaging growth of cells within the hollow GF branches, which is not possible with standard fluorescence and electron microscopy techniques.
Collapse
Affiliation(s)
- Mone’t Sawyer
- Biomedical
Engineering Doctoral Program, Boise State
University, Boise, Idaho 83725, United States
| | - Josh Eixenberger
- Department
of Physics, Boise State University, Boise, Idaho 83725, United States
- Center
for Advanced Energy Studies, Boise State
University, Boise, Idaho 83725, United States
| | - Olivia Nielson
- Department
of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho 83844, United States
| | - Jacob Manzi
- School
of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, United States
| | - Cadré Francis
- Micron
School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Raquel Montenegro-Brown
- Center for
Atomically Thin Multifunctional Coatings, Boise State University, Boise, Idaho 83725, United States
- Micron
School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Harish Subbaraman
- School
of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, United States
| | - David Estrada
- Center
for Advanced Energy Studies, Boise State
University, Boise, Idaho 83725, United States
- Center for
Atomically Thin Multifunctional Coatings, Boise State University, Boise, Idaho 83725, United States
- Micron
School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Idaho
National Laboratory, Idaho Falls, Idaho 83401, United States
| |
Collapse
|
8
|
Laput OA, Vasenina IV, Korzhova AG, Bryuzgina AA, Khomutova UV, Tuyakova SG, Akhmadeev YH, Shugurov VV, Bolbasov EN, Tverdokhlebov SI, Chernyavskii AV, Kurzina IA. Effect of Nitrogen Arc Discharge Plasma Treatment on Physicochemical Properties and Biocompatibility of PLA-Based Scaffolds. Polymers (Basel) 2023; 15:3381. [PMID: 37631437 PMCID: PMC10458013 DOI: 10.3390/polym15163381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The effect of low-temperature arc discharge plasma treatment in a nitrogen atmosphere on the modification of the physicochemical properties of PLA-based scaffolds was studied. In addition, the cellular-mediated immune response when macrophages of three donors interact with the modified surfaces of PLA-based scaffolds was investigated. PLA surface carbonization, accompanied by a carbon atomic concentration increase, was revealed to occur because of plasma treatment. Nitrogen plasma significantly influenced the PLA wettability characteristics, namely, the hydrophilicity and lipophilicity were improved, as well as the surface energy being raised. The viability of cells in the presence of the plasma-modified PLA scaffolds was evaluated to be higher than that of the initial cells.
Collapse
Affiliation(s)
- Olesya A. Laput
- Chemical Department, National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia; (A.G.K.); (A.A.B.); (U.V.K.); (S.G.T.); (I.A.K.)
| | - Irina V. Vasenina
- P.N. Lebedev Physical Institute, 53 Leninsky Prospekt, Moscow 119333, Russia;
| | - Alena G. Korzhova
- Chemical Department, National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia; (A.G.K.); (A.A.B.); (U.V.K.); (S.G.T.); (I.A.K.)
| | - Anastasia A. Bryuzgina
- Chemical Department, National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia; (A.G.K.); (A.A.B.); (U.V.K.); (S.G.T.); (I.A.K.)
| | - Ulyana V. Khomutova
- Chemical Department, National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia; (A.G.K.); (A.A.B.); (U.V.K.); (S.G.T.); (I.A.K.)
| | - Sitora G. Tuyakova
- Chemical Department, National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia; (A.G.K.); (A.A.B.); (U.V.K.); (S.G.T.); (I.A.K.)
| | - Yuriy H. Akhmadeev
- Institute of High Current Electronics, 2/3 Akademichesky Ave., Tomsk 634055, Russia; (Y.H.A.); (V.V.S.)
| | - Vladimir V. Shugurov
- Institute of High Current Electronics, 2/3 Akademichesky Ave., Tomsk 634055, Russia; (Y.H.A.); (V.V.S.)
| | - Evgeny N. Bolbasov
- Scientific and Educational Center Named after B.P. Weinberg, National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050, Russia; (E.N.B.); (S.I.T.)
| | - Sergei I. Tverdokhlebov
- Scientific and Educational Center Named after B.P. Weinberg, National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050, Russia; (E.N.B.); (S.I.T.)
| | - Aleksandr V. Chernyavskii
- Nanocenter MIREA, MIREA—Russian Technological University, 78 Vernadskogo Ave., Moscow 119454, Russia;
| | - Irina A. Kurzina
- Chemical Department, National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia; (A.G.K.); (A.A.B.); (U.V.K.); (S.G.T.); (I.A.K.)
| |
Collapse
|
9
|
Chitin nanofibrils modulate mechanical response in tympanic membrane replacements. Carbohydr Polym 2023; 310:120732. [PMID: 36925264 DOI: 10.1016/j.carbpol.2023.120732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/02/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
The tympanic membrane (TM), is a thin tissue lying at the intersection of the outer and the middle ear. TM perforations caused by traumas and infections often result in a conductive hearing loss. Tissue engineering has emerged as a promising approach for reconstructing the damaged TM by replicating the native material characteristics. In this regard, chitin nanofibrils (CN), a polysaccharide-derived nanomaterial, is known to exhibit excellent biocompatibility, immunomodulation and antimicrobial activity, thereby imparting essential qualities for an optimal TM regeneration. This work investigates the application of CN as a nanofiller for poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer to manufacture clinically suitable TM scaffolds using electrospinning and fused deposition modelling. The inclusion of CN within the PEOT/PBT matrix showed a three-fold reduction in the corresponding electrospun fiber diameters and demonstrated a significant improvement in the mechanical properties required for TM repair. Furthermore, in vitro biodegradation assay highlighted a favorable influence of CN in accelerating the scaffold degradation over a period of one year. Finally, the oto- and cytocompatibility response of the nanocomposite substrates corroborated their biological relevance for the reconstruction of perforated eardrums.
Collapse
|
10
|
Wu Y, Yu S, Zhang X, Wang X, Zhang J. The Regulatory Mechanism of Cold Plasma in Relation to Cell Activity and Its Application in Biomedical and Animal Husbandry Practices. Int J Mol Sci 2023; 24:ijms24087160. [PMID: 37108320 PMCID: PMC10138629 DOI: 10.3390/ijms24087160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
As an innovative technology in biological applications, cold plasma is widely used in oral treatment, tissue regeneration, wound healing, and cancer therapy, etc., because of the adjustable composition and temperature which allow the plasma to react with bio-objects safely. Reactive oxygen species (ROS) produced by cold plasma regulate cell activity in an intensity- and time-dependent manner. A low level of ROS produced by cold plasma treatment within the appropriate intensities and times promotes proliferation of skin-related cells and increases angiogenesis, which aid in the acceleration of the wound healing process, while a high level of ROS produced by cold plasma treatment performed at a high intensity or over a long period of time inhibits the proliferation of endothelial cells, keratinocytes, fibroblasts, and cancer cells. Moreover, cold plasma can regulate stem cell proliferation by changing niche interface and producing nitric oxide directly. However, the molecular mechanism of cold plasma regulating cell activity and its potential application in the field of animal husbandry remain unclear in the literature. Therefore, this paper reviews the effects and possible regulatory mechanisms of cold plasma on the activities of endothelial cells, keratinocytes, fibroblasts, stem cells, and cancer cells to provide a theoretical basis for the application of cold plasma to skin-wound healing and cancer therapy. In addition, cold plasma exposure at a high intensity or an extended time shows excellent performances in killing various microorganisms existing in the environment or on the surface of animal food, and preparing inactivated vaccines, while cold plasma treatment within the appropriate conditions improves chicken growth and reproductive capacity. This paper introduces the potential applications of cold plasma treatment in relation to animal-breeding environments, animal health, their growth and reproduction, and animal food processing and preservation, which are all beneficial to the practice of animal husbandry and guarantee good animal food safety results.
Collapse
Affiliation(s)
- Yijiao Wu
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Shiyu Yu
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xiyin Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xianzhong Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Sawyer M, Eixenberger J, Nielsen O, Manzi J, Montenegro-Brown R, Subbaraman H, Estrada D. Correlative Imaging of 3D Cell Culture on Opaque Bioscaffolds for Tissue Engineering Applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533202. [PMID: 36993602 PMCID: PMC10055269 DOI: 10.1101/2023.03.17.533202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Three-dimensional (3D) tissue engineering (TE) is a prospective treatment that can be used to restore or replace damaged musculoskeletal tissues such as articular cartilage. However, current challenges in TE include identifying materials that are biocompatible and have properties that closely match the mechanical properties and cellular environment of the target tissue, while allowing for 3D tomography of porous scaffolds as well as their cell growth and proliferation characterization. This is particularly challenging for opaque scaffolds. Here we use graphene foam (GF) as a 3D porous biocompatible substrate which is scalable, reproduceable, and a suitable environment for ATDC5 cell growth and chondrogenic differentiation. ATDC5 cells are cultured, maintained, and stained with a combination of fluorophores and gold nanoparticle to enable correlative microscopic characterization techniques, which elucidate the effect of GF properties on cell behavior in a three-dimensional environment. Most importantly, our staining protocols allows for direct imaging of cell growth and proliferation on opaque GF scaffolds using X-ray MicroCT, including imaging growth of cells within the hollow GF branches which is not possible with standard fluorescence and electron microscopy techniques. Abstract Figure
Collapse
|
12
|
Optimization of Parylene C and Parylene N thin films for use in cellular co-culture and tissue barrier models. Sci Rep 2023; 13:4262. [PMID: 36918711 PMCID: PMC10015097 DOI: 10.1038/s41598-023-31305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Parylene has been used widely used as a coating on medical devices. It has also been used to fabricate thin films and porous membranes upon which to grow cells. Porous membranes are integral components of in vitro tissue barrier and co-culture models, and their interaction with cells and tissues affects the performance and physiological relevance of these model systems. Parylene C and Parylene N are two biocompatible Parylene variants with potential for use in these models, but their effect on cellular behavior is not as well understood as more commonly used cell culture substrates, such as tissue culture treated polystyrene and glass. Here, we use a simple approach for benchtop oxygen plasma treatment and investigate the changes in cell spreading and extracellular matrix deposition as well as the physical and chemical changes in material surface properties. Our results support and build on previous findings of positive effects of plasma treatment on Parylene biocompatibility while showing a more pronounced improvement for Parylene C compared to Parylene N. We measured relatively minor changes in surface roughness following plasma treatments, but significant changes in oxygen concentration at the surface persisted for 7 days and was likely the dominant factor in improving cellular behavior. Overall, this study offers facile and relatively low-cost plasma treatment protocols that provide persistent improvements in cell-substrate interactions on Parylene that match and exceed tissue culture polystyrene.
Collapse
|
13
|
Haq EU, Zhang Y, O'Dowd N, Liu N, Leesment S, Becker C, Rossi EM, Sebastiani M, Tofail SAM, Silien C. Quantitative surface free energy with micro-colloid probe pairs. RSC Adv 2023; 13:2718-2726. [PMID: 36741155 PMCID: PMC9847652 DOI: 10.1039/d2ra05508b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023] Open
Abstract
Measurement of the surface free energy (SFE) of a material allows the prediction of its adhesion properties. Materials can have microscale or sub-microscale surface inhomogeneities, engineered or random, which affect the surface macroscopic behaviour. However, quantitative characterization of the SFE at such length scales remains challenging in view of the variety of instruments and techniques available, the poor knowledge of critical variables and parameters during measurements and the need for appropriate contact models to derive the SFE from the measurements. Failure to characterize adhesion correctly may result in defective components or lengthy process optimization costing billions to industry. Conversely, for planar and homogeneous surfaces, contact angle (CA) measurements are standardized and allow for calculating the SFE using for example the Owen-Wendt model, relying only on the properties of the probing liquids. As such, we assessed and report here a method to correlate quantitative measurements of force-distance curves made with an atomic force microscope (AFM) and with silica and polystyrene (PS) colloidal probe pairs, with quantitative CA measurements and CA-derived SFE values. We measured five surfaces (mica, highly oriented pyrolytic graphite, thermally grown silica on silicon, silicon, and silicon with a super-hydrophobic coating), ranging from hydrophilic to super-hydrophobic, and found an excellent classification of the AFM measurements when these are represented by a set of principal components (PCs), and when both silica and PS colloidal probes are considered together. A regression of the PCs onto the CA measurements allows recovery of the SFE at the length scale of the colloidal probes, which is here ca. 1 micron. We found that once the PC-regression model is built, test sets of only ten AFM force-distance curves are sufficient to predict the local SFE with the calibrated silica and PS colloidal probes.
Collapse
Affiliation(s)
- Ehtsham-Ul Haq
- Department of Physics and Bernal Institute, University of Limerick Limerick V94 T9PX Ireland
| | - Yongliang Zhang
- Department of Physics and Bernal Institute, University of Limerick Limerick V94 T9PX Ireland
| | - Noel O'Dowd
- School of Engineering and Bernal Institute, University of Limerick Limerick V94 T9PX Ireland
| | - Ning Liu
- Department of Physics and Bernal Institute, University of Limerick Limerick V94 T9PX Ireland
| | - Stanislav Leesment
- Spectrum Instruments Ltd. Stewart House, National Technological Park Limerick Ireland
| | - Claude Becker
- Funcoats SA Technoport 4B, Rue du Commerce Foetz Luxembourg
| | - Edoardo M Rossi
- Engineering Department, Roma Tre University Via della Vasca Navale 79 Rome 00146 Italy
| | - Marco Sebastiani
- Engineering Department, Roma Tre University Via della Vasca Navale 79 Rome 00146 Italy
| | - Syed A M Tofail
- Department of Physics and Bernal Institute, University of Limerick Limerick V94 T9PX Ireland
| | - Christophe Silien
- Department of Physics and Bernal Institute, University of Limerick Limerick V94 T9PX Ireland
| |
Collapse
|
14
|
Uricchio A, Lasalandra T, Tamborra ERG, Caputo G, Mota RP, Fanelli F. Atmospheric Pressure Plasma-Treated Polyurethane Foam as Reusable Absorbent for Removal of Oils and Organic Solvents from Water. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7948. [PMID: 36431434 PMCID: PMC9693071 DOI: 10.3390/ma15227948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
This paper reports the optimization of a two-step atmospheric pressure plasma process to modify the surface properties of a polyurethane (PU) foam and, specifically, to prepare a superhydrophobic/superoleophilic absorbent for the removal of oils and nonpolar organic solvents from water. In particular, in the first step, an oxygen-containing dielectric barrier discharge (DBD) is used to induce the etching/nanotexturing of the foam surfaces; in the second step, an ethylene-containing DBD enables uniform overcoating with a low-surface-energy hydrocarbon polymer film. The combination of surface nanostructuring and low surface energy ultimately leads to simultaneous superhydrophobic and superoleophilic wetting properties. X-ray photoelectron spectroscopy, scanning electron microscopy and water contact angle measurements are used for the characterization of the samples. The plasma-treated PU foam selectively absorbs various kinds of hydrocarbon-based liquids (i.e., hydrocarbon solvents, mineral oils, motor oil, diesel and gasoline) up to 23 times its own weight, while it completely repels water. These absorption performances are maintained even after 50 absorption/desorption cycles and after immersion in hot water as well as acidic, basic and salt aqueous solutions. The plasma-treated foam can remove mineral oil while floating on the surface of mineral oil/water mixtures with a separation efficiency greater than 99%, which remains unaltered after 20 separation cycles.
Collapse
Affiliation(s)
- Antonella Uricchio
- Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Teresa Lasalandra
- Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Eliana R. G. Tamborra
- Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Gianvito Caputo
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Rogério P. Mota
- Department of Physics, Faculty of Engineering and Science, São Paulo State University (UNESP), 12516-410 Guaratinguetá, SP, Brazil
| | - Fiorenza Fanelli
- Institute of Nanotechnology (NANOTEC), National Research Council (CNR), c/o Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
15
|
Li J, Liu X, Crook JM, Wallace GG. Development of 3D printable graphene oxide based bio-ink for cell support and tissue engineering. Front Bioeng Biotechnol 2022; 10:994776. [PMID: 36394046 PMCID: PMC9641498 DOI: 10.3389/fbioe.2022.994776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/04/2022] [Indexed: 01/20/2025] Open
Abstract
Tissue engineered constructs can serve as in vitro models for research and replacement of diseased or damaged tissue. As an emerging technology, 3D bioprinting enables tissue engineering through the ability to arrange biomaterials and cells in pre-ordered structures. Hydrogels, such as alginate (Alg), can be formulated as inks for 3D bioprinting. However, Alg has limited cell affinity and lacks the functional groups needed to promote cell growth. In contrast, graphene oxide (GO) can support numerous cell types and has been purported for use in regeneration of bone, neural and cardiac tissues. Here, GO was incorporated with 2% (w/w) Alg and 3% (w/w) gelatin (Gel) to improve 3D printability for extrusion-based 3D bioprinting at room temperature (RT; 25°C) and provide a 3D cellular support platform. GO was more uniformly distributed in the ink with our developed method over a wide concentration range (0.05%-0.5%, w/w) compared to previously reported GO containing bioink. Cell support was confirmed using adipose tissue derived stem cells (ADSCs) either seeded onto 3D printed GO scaffolds or encapsulated within the GO containing ink before direct 3D printing. Added GO was shown to improve cell-affinity of bioinert biomaterials by providing more bioactive moieties on the scaffold surface. 3D cell-laden or cell-seeded constructs showed improved cell viability compared to pristine (without GO) bio-ink-based scaffolds. Our findings support the application of GO for novel bio-ink formulation, with the potential to incorporate other natural and synthetic materials such as chitosan and cellulose for advanced in situ biosensing, drug-loading and release, and with the potential for electrical stimulation of cells to further augment cell function.
Collapse
Affiliation(s)
- Jianfeng Li
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
| | - Xiao Liu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy M. Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
16
|
Vijayan VM, Walker M, Pillai RR, Moreno GH, Vohra YK, Morris JJ, Thomas V. Plasma Electroless Reduction: A Green Process for Designing Metallic Nanostructure Interfaces onto Polymeric Surfaces and 3D Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25065-25079. [PMID: 35638266 DOI: 10.1021/acsami.2c01195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The design of metal nanoparticle-modified polymer surfaces in a green and scalable way is both desirable and highly challenging. Herein, a new green low-temperature plasma-based in situ surface reduction strategy termed plasma electroless reduction (PER) is reported for achieving in situ metallic nanostructuring on polymer surfaces. Proof of concept for this new method was first demonstrated on hydrophilic cellulose papers. Cellulose papers were dip-coated with different metal ion (Ag+ and Au3+) solutions and then subjected to hydrogen plasma treatment for this PER process. Transmission electron microscopy (TEM) analysis has revealed that this PER process caused anisotropic growth of either gold or silver nanoparticles, resulting in the time-dependent formation of both distinct spherical nanoparticles (∼20 nm) and anisotropic 2D nanosheets. Furthermore, we have demonstrated the adaptability of this process by applying it to hydrophobic fibrous and 3D printed polymeric materials such as surgical face masks and 3D printed polylactic acid scaffolds. The PER process on these hydrophobic polymer surfaces was accomplished via a sequential combination of air plasma and hydrogen plasma treatment. The metallic nanostructuring caused by the PER process on these hydrophobic surfaces was systematically studied using different surface imaging techniques including 3D confocal laser surface scanning microscopy and scanning electron microscopy. We have also systematically optimized the PER process on the surface of 3D scaffolds via varying the concentration of the silver ion precursor and by different postprocessing methods such as sonication and medium soaking. These optimization processes were found to be very important in generating uniform metallic nanoparticle-modified 3D printed scaffolds while simultaneously improving cytocompatibility. Through joint disk diffusion and inhibitory concentration testing, the antibacterial efficacy of silver coatings on face masks and 3D scaffolds was established. Altogether, these results clearly suggest the excellent futuristic potential of this new PER method for designing metallic nanostructured interfaces for different biomedical applications.
Collapse
Affiliation(s)
- Vineeth M Vijayan
- Department of Materials Science and Engineering, Laboratory for Polymers & Healthcare Materials/Devices, The University of Alabama at Birmingham (UAB), 1150 10th Ave S, Birmingham, Alabama 35233, United States
- Center for Nanoscale Materials and Bio-integration (CNMB), The University of Alabama at Birmingham (UAB), 1720 2nd Ave S, Birmingham, Alabama 35294, United States
| | - Melissa Walker
- Department of Biology, The University of Alabama at Birmingham (UAB), Campbell Hall, 1300 University Blvd, Birmingham, Alabama 35233, United States
| | - Renjith R Pillai
- Department of Materials Science and Engineering, Laboratory for Polymers & Healthcare Materials/Devices, The University of Alabama at Birmingham (UAB), 1150 10th Ave S, Birmingham, Alabama 35233, United States
| | - Gerardo Hernandez Moreno
- Department of Materials Science and Engineering, Laboratory for Polymers & Healthcare Materials/Devices, The University of Alabama at Birmingham (UAB), 1150 10th Ave S, Birmingham, Alabama 35233, United States
| | - Yogesh K Vohra
- Center for Nanoscale Materials and Bio-integration (CNMB), The University of Alabama at Birmingham (UAB), 1720 2nd Ave S, Birmingham, Alabama 35294, United States
| | - J Jeffrey Morris
- Department of Biology, The University of Alabama at Birmingham (UAB), Campbell Hall, 1300 University Blvd, Birmingham, Alabama 35233, United States
| | - Vinoy Thomas
- Department of Materials Science and Engineering, Laboratory for Polymers & Healthcare Materials/Devices, The University of Alabama at Birmingham (UAB), 1150 10th Ave S, Birmingham, Alabama 35233, United States
- Center for Nanoscale Materials and Bio-integration (CNMB), The University of Alabama at Birmingham (UAB), 1720 2nd Ave S, Birmingham, Alabama 35294, United States
| |
Collapse
|
17
|
Electrospun multifaceted nanocomposites for promoting angiogenesis in curing burn wound. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Calore A, Hadavi D, Honing M, Albillos-Sanchez A, Mota C, Bernaerts K, Harings J, Moroni L. CHOLECALCIFEROL AS BIOACTIVE PLASTICIZER OF HIGH Mw PDLLA SCAFFOLDS FOR BONE REGENERATION. Tissue Eng Part C Methods 2022; 28:335-350. [PMID: 35323028 DOI: 10.1089/ten.tec.2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Synthetic thermoplastic polymers are a widespread choice as material candidates for scaffolds for tissue engineering (TE), thanks to their ease of processing and tunable properties with respect to biological polymers. These features made them largely employed in melt-extrusion based additive manufacturing (AM), with particular application in hard-tissue engineering. In this field, high molecular weight (Mw) polymers ensuring entanglement network strength are often favorable candidates as scaffold materials because of their enhanced mechanical properties compared to lower Mw grades. However, this is accompanied by high viscosities once processed in molten conditions, which requires driving forces not always accessible technically or compatible with often chemically non-stabilized biomedical grades. When possible, this is circumvented by increasing the operating temperature, which often results in polymer chain scission and consequent degradation of properties. Additionally, synthetic polymers are mostly considered bioinert compared to biological materials and additional processing steps are often required to make them favorable for tissue regeneration. In this study, we report the plasticization of a common thermoplastic polymer with cholecalciferol, the metabolically inactive form of vitamin D3. Plasticization of the polymer allowed us to reduce its melt viscosity, and therefore the energy requirements (mechanical (torque) and heat (temperature)) for extrusion, limiting ultimately polymer degradation. Additionally, we evaluated the effect of cholecalciferol, which is more easily available than its active counterpart, on the osteogenic differentiation of mesenchymal stromal cells (hMSCs). Results indicated that cholecalciferol supported osteogenic differentiation more than the osteogenic culture medium, suggesting that hMSCs possess the enzymatic toolbox for Vitamin D3 (VD3) metabolism.
Collapse
Affiliation(s)
- Andrea Calore
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht, Netherlands;
| | - Darya Hadavi
- Maastricht University, M4I Maastricht Multimodal Molecular Imaging Institute , Maastricht, Netherlands;
| | - Maarten Honing
- Maastricht University, M4I Maastricht Multimodal Molecular Imaging Institute , Maastricht, Netherlands;
| | - Ane Albillos-Sanchez
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, Netherlands;
| | - Carlos Mota
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, Netherlands;
| | - Katrien Bernaerts
- Maastricht University, AMIBM Aachen-Maastricht Institute for Biobased Materials , Maastricht, Netherlands;
| | - Jules Harings
- Maastricht University, AMIBM Aachen-Maastricht Institute for Biobased Materials , Maastricht, Netherlands;
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Uniersiteitsingel, 40, Maastricht, Netherlands, 6229ER;
| |
Collapse
|
19
|
Marsudi MA, Ariski RT, Wibowo A, Cooper G, Barlian A, Rachmantyo R, Bartolo PJDS. Conductive Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges from Biomaterials and Manufacturing Perspectives. Int J Mol Sci 2021; 22:11543. [PMID: 34768972 PMCID: PMC8584045 DOI: 10.3390/ijms222111543] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
The practice of combining external stimulation therapy alongside stimuli-responsive bio-scaffolds has shown massive potential for tissue engineering applications. One promising example is the combination of electrical stimulation (ES) and electroactive scaffolds because ES could enhance cell adhesion and proliferation as well as modulating cellular specialization. Even though electroactive scaffolds have the potential to revolutionize the field of tissue engineering due to their ability to distribute ES directly to the target tissues, the development of effective electroactive scaffolds with specific properties remains a major issue in their practical uses. Conductive polymers (CPs) offer ease of modification that allows for tailoring the scaffold's various properties, making them an attractive option for conductive component in electroactive scaffolds. This review provides an up-to-date narrative of the progress of CPs-based electroactive scaffolds and the challenge of their use in various tissue engineering applications from biomaterials perspectives. The general issues with CP-based scaffolds relevant to its application as electroactive scaffolds were discussed, followed by a more specific discussion in their applications for specific tissues, including bone, nerve, skin, skeletal muscle and cardiac muscle scaffolds. Furthermore, this review also highlighted the importance of the manufacturing process relative to the scaffold's performance, with particular emphasis on additive manufacturing, and various strategies to overcome the CPs' limitations in the development of electroactive scaffolds.
Collapse
Affiliation(s)
- Maradhana Agung Marsudi
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
| | - Ridhola Tri Ariski
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
| | - Arie Wibowo
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Glen Cooper
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (G.C.); (P.J.D.S.B.)
| | - Anggraini Barlian
- School of Life Science & Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia;
| | - Riska Rachmantyo
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
| | - Paulo J. D. S. Bartolo
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (G.C.); (P.J.D.S.B.)
| |
Collapse
|
20
|
Sremački I, Kos Š, Bošnjak M, Jurov A, Serša G, Modic M, Leys C, Cvelbar U, Nikiforov A. Plasma Damage Control: From Biomolecules to Cells and Skin. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46303-46316. [PMID: 34569240 DOI: 10.1021/acsami.1c12232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The antibacterial and cell-proliferative character of atmospheric pressure plasma jets (APPJs) helps in the healing process of chronic wounds. However, control of the plasma-biological target interface remains an open issue. High vacuum ultraviolet/ultraviolet (VUV/UV) radiation and RONS flux from plasma may cause damage of a treated tissue; therefore, controlled interaction is essential. VUV/UV emission from argon APPJs and radiation control with aerosol injection in plasma effluent is the focus of this research. The aerosol effect on radiation is studied by a fluorescent target capable of resolving the plasma oxidation footprint. In addition, DNA damage is evaluated by plasmid DNA radiation assay and cell proliferation assay to assess safety aspects of the plasma jet, the effect of VUV/UV radiation, and its control with aerosol injection. Inevitable emission of VUV/UV radiation from plasmas during treatment is demonstrated in this work. Plasma has no antiproliferative effect on fibroblasts in short treatments (t < 60 s), while long exposure has a cytotoxic effect, resulting in decreased cell survival. Radiation has no effect on cell survival in the medium due to absorption. However, a strong cytotoxic effect on the attached fibroblasts without the medium is apparent. VUV/UV radiation contributes 70% of the integral plasma effect in induction of single- and double-strand DNA breaks and cytotoxicity of the attached cells without the medium. Survival of the attached cells increases by 10% when aerosol is introduced between plasma and the cells. Injection of aerosol in the plasma effluent can help to control the plasma-cell/tissue interaction. Aerosol droplets in the effluent partially absorb UV emission from the plasma, limiting photon flux in the direction of the biological target. Herein, cold and safe plasma-aerosol treatment and a safe operational mode of treatment are demonstrated in a murine model.
Collapse
Affiliation(s)
- Ivana Sremački
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| | - Špela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, Ljubljana 1000, Slovenia
| | - Maša Bošnjak
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, Ljubljana 1000, Slovenia
| | - Andrea Jurov
- Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana 1000, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, Ljubljana 1000, Slovenia
| | - Martina Modic
- Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia
| | - Christophe Leys
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| | - Uroš Cvelbar
- Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana 1000, Slovenia
| | - Anton Nikiforov
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Gent 9000, Belgium
| |
Collapse
|