1
|
Zhou M, Jin B, Kong W, Chen A, Chen Y, Zhang X, Lu F, Wang X, Zeng X. Dual Polarization of Ni Sites at VO x-Ni 3N Interface Boosts Ethanol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407473. [PMID: 39225589 PMCID: PMC11516135 DOI: 10.1002/advs.202407473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Substituting thermodynamically favorable ethanol oxidation reaction (EOR) for oxygen evolution reaction (OER) engenders high-efficiency hydrogen production and generates high value-added products as well. However, the main obstacles have been the low activity and the absence of an explicit catalytic mechanism. Herein, a heterostructure composed of amorphous vanadium oxide and crystalline nickel nitride (VOx-Ni3N) is developed. The heterostructure immensely boosts the EOR process, achieving the current density of 50 mA cm-2 at the low potential of 1.38 V versus reversible hydrogen electrode (RHE), far surpassing the sluggish OER (1.65 V vs RHE). Electrochemical impedance spectroscopy indicates that the as-fabricated heterostructure can promote the adsorption of OH- and the generation of the reactive species (O*). Theoretical calculations further outline the dual polarization of the Ni site at the interface, specifically the asymmetric charge redistribution (interfacial polarization) and in-plane polarization. Consequently, the dual polarization modulates the d-band center, which in turn regulates the adsorption/desorption strength of key reaction intermediates, thereby facilitating the entire EOR process. Moreover, a VOx-Ni3N-based electrolyzer, coupling hydrogen evolution reaction (HER) and EOR, attains 50 mA cm-2 at a low cell voltage of ≈1.5 V. This work thus paves the way for creating dual polarization through interface engineering toward broad catalysis.
Collapse
Affiliation(s)
- Min Zhou
- College of Physical Science and TechnologyYangzhou UniversityYangzhou225002P. R. China
- Microelectronics Industry Research InstituteYangzhou UniversityYangzhou225002P. R. China
| | - Binrong Jin
- College of Physical Science and TechnologyYangzhou UniversityYangzhou225002P. R. China
| | - Weijie Kong
- College of Physical Science and TechnologyYangzhou UniversityYangzhou225002P. R. China
| | - Anjie Chen
- College of Physical Science and TechnologyYangzhou UniversityYangzhou225002P. R. China
| | - Yuhe Chen
- College of Physical Science and TechnologyYangzhou UniversityYangzhou225002P. R. China
| | - Xiuyun Zhang
- College of Physical Science and TechnologyYangzhou UniversityYangzhou225002P. R. China
| | - Fei Lu
- College of Physical Science and TechnologyYangzhou UniversityYangzhou225002P. R. China
- Microelectronics Industry Research InstituteYangzhou UniversityYangzhou225002P. R. China
| | - Xi Wang
- Department of Physics, School of Physical Science and EngineeringBeijing Jiaotong UniversityBeijing100044P. R. China
| | - Xianghua Zeng
- College of Physical Science and TechnologyYangzhou UniversityYangzhou225002P. R. China
| |
Collapse
|
2
|
Ye Y, Xu J, Li X, Jian Y, Xie F, Chen J, Jin Y, Yu X, Lee MH, Wang N, Sun S, Meng H. Orbital Occupancy Modulation to Optimize Intermediate Absorption for Efficient Electrocatalysts in Water Electrolysis and Zinc-Ethanol-Air Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312618. [PMID: 38439598 DOI: 10.1002/adma.202312618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Indexed: 03/06/2024]
Abstract
Spin engineering is a promising way to modulate the interaction between the metal d-orbital and the intermediates and thus enhance the catalytic kinetics. Herein, an innovative strategy is reported to modulate the spin state of Co by regulating its coordinating environment. o-c-CoSe2 -Ni is prepared as pre-catalyst, then in situ electrochemical impedance spectroscopy (EIS) and in situ Raman spectroscopy are employed to prove phase transition, and CoOOH/Co3 O4 is formed on the surface as active sites. In hybrid water electrolysis, the voltage has a negative shift, and in zinc-ethanol-air battery, the charging voltage is lowered and the cycling stability is greatly increased. Coordinated atom substitution and crystalline symmetry change are combined to regulate the absorption ability of reaction intermediates with balanced optimal adsorption. Coordinated atom substitution weakens the adsorption while the crystalline symmetry change strengthens the adsorption. Importantly, the tetrahedral sites are introduced by Ni doping which enables the co-existence of four-coordinated sites and six-coordination sites in o-c-CoSe2 -Ni. The dz2 + dx2 -y2 orbital occupancy decreases after the atomic substitution, while increases after replacing the CoSe6 -Oh field with CoSe6 -Oh /CoSe4 -Td . This work explores a new direction for the preparation of efficient catalysts for water electrolysis and innovative zinc-ethanol-air battery.
Collapse
Affiliation(s)
- Yanting Ye
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jinchang Xu
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiulan Li
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yongqi Jian
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Fangyan Xie
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Jian Chen
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Yanshuo Jin
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiang Yu
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ming-Hsien Lee
- Department of Physics, Tamkang University, New Taipei, 25137, Taiwan
| | - Nan Wang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS), Center Énergie Matériaux Télécommunications, Varennes, Québec, J3X 1P7, Canada
| | - Hui Meng
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
3
|
Zhang Z, Dong Y, Carlos C, Wang X. Surface Ligand Modification on Ultrathin Ni(OH) 2 Nanosheets Enabling Enhanced Alkaline Ethanol Oxidation Kinetics. ACS NANO 2023; 17:17180-17189. [PMID: 37655729 DOI: 10.1021/acsnano.3c05014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The ethanol oxidation reaction (EOR) is an economical pathway in many electrochemical systems for clean energy, such as ethanol fuel cells and the anodic reaction in hydrogen generation. Noble metals, such as platinum, are benchmark catalysts for EOR owing to their superb electrochemical capability. To improve sustainability and product selectivity, nickel (Ni)-based electrocatalysts are considered promising alternatives to noble-metal EOR. Although Ni-based electrocatalysts are relieved from intermediate poisoning, their performances are largely limited by their relatively high onset potential. Therefore, the EOR usually competes with the oxygen evolution reaction (OER) at working potentials, resulting in a low EOR efficiency. Here, we demonstrate a strategy to modify the surface ligands on ultrathin Ni(OH)2 nanosheets, which substantially improved their catalytic properties for the alkaline EOR. Chemisorbed octadecylamine ligands could create an alcoholophilic layer at the nanosheet surface to promote alcohol diffusion and adsorption, resulting in outstanding EOR activity and selectivity over the OER at higher potential. These non-noble-metal-based 2D electrocatalysts and surface ligand engineering showcase a promising strategy for achieving high-efficiency electrocatalysis of EOR in many practical electrochemical processes.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yutao Dong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Corey Carlos
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Li X, Chen M, Ye Y, Chen C, Li Z, Zhou Y, Chen J, Xie F, Jin Y, Wang N, Meng H. Electronic Structure Modulation of Nickel Sites by Cationic Heterostructures to Optimize Ethanol Electrooxidation Activity in Alkaline Solution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207086. [PMID: 36650993 DOI: 10.1002/smll.202207086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Indexed: 05/04/2023]
Abstract
It is a good idea for efficient production of hydrogen to use ethanol oxidation reaction (EOR) in place of oxygen evolution reaction (OER) in water electrolysis process. Ni-based non-precious electrocatalysts are widely used in the conversion of ethanol to acetic acid. Here, different selenide heterostructures (NiCoSe, NiFeSe, and NiCuSe) are prepared in which Ni sites are regulated by transition metal. The valence state of Ni is NiCuSe < NiCoSe < NiFeSe in the three heterojunctions. NiCoSe shows the optimized charge distribution of Ni sites and outstanding catalytic activity. The effective modulations lead to optimized d-band center and facilitates both adsorption and desorption of reaction intermediates, which improves the kinetics of EOR. The results of this work prove that with appropriate designed catalyst it is possible to replace kinetically slow OER with faster EOR in water electrolysis to produce hydrogen.
Collapse
Affiliation(s)
- Xiulan Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Mingchuang Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yanting Ye
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Chengjie Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Zilong Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yifan Zhou
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Jian Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Fangyan Xie
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Yanshuo Jin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Nan Wang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Hui Meng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
5
|
Khan M, Abdullah MI, Samad A, Shao Z, Mushiana T, Akhtar A, Hameed A, Zhang N, Schwingenschlögl U, Ma M. Inhibitor and Activator: Dual Role of Subsurface Sulfide Enables Selective and Efficient Electro-Oxidation of Methanol to Formate on CuS@CuO Core-Shell Nanosheet Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205499. [PMID: 37009999 DOI: 10.1002/smll.202205499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/21/2023] [Indexed: 06/19/2023]
Abstract
Selective electro-oxidation of aliphatic alcohols into value-added carboxylates at lower potentials than that of the oxygen evolution reaction (OER) is an environmentally and economically desirable anode reaction for clean energy storage and conversion technologies. However, it is challenging to achieve both high selectivity and high activity of the catalysts for the electro-oxidation of alcohols, such as the methanol oxidation reaction (MOR). Herein, a monolithic CuS@CuO/copper-foam electrode for the MOR with superior catalytic activity and almost 100% selectivity for formate is reported. In the core-shell CuS@CuO nanosheet arrays, the surface CuO directly catalyzes MOR, while the subsurface sulfide not only serves as an inhibitor to attenuate the oxidative power of the surface CuO to achieve selective oxidation of methanol to formate and prevent over-oxidation of formate to CO2 but also serves as an activator to form more surface O defects as active sites and enhances the methanol adsorption and charge transfer to achieve superior catalytic activity. CuS@CuO/copper-foam electrodes can be prepared on a large scale by electro-oxidation of copper-foam at ambient conditions and can be readily utilized in clean energy technologies.
Collapse
Affiliation(s)
- Mustafa Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Muhammad Imran Abdullah
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, Government College University, Lahore, 54000, Pakistan
| | - Abdus Samad
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhiang Shao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Talifhani Mushiana
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Asma Akhtar
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Asima Hameed
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- University of Central Punjab, Lahore, 54000, Pakistan
| | - Ning Zhang
- School of Biology, Food and Environment, Hefei University, Hefei, Anhui, 230022, China
| | - Udo Schwingenschlögl
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mingming Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
6
|
Jang J, Park CB. Linnaeite Mineral for NIR Light-Triggered Disruption of Alzheimer's Pore-Forming Aβ Oligomers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48-56. [PMID: 35926087 DOI: 10.1021/acsami.2c09601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Minerals in the Earth's crust have contributed to the natural functioning of ecosystems via biogeochemical interactions. Linnaeite is a cobalt sulfide mineral with a cubic spinel structure that promotes charge transfer reactions with its surroundings. Here we report the hidden feature of linnaeite mineral to dissociate Alzheimer's β-amyloid (Aβ) oligomers under near-infrared (NIR) light irradiation. Alzheimer's disease (AD) is a neurodegenerative disorder caused by the abnormal accumulation of self-assembled Aβ peptides in the elderly brain. The β-sheet structured pore-forming Aβ oligomer (βPFO) is the most neurotoxic species exacerbating the symptoms of AD. However, a therapeutic agent that is capable of inactivating βPFO has not yet been developed. Our microscopic and spectroscopic analysis results have revealed that NIR-excited linnaeite mineral can modulate the structure of βPFO by inducing oxidative modifications. We have verified that linnaeite mineral is biocompatible with and has a mitigating effect on the neurotoxicity of βPFO. This study suggests that minerals in nature have potential as drugs to reduce AD pathology.
Collapse
Affiliation(s)
- Jinhyeong Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Tian L, Chen Z, Wang T, Cao M, Lu X, Cheng W, He C, Wang J, Li Z. Mo doping and Se vacancy engineering for boosting electrocatalytic water oxidation by regulating the electronic structure of self-supported Co 9Se 8@NiSe. NANOSCALE 2022; 15:259-265. [PMID: 36477799 DOI: 10.1039/d2nr05410h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oxygen evolution reactions (OERs) are regarded as the rate-determining step of electrocatalytic overall water splitting, which endow OER electrocatalysts with the advantages of high activity, low cost, good conductivity, and excellent stability. Herein, a facile H2O2-assisted etching method is proposed for the fabrication of Mo-doped ultrathin Co9Se8@NiSe/NF-X heterojunctions with rich Se vacancies to boost electrocatalytic water oxidation. After step-by-step electronic structure modulation by Mo doping and Se vacancy engineering, the self-standing Mo-Co9Se8@NiSe/NF-60 heterojunctions deliver a current density of 50 mA cm-2 with an overpotential of 343 mV and a cell voltage of only 1.87 V at 50 mA cm-2 for overall water splitting in 1.0 M KOH. Our study opens up the possibility of realizing step-by-step electronic structure modulation of nonprecious OER electrocatalysts via heteroatom doping and vacancy engineering.
Collapse
Affiliation(s)
- Lin Tian
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili 835000, China
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Chemistry and Environmental Science, Yili Normal University, Yili 835000, China
| | - Zhenyang Chen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Tingjian Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Ming Cao
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Xinhua Lu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Wenjing Cheng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili 835000, China
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Chemistry and Environmental Science, Yili Normal University, Yili 835000, China
| | - Changchun He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Ju Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| |
Collapse
|
8
|
Ao W, Cheng C, Ren H, Fan Z, Yin P, Qin Q, Chen ZN, Dai L. Heterostructured Ru/Ni(OH) 2 Nanomaterials as Multifunctional Electrocatalysts for Selective Reforming of Ethanol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45042-45050. [PMID: 36149741 DOI: 10.1021/acsami.2c13864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The electrochemical reforming of ethanol into hydrogen and hydrocarbons can reduce the electric potential energy barrier of hydrogen production from electrochemical water splitting, obtaining high value-added anode products. In this work, Ru/Ni(OH)2 heterostructured nanomaterials were synthesized successfully by an in situ reduction strategy with remarkable multifunctional catalytic properties. In the hydrogen evolution reaction, Ru/Ni(OH)2 exhibits a smaller overpotential of 31 mV to obtain a current density of 10 mA/cm2, which is better than that of commercial Pt/C. Notably, such heterostructured Ru/Ni(OH)2 nanomaterials also perform an outstanding catalytic selectivity toward an acetaldehyde product in the oxidation of ethanol. DFT calculations reveal that abundant Ru(0)-Ni(II) heterostructured sites are the key factor for the excellent performances. As a result, an ethanol-selective reforming electrolyzer driven by a 2 V solar cell is constructed to produce hydrogen and acetaldehyde in the cathodic and anodic part, respectively, via using Ru/Ni(OH)2 heterostructured catalysts. This work provides a forward-looking technical guidance for the design of novel energy conversion systems.
Collapse
Affiliation(s)
- Weidong Ao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Changgen Cheng
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Huijun Ren
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Zhishuai Fan
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Peiqun Yin
- Center of Biomedical Materials, School of Biomedical Engineering and Research and Engineering, Anhui Medical University, Hefei 230032, China
| | - Qing Qin
- The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhe-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lei Dai
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
9
|
Khan M, Hameed A, Samad A, Mushiana T, Abdullah MI, Akhtar A, Ashraf RS, Zhang N, Pollet BG, Schwingenschlögl U, Ma M. In situ grown oxygen-vacancy-rich copper oxide nanosheets on a copper foam electrode afford the selective oxidation of alcohols to value-added chemicals. Commun Chem 2022; 5:109. [PMID: 36697633 PMCID: PMC9814762 DOI: 10.1038/s42004-022-00708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/18/2022] [Indexed: 01/28/2023] Open
Abstract
Selective oxidation of low-molecular-weight aliphatic alcohols like methanol and ethanol into carboxylates in acid/base hybrid electrolytic cells offers reduced process operating costs for the generation of fuels and value-added chemicals, which is environmentally and economically more desirable than their full oxidation to CO2. Herein, we report the in-situ fabrication of oxygen-vacancies-rich CuO nanosheets on a copper foam (CF) via a simple ultrasonication-assisted acid-etching method. The CuO/CF monolith electrode enables efficient and selective electrooxidation of ethanol and methanol into value-added acetate and formate with ~100% selectivity. First principles calculations reveal that oxygen vacancies in CuO nanosheets efficiently regulate the surface chemistry and electronic structure, provide abundant active sites, and enhance charge transfer that facilitates the adsorption of reactant molecules on the catalyst surface. The as-prepared CuO/CF monolith electrode shows excellent stability for alcohol oxidation at current densities >200 mA·cm2 for 24 h. Moreover, the abundant oxygen vacancies significantly enhance the intrinsic indicators of the catalyst in terms of specific activity and outstanding turnover frequencies of 5.8k s-1 and 6k s-1 for acetate and formate normalized by their respective faradaic efficiencies at an applied potential of 1.82 V vs. RHE.
Collapse
Affiliation(s)
- Mustafa Khan
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Asima Hameed
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Abdus Samad
- grid.45672.320000 0001 1926 5090Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Talifhani Mushiana
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Muhammad Imran Abdullah
- grid.411555.10000 0001 2233 7083Department of Chemistry, Government College University Lahore, Lahore, 54000 Pakistan
| | - Asma Akhtar
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Raja Shahid Ashraf
- grid.411555.10000 0001 2233 7083Department of Chemistry, Government College University Lahore, Lahore, 54000 Pakistan
| | - Ning Zhang
- grid.412053.1School of Biology, Food and Environment, Hefei University, Hefei, Anhui 230022 China
| | - Bruno G. Pollet
- grid.265703.50000 0001 2197 8284Pollet Research Group, Hydrogen Research Institute (HRI), Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G9A 5H7 Canada
| | - Udo Schwingenschlögl
- grid.45672.320000 0001 1926 5090Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Mingming Ma
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 China
| |
Collapse
|
10
|
Li J, Tian X, Wang X, Zhang T, Spadaro MC, Arbiol J, Li L, Zuo Y, Cabot A. Electrochemical Conversion of Alcohols into Acidic Commodities on Nickel Sulfide Nanoparticles. Inorg Chem 2022; 61:13433-13441. [PMID: 35983854 DOI: 10.1021/acs.inorgchem.2c01695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrocatalytic oxidation of alcohols is a potentially cost-effective strategy for the synthesis of valuable chemicals at the anode while simultaneously generating hydrogen at the cathode. For this approach to become commercially viable, high-activity, low-cost, and stable catalysts need to be developed. Herein, we demonstrate an electrocatalyst based on earth-abundant nickel and sulfur elements. Experimental investigations reveal the produced NiS displays excellent electrocatalytic performance associated with a higher electrochemical surface area (ECSA) and the presence of sulfate ions on the formed NiOOH surface in basic media. The current densities reached for the oxidation of ethanol and methanol at 1.6 V vs reversible hydrogen electrode (RHE) are up to 175.5 and 145.1 mA cm-2, respectively. At these high current densities, the Faradaic efficiency of methanol to formate conversion is 98% and that of ethanol to acetate is 81%. Density functional theory calculations demonstrate the presence of the generated sulfate groups to modify the electronic properties of the NiOOH surface, improving electroconductivity and electron transfer. Besides, calculations are used to determine the reaction energy barriers, revealing the dehydrogenation of ethoxy groups to be more favorable than that of methoxy on the catalyst surface, which explains the highest current densities obtained for ethanol oxidation.
Collapse
Affiliation(s)
- Junshan Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xi Tian
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xiang Wang
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona, Catalonia 08930, Spain
| | - Ting Zhang
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Catalonia 08193, Spain
| | - Maria Chiara Spadaro
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Catalonia 08193, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Catalonia 08193, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona, Catalonia 08010, Spain
| | - Luming Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yong Zuo
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona, Catalonia 08930, Spain
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona, Catalonia 08930, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona, Catalonia 08010, Spain
| |
Collapse
|
11
|
Li J, Liu T, Dahlgren RA, Ye H, Wang Q, Ding Y, Gao M, Wang X, Wang H. N, S-co-doped carbon/Co 1-xS nanocomposite with dual-enzyme activities for a smartphone-based colorimetric assay of total cholesterol in human serum. Anal Chim Acta 2022; 1204:339703. [PMID: 35397915 DOI: 10.1016/j.aca.2022.339703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 11/01/2022]
Abstract
We fabricated a novel N,S-co-doped carbon/Co1-xS nanocomposite (NSC/Co1-xS) using a facile sol-gel approach, which featured a multiporous structure, abundant S vacancies and Co-S nanoparticles filling the carbon-layer pores. When the Co1-xS nanoparticles were anchored onto the surface of N,S-co-doped carbon, a synergistic catalysis action occurred. The NSC/Co1-xS nanocomposites possessed both peroxidase-like and oxidase-mimetic dual-enzyme activities, in which the oxidase-mimetic activity dominated. By scavenger capture tests, the nanozyme was demonstrated to catalyze H2O2 to produce h+, •OH and •O2-, among which the strongest and weakest signals were h+ and •OH, respectively. The multi-valence states of Co atoms in the NSC/Co1-xS structure facilitated electronic transfer that enhanced redox reactions, thereby improving the resultant color reaction. Based on the NSC/Co1-xS's enzyme-mimetic catalytic reaction, a visual colorimetric assay and Android "Thing Identify" application (app), installed on a smartphone, offered detection limits of 1.93 and 2.51 mg/dl, respectively, in human serum samples. The selectivity/interference experiments, using fortified macromolecules and metal ions, demonstrated that this sensor had high selectivity and low interference potential for cholesterol analysis. Compared to standard assay kits and previously reported visual detection, the Android smartphone-based assays provided higher accuracy (recoveries up to 93.6-104.1%), feasibility for trace-level detection, and more convenient on-site application for cholesterol assay due to the superior enzymatic activity of NSC/Co1-xS. These compelling performance metrics lead us to posit that the NSC/Co1-xS-based nanozymic sensor offers a promising methodology for several practical applications, such as point-of-care diagnosis and workplace health evaluations.
Collapse
Affiliation(s)
- Jiani Li
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tingting Liu
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| | - Hanzhang Ye
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qi Wang
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yongli Ding
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ming Gao
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Huili Wang
- College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
12
|
Kawaguchi D, Ogihara H, Kurokawa H. Upgrading of Ethanol to 1,1-Diethoxyethane by Proton-Exchange Membrane Electrolysis. CHEMSUSCHEM 2021; 14:4431-4438. [PMID: 34291576 DOI: 10.1002/cssc.202101188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The direct acetalization of ethanol is a significant challenge for upgrading bioethanol to value-added chemicals. In this study, 1,1-diethoxyethane (DEE) is selectively synthesized by the electrolysis of ethanol using a proton-exchange membrane (PEM) reactor. In the PEM reactor, a Pt/C catalyst promoted the electro-oxidation of ethanol to acetaldehyde. The Nafion membrane used as the PEM served as a solid acid catalyst for the acetalization of ethanol and electrochemically formed acetaldehyde. DEE was obtained at high faradaic efficiency (78 %) through sequential electrochemical and nonelectrochemical reactions. The DEE formation rate through PEM electrolysis was higher than that of reported systems. At the cathode, protons extracted from ethanol were reduced to H2 . The electrochemical approach can be utilized as a sustainable process for upgrading bioethanol to chemicals because it can use renewable electricity and does not require chemical reagents (e. g., oxidants and electrolytes).
Collapse
Affiliation(s)
- Daisuke Kawaguchi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Hitoshi Ogihara
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Hideki Kurokawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
13
|
Xiang M, Wang N, Xu Z, Zhang H, Yan Z. Accelerating Hydrogen Evolution by Anodic Electrosynthesis of Value-Added Chemicals in Water over Non-Precious Metal Electrocatalysts. Chempluschem 2021; 86:1307-1315. [PMID: 34519445 DOI: 10.1002/cplu.202100327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/29/2021] [Indexed: 11/06/2022]
Abstract
Integrating electrolytic hydrogen production from water with thermodynamically more favorable aqueous organic oxidation reactions is highly desired, because it can enhance the energy conversion efficiency in relation to traditional water electrolysis, and produce value-added chemicals instead of oxygen at the anode. In this Minireview, we introduce some key considerations for anodic auxiliary electrosynthesis and outline three types of electrocatalytic organic reactions including biomass derivative, alcohol and amine oxidation reactions, which can boost cathodic hydrogen generation. Furthermore, frequently used noble-metal-free electrocatalysts are classified into nickel-based, cobalt-based, other transition-metal-based and bimetallic electrocatalysts. The preparation methods of these catalysts and their performance towards electrochemical oxidation reactions are also discussed in detail. We specifically highlight the importance of redox active sites on the surface of the electrocatalysts, which act as electron mediators to promote oxidation reactions. Finally, the current challenges and future developments in this emerging field are also discussed.
Collapse
Affiliation(s)
- Ming Xiang
- Key Laboratory of Optoelectronic Chemical Materials and, Devices of Ministry of Education, Jianghan University, Wuhan, 430056, P. R. China
| | - Nenghuan Wang
- Key Laboratory of Optoelectronic Chemical Materials and, Devices of Ministry of Education, Jianghan University, Wuhan, 430056, P. R. China
| | - Zhihua Xu
- Key Laboratory of Optoelectronic Chemical Materials and, Devices of Ministry of Education, Jianghan University, Wuhan, 430056, P. R. China
| | - Han Zhang
- Key Laboratory of Optoelectronic Chemical Materials and, Devices of Ministry of Education, Jianghan University, Wuhan, 430056, P. R. China
| | - Zhaoxiong Yan
- Key Laboratory of Optoelectronic Chemical Materials and, Devices of Ministry of Education, Jianghan University, Wuhan, 430056, P. R. China
| |
Collapse
|