1
|
Krause H, Engelmann UM. Fundamentals and Applications of Dual-Frequency Magnetic Particle Spectroscopy: Review for Biomedicine and Materials Characterization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416838. [PMID: 39985275 PMCID: PMC11967826 DOI: 10.1002/advs.202416838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Superparamagnetic nanoparticles (MNP) offer exciting applications for engineering and biomedicine in imaging, diagnostics, and therapy upon magnetic excitation. Specifically, if excited at two distinct frequencies f1 and f2, MNP responds with magnetic intermodulation frequencies m·f1 ± n·f2 caused by their nonlinear magnetization. These mixing frequencies are highly specific for MNP properties, uniquely characterizing their presence. In this review, the fundamentals of frequency mixing magnetic detection (FMMD) as a special case of magnetic particle spectroscopy (MPS) are reviewed, elaborating its functional principle that enables a large dynamic range of detection of MNP. Mathematical descriptions derived from Langevin modeling and micromagnetic Monte-Carlo simulations show matching predictions. The latest applications of FMMD in nanomaterials characterization as well as diagnostic and therapeutic biomedicine are highlighted: analysis of the phase of the FMMD signal characterizes the magnetic relaxation of MNP, allowing to determine hydrodynamic size and binding state. Variation of excitation amplitudes or magnetic offset fields enables determining the size distribution of the particles' magnetic cores. This permits multiplex detection of polydisperse MNP in magnetic immunoassays, realized successfully for various biomolecular targets such as viruses, bacteria, proteins, and toxins. A portable magnetic reader enables portable immunodetection at point-of-care. Future applications toward theranostics are summarized and elaborated.
Collapse
Affiliation(s)
- Hans‐Joachim Krause
- Institute of Biological Information ProcessingBioelectronics (IBI‐3)Forschungszentrum Jülich52425JülichGermany
| | - Ulrich M. Engelmann
- Medical Engineering and Applied MathematicsFH Aachen University of Applied Sciences52428JülichGermany
| |
Collapse
|
2
|
Yadav A, Yadav K. Portable solutions for plant pathogen diagnostics: development, usage, and future potential. Front Microbiol 2025; 16:1516723. [PMID: 39959158 PMCID: PMC11825793 DOI: 10.3389/fmicb.2025.1516723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025] Open
Abstract
The increasing prevalence of plant pathogens presents a critical challenge to global food security and agricultural sustainability. While accurate, traditional diagnostic methods are often time-consuming, resource-intensive, and unsuitable for real-time field applications. The emergence of portable diagnostic tools represents a paradigm shift in plant disease management, offering rapid, on-site detection of pathogens with high accuracy and minimal technical expertise. This review explores portable diagnostic technologies' development, deployment, and future potential, including handheld analyzers, smartphone-integrated systems, microfluidics, and lab-on-a-chip platforms. We examine the core technologies underlying these devices, such as biosensors, nucleic acid amplification techniques, and immunoassays, highlighting their applicability to detect bacterial, viral, and fungal pathogens in diverse agricultural settings. Furthermore, the integration of these devices with digital technologies, including the Internet of Things (IoT), artificial intelligence (AI), and machine learning (ML), is transforming disease surveillance and management. While portable diagnostics have clear advantages in speed, cost-effectiveness, and user accessibility, challenges related to sensitivity, durability, and regulatory standards remain. Innovations in nanotechnology, multiplex detection platforms, and personalized agriculture promise to further enhance the efficacy of portable diagnostics. By providing a comprehensive overview of current technologies and exploring future directions, this review underscores the critical role of portable diagnostics in advancing precision agriculture and mitigating the impact of plant pathogens on global food production.
Collapse
Affiliation(s)
- Anurag Yadav
- Department of Microbiology, C. P. College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Banaskantha, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
3
|
Tran LNT, Paz Gonzalez KM, Choe H, Wu X, Strayer J, Iyer PR, Zborowski M, Chalmers J, Gomez-Pastora J. Portable Cell Tracking Velocimetry for Quantification of Intracellular Fe Concentration of Blood Cells. MICROMACHINES 2025; 16:126. [PMID: 40047598 PMCID: PMC11857336 DOI: 10.3390/mi16020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 03/09/2025]
Abstract
Hematological analysis is crucial for diagnosing and monitoring blood-related disorders. Nevertheless, conventional hematology analyzers remain confined to laboratory settings due to their high cost, substantial space requirements, and maintenance needs. Herein, we present a portable cell tracking velocimetry (CTV) device for the precise measurement of the magnetic susceptibility of biological entities at the single-cell level, focusing on red blood cells (RBCs) in this work. The system integrates a microfluidic channel positioned between permanent magnets that generate a well-defined magnetic field gradient (191.82 TA/mm2). When the cells are injected into the chamber, their particular response to the magnetic field is recorded and used to estimate their properties and quantify their intracellular hemoglobin (Hb) concentration. We successfully track over 400 RBCs per condition using imaging and trajectory analysis, enabling detailed characterizations of their physical and magnetic properties. A comparison of the mean corpuscular hemoglobin measurements revealed a strong correlation between our CTV system and standard ultraviolet-visible (UV-Vis) spectrophotometry (23.1 ± 5.8 pg vs. 22.4 ± 3.9 pg, p > 0.05), validating the accuracy of our measurements. The system's single-cell resolution reveals population distributions unobtainable through conventional bulk analysis methods. Thus, this portable CTV technology provides a rapid, label-free approach for magnetic cell characterization, offering new possibilities for point-of-care hematological analysis and field-based research applications.
Collapse
Affiliation(s)
- Linh Nguyen T. Tran
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (K.M.P.G.)
| | | | - Hyeon Choe
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; (H.C.); (X.W.); (J.S.); (P.R.I.); (J.C.)
| | - Xian Wu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; (H.C.); (X.W.); (J.S.); (P.R.I.); (J.C.)
| | - Jacob Strayer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; (H.C.); (X.W.); (J.S.); (P.R.I.); (J.C.)
| | - Poornima Ramesh Iyer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; (H.C.); (X.W.); (J.S.); (P.R.I.); (J.C.)
| | - Maciej Zborowski
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Jeffrey Chalmers
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; (H.C.); (X.W.); (J.S.); (P.R.I.); (J.C.)
| | - Jenifer Gomez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (K.M.P.G.)
| |
Collapse
|
4
|
Wu K, Wang JP, Natekar NA, Ciannella S, González-Fernández C, Gomez-Pastora J, Bao Y, Liu J, Liang S, Wu X, Nguyen T Tran L, Mercedes Paz González K, Choe H, Strayer J, Iyer PR, Chalmers J, Chugh VK, Rezaei B, Mostufa S, Tay ZW, Saayujya C, Huynh Q, Bryan J, Kuo R, Yu E, Chandrasekharan P, Fellows B, Conolly S, Hadimani RL, El-Gendy AA, Saha R, Broomhall TJ, Wright AL, Rotherham M, El Haj AJ, Wang Z, Liang J, Abad-Díaz-de-Cerio A, Gandarias L, Gubieda AG, García-Prieto A, Fdez-Gubieda ML. Roadmap on magnetic nanoparticles in nanomedicine. NANOTECHNOLOGY 2024; 36:042003. [PMID: 39395441 PMCID: PMC11539342 DOI: 10.1088/1361-6528/ad8626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 10/12/2024] [Indexed: 10/14/2024]
Abstract
Magnetic nanoparticles (MNPs) represent a class of small particles typically with diameters ranging from 1 to 100 nanometers. These nanoparticles are composed of magnetic materials such as iron, cobalt, nickel, or their alloys. The nanoscale size of MNPs gives them unique physicochemical (physical and chemical) properties not found in their bulk counterparts. Their versatile nature and unique magnetic behavior make them valuable in a wide range of scientific, medical, and technological fields. Over the past decade, there has been a significant surge in MNP-based applications spanning biomedical uses, environmental remediation, data storage, energy storage, and catalysis. Given their magnetic nature and small size, MNPs can be manipulated and guided using external magnetic fields. This characteristic is harnessed in biomedical applications, where these nanoparticles can be directed to specific targets in the body for imaging, drug delivery, or hyperthermia treatment. Herein, this roadmap offers an overview of the current status, challenges, and advancements in various facets of MNPs. It covers magnetic properties, synthesis, functionalization, characterization, and biomedical applications such as sample enrichment, bioassays, imaging, hyperthermia, neuromodulation, tissue engineering, and drug/gene delivery. However, as MNPs are increasingly explored forin vivoapplications, concerns have emerged regarding their cytotoxicity, cellular uptake, and degradation, prompting attention from both researchers and clinicians. This roadmap aims to provide a comprehensive perspective on the evolving landscape of MNP research.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | | | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Cristina González-Fernández
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Santander, Spain
| | - Jenifer Gomez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Yuping Bao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, United States of America
| | - Jinming Liu
- Western Digital Corporation, San Jose, CA, United States of America
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| | - Xian Wu
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Linh Nguyen T Tran
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | | | - Hyeon Choe
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Jacob Strayer
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Poornima Ramesh Iyer
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Jeffrey Chalmers
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Zhi Wei Tay
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba, Ibaraki 305-8564, Japan
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
| | - Jacob Bryan
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Renesmee Kuo
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Elaine Yu
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Prashant Chandrasekharan
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | | | - Steven Conolly
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Ravi L Hadimani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States of America
| | - Ahmed A El-Gendy
- Department of Physics, University of Texas at El Paso, El Paso, TX, United States of America
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Thomas J Broomhall
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Abigail L Wright
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Michael Rotherham
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Institute of Translational Medicine, Birmingham, United Kingdom
| | - Alicia J El Haj
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Institute of Translational Medicine, Birmingham, United Kingdom
| | - Zhiyi Wang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jiarong Liang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ana Abad-Díaz-de-Cerio
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco–UPV/EHU, Leioa, Spain
| | - Lucía Gandarias
- Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Aix-Marseille Université, CNRS, CEA—UMR 7265, Saint-Paul-lez-Durance, France
- Dpto. Electricidad y Electrónica, Universidad del País Vasco—UPV/EHU, Leioa, Spain
| | - Alicia G Gubieda
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco–UPV/EHU, Leioa, Spain
| | - Ana García-Prieto
- Dpto. Física Aplicada, Universidad del País Vasco–UPV/EHU, Bilbao, Spain
| | | |
Collapse
|
5
|
Pourshahidi AM, Jean N, Kaulen C, Jakobi S, Krause HJ. Impact of Particle Size on the Nonlinear Magnetic Response of Iron Oxide Nanoparticles during Frequency Mixing Magnetic Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:4223. [PMID: 39001003 PMCID: PMC11244231 DOI: 10.3390/s24134223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
Magnetic nanoparticles (MNPs), particularly iron oxide nanoparticles (IONPs), play a pivotal role in biomedical applications ranging from magnetic resonance imaging (MRI) enhancement and cancer hyperthermia treatments to biosensing. This study focuses on the synthesis, characterization, and application of IONPs with two different size distributions for frequency mixing magnetic detection (FMMD), a technique that leverages the nonlinear magnetization properties of MNPs for sensitive biosensing. IONPs are synthesized through thermal decomposition and subsequent growth steps. Our findings highlight the critical influence of IONP size on the FMMD signal, demonstrating that larger particles contribute dominantly to the FMMD signal. This research advances our understanding of IONP behavior, underscoring the importance of size in their application in advanced diagnostic tools.
Collapse
Affiliation(s)
- Ali Mohammad Pourshahidi
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Neha Jean
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Corinna Kaulen
- Ostbayerische Technische Hochschule Regensburg, 93053 Regensburg, Germany
| | - Simon Jakobi
- RWTH Aachen, Institute of Inorganic Chemistry, 52074 Aachen, Germany
| | - Hans-Joachim Krause
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
6
|
Rezaei B, Yari P, Sanders SM, Wang H, Chugh VK, Liang S, Mostufa S, Xu K, Wang JP, Gómez-Pastora J, Wu K. Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304848. [PMID: 37732364 DOI: 10.1002/smll.202304848] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Nowadays, magnetic nanoparticles (MNPs) are applied in numerous fields, especially in biomedical applications. Since biofluidic samples and biological tissues are nonmagnetic, negligible background signals can interfere with the magnetic signals from MNPs in magnetic biosensing and imaging applications. In addition, the MNPs can be remotely controlled by magnetic fields, which make it possible for magnetic separation and targeted drug delivery. Furthermore, due to the unique dynamic magnetizations of MNPs when subjected to alternating magnetic fields, MNPs are also proposed as a key tool in cancer treatment, an example is magnetic hyperthermia therapy. Due to their distinct surface chemistry, good biocompatibility, and inducible magnetic moments, the material and morphological structure design of MNPs has attracted enormous interest from a variety of scientific domains. Herein, a thorough review of the chemical synthesis strategies of MNPs, the methodologies to modify the MNPs surface for better biocompatibility, the physicochemical characterization techniques for MNPs, as well as some representative applications of MNPs in disease diagnosis and treatment are provided. Further portions of the review go into the diagnostic and therapeutic uses of composite MNPs with core/shell structures as well as a deeper analysis of MNP properties to learn about potential biomedical applications.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Sean M Sanders
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Haotong Wang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Lubbock, MN, 55455, USA
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Lubbock, MN, 55455, USA
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kanglin Xu
- Department of Computer Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Lubbock, MN, 55455, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Lubbock, MN, 55455, USA
| | | | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
7
|
Reichstein J, Müssig S, Wintzheimer S, Mandel K. Communicating Supraparticles to Enable Perceptual, Information-Providing Matter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306728. [PMID: 37786273 DOI: 10.1002/adma.202306728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Indexed: 10/04/2023]
Abstract
Materials are the fundament of the physical world, whereas information and its exchange are the centerpieces of the digital world. Their fruitful synergy offers countless opportunities for realizing desired digital transformation processes in the physical world of materials. Yet, to date, a perfect connection between these worlds is missing. From the perspective, this can be achieved by overcoming the paradigm of considering materials as passive objects and turning them into perceptual, information-providing matter. This matter is capable of communicating associated digitally stored information, for example, its origin, fate, and material type as well as its intactness on demand. Herein, the concept of realizing perceptual, information-providing matter by integrating customizable (sub-)micrometer-sized communicating supraparticles (CSPs) is presented. They are assembled from individual nanoparticulate and/or (macro)molecular building blocks with spectrally differentiable signals that are either robust or stimuli-susceptible. Their combination yields functional signal characteristics that provide an identification signature and one or multiple stimuli-recorder features. This enables CSPs to communicate associated digital information on the tagged material and its encountered stimuli histories upon signal readout anywhere across its life cycle. Ultimately, CSPs link the materials and digital worlds with numerous use cases thereof, in particular fostering the transition into an age of sustainability.
Collapse
Affiliation(s)
- Jakob Reichstein
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Stephan Müssig
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| |
Collapse
|
8
|
Zayed BA, Ali AN, Elgebaly AA, Talaia NM, Hamed M, Mansour FR. Smartphone-based point-of-care testing of the SARS-CoV-2: A systematic review. SCIENTIFIC AFRICAN 2023; 21:e01757. [PMID: 37351482 PMCID: PMC10256629 DOI: 10.1016/j.sciaf.2023.e01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus's worldwide pandemic has highlighted the urgent need for reliable, quick, and affordable diagnostic tests for comprehending and controlling the epidemic by tracking the world population. Given how crucial it is to monitor and manage the pandemic, researchers have recently concentrated on creating quick detection techniques. Although PCR is still the preferred clinical diagnostic test, there is a pressing need for substitutes that are sufficiently rapid and cost-effective to provide a diagnosis at the time of use. The creation of a quick and simple POC equipment is necessary for home testing. Our review's goal is to provide an overview of the many methods utilized to identify SARS-CoV 2 in various samples utilizing portable devices, as well as any potential applications for smartphones in epidemiological research and detection. The point of care (POC) employs a range of microfluidic biosensors based on smartphones, including molecular sensors, immunological biosensors, hybrid biosensors, and imaging biosensors. For example, a number of tools have been created for the diagnosis of COVID-19, based on various theories. Integrated portable devices can be created using loop-mediated isothermal amplification, which combines isothermal amplification methods with colorimetric detection. Electrochemical approaches have been regarded as a potential substitute for optical sensing techniques that utilize fluorescence for detection and as being more beneficial to the Minimizing and simplicity of the tools used for detection, together with techniques that can amplify DNA or RNA under constant temperature conditions, without the need for repeated heating and cooling cycles. Many research have used smartphones for virus detection and data visualization, making these techniques more user-friendly and broadly distributed throughout nations. Overall, our research provides a review of different novel, non-invasive, affordable, and efficient methods for identifying COVID-19 contagious infected people and halting the disease's transmission.
Collapse
Affiliation(s)
- Berlanty A Zayed
- Tanta Student Research Academy, Faculty of Medicine, Tanta University, Tanta 31111, Egypt
| | - Ahmed N Ali
- Tanta Student Research Academy, Faculty of Medicine, Tanta University, Tanta 31111, Egypt
| | - Alaa A Elgebaly
- Tanta Student Research Academy, Faculty of Medicine, Tanta University, Tanta 31111, Egypt
| | - Nourhan M Talaia
- Tanta Student Research Academy, Faculty of Medicine, Tanta University, Tanta 31111, Egypt
| | - Mahmoud Hamed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Elgeish Street, The Medical Campus of Tanta University, Tanta 31111, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Elgeish Street, The Medical Campus of Tanta University, Tanta 31111, Egypt
| |
Collapse
|
9
|
Yari P, Rezaei B, Dey C, Chugh VK, Veerla NVRK, Wang JP, Wu K. Magnetic Particle Spectroscopy for Point-of-Care: A Review on Recent Advances. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094411. [PMID: 37177614 PMCID: PMC10181768 DOI: 10.3390/s23094411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Since its first report in 2006, magnetic particle spectroscopy (MPS)-based biosensors have flourished over the past decade. Currently, MPS are used for a wide range of applications, such as disease diagnosis, foodborne pathogen detection, etc. In this work, different MPS platforms, such as dual-frequency and mono-frequency driving field designs, were reviewed. MPS combined with multi-functional magnetic nanoparticles (MNPs) have been extensively reported as a versatile platform for the detection of a long list of biomarkers. The surface-functionalized MNPs serve as nanoprobes that specifically bind and label target analytes from liquid samples. Herein, an analysis of the theories and mechanisms that underlie different MPS platforms, which enable the implementation of bioassays based on either volume or surface, was carried out. Furthermore, this review draws attention to some significant MPS platform applications in the biomedical and biological fields. In recent years, different kinds of MPS point-of-care (POC) devices have been reported independently by several groups in the world. Due to the high detection sensitivity, simple assay procedures and low cost per run, the MPS POC devices are expected to become more widespread in the future. In addition, the growth of telemedicine and remote monitoring has created a greater demand for POC devices, as patients are able to receive health assessments and obtain results from the comfort of their own homes. At the end of this review, we comment on the opportunities and challenges for POC devices as well as MPS devices regarding the intensely growing demand for rapid, affordable, high-sensitivity and user-friendly devices.
Collapse
Affiliation(s)
- Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Clifton Dey
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
10
|
Kimura H, Asano R. Strategies to simplify operation procedures for applying labeled antibody-based immunosensors to point-of-care testing. Anal Biochem 2022; 654:114806. [PMID: 35835209 DOI: 10.1016/j.ab.2022.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/12/2022] [Accepted: 07/07/2022] [Indexed: 11/01/2022]
Abstract
Point-of-care testing (POCT) is an ideal testing format for the rapid and on-site detection of analytes in patients, and facilitates disease diagnosis and monitoring. Molecular recognition elements are required for the specific detection of analytes, and biosensors that use antibodies as the molecular recognition elements are called immunosensors. Traditional immunosensors such as sandwich enzyme-linked immunosorbent assay (ELISA) require complicated procedures to form immunocomplexes consisting of detection antibodies, analytes, and capture antibodies. They also require long incubation times, washing procedures, and large and expensive specialized equipment that must be operated by laboratory technicians. Immunosensors for POCT should be systems that use relatively small pieces of equipment and do not require special training. In this review, to help in the construction of immunosensors for POCT, we have summarized the recently reported strategies for simplifying the operation, incubation, and washing procedures. We focused on the optical and electrochemical detection principles of immunosensors, compared the strategies for operation, sensitivity, and detection devices and discussed the ideal system. Combining detection devices that can be fabricated inexpensively and strategies that enable simplification of operation procedures and enhance sensitivities will contribute to the development of immunosensors for POCT.
Collapse
Affiliation(s)
- Hayato Kimura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan.
| |
Collapse
|
11
|
Wu K, Liu J, Chugh VK, Liang S, Saha R, Krishna VD, Cheeran MCJ, Wang JP. Magnetic nanoparticles and magnetic particle spectroscopy-based bioassays: a 15 year recap. NANO FUTURES 2022; 6:022001. [PMID: 36199556 PMCID: PMC9531898 DOI: 10.1088/2399-1984/ac5cd1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Magnetic nanoparticles (MNPs) have unique physical and chemical properties, such as high surface area to volume ratio and size-related magnetism, which are completely different from their bulk materials. Benefiting from the facile synthesis and chemical modification strategies, MNPs have been widely studied for applications in nanomedicine. Herein, we firstly summarized the designs of MNPs from the perspectives of materials and physicochemical properties tailored for biomedical applications. Magnetic particle spectroscopy (MPS), first reported in 2006, has flourished as an independent platform for many biological and biomedical applications. It has been extensively reported as a versatile platform for a variety of bioassays along with the artificially designed MNPs, where the MNPs serve as magnetic nanoprobes to specifically probe target analytes from fluid samples. In this review, the mechanisms and theories of different MPS platforms realizing volumetric- and surface-based bioassays are discussed. Some representative works of MPS platforms for applications such as disease diagnosis, food safety and plant pathology monitoring, drug screening, thrombus maturity assessments are reviewed. At the end of this review, we commented on the rapid growth and booming of MPS-based bioassays in its first 15 years. We also prospected opportunities and challenges that portable MPS devices face in the rapidly growing demand for fast, inexpensive, and easy-to-use biometric techniques.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jinming Liu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Venkatramana D Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55108, United States of America
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55108, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States of America
| |
Collapse
|
12
|
Orlov AV, Malkerov JA, Novichikhin DO, Znoyko SL, Nikitin PI. Multiplex Label-Free Kinetic Characterization of Antibodies for Rapid Sensitive Cardiac Troponin I Detection Based on Functionalized Magnetic Nanotags. Int J Mol Sci 2022; 23:4474. [PMID: 35562865 PMCID: PMC9102693 DOI: 10.3390/ijms23094474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Express and highly sensitive immunoassays for the quantitative registration of cardiac troponin I (cTnI) are in high demand for early point-of-care differential diagnosis of acute myocardial infarction. The selection of antibodies that feature rapid and tight binding with antigens is crucial for immunoassay rate and sensitivity. A method is presented for the selection of the most promising clones for advanced immunoassays via simultaneous characterization of interaction kinetics of different monoclonal antibodies (mAb) using a direct label-free method of multiplex spectral correlation interferometry. mAb-cTnI interactions were real-time registered on an epoxy-modified microarray glass sensor chip that did not require activation. The covalent immobilization of mAb microdots on its surface provided versatility, convenience, and virtually unlimited multiplexing potential. The kinetics of tracer antibody interaction with the “cTnI—capture antibody” complex was characterized. Algorithms are shown for excluding mutual competition of the tracer/capture antibodies and selecting the optimal pairs for different assay formats. Using the selected mAbs, a lateral flow assay was developed for rapid quantitative cTnI determination based on electronic detection of functionalized magnetic nanoparticles applied as labels (detection limit—0.08 ng/mL, dynamic range > 3 orders). The method can be extended to other molecular biomarkers for high-throughput screening of mAbs and rational development of immunoassays.
Collapse
Affiliation(s)
- Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
| | - Juri A. Malkerov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Denis O. Novichikhin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Sergey L. Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russia; (J.A.M.); (D.O.N.); (S.L.Z.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| |
Collapse
|
13
|
Vaquer A, Alba-Patiño A, Adrover-Jaume C, Russell SM, Aranda M, Borges M, Mena J, Del Castillo A, Socias A, Martín L, Arellano MM, Agudo M, Gonzalez-Freire M, Besalduch M, Clemente A, Barón E, de la Rica R. Nanoparticle transfer biosensors for the non-invasive detection of SARS-CoV-2 antigens trapped in surgical face masks. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 345:130347. [PMID: 34188360 PMCID: PMC8225299 DOI: 10.1016/j.snb.2021.130347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 05/08/2023]
Abstract
Detecting SARS-CoV-2 antigens in respiratory tract samples has become a widespread method for screening new SARS-CoV-2 infections. This requires a nasopharyngeal swab performed by a trained healthcare worker, which puts strain on saturated healthcare services. In this manuscript we describe a new approach for non-invasive COVID-19 diagnosis. It consists of using mobile biosensors for detecting viral antigens trapped in surgical face masks worn by patients. The biosensors are made of filter paper containing a nanoparticle reservoir. The nanoparticles transfer from the biosensor to the mask on contact, where they generate colorimetric signals that are quantified with a smartphone app. Sample collection requires wearing a surgical mask for 30 min, and the total assay time is shorter than 10 min. When tested in a cohort of 27 patients with mild or no symptoms, an area under the receiving operating curve (AUROC) of 0.99 was obtained (96.2 % sensitivity and 100 % specificity). Serial measurements revealed a high sensitivity and specificity when masks were worn up to 6 days after diagnosis. Surgical face masks are inexpensive and widely available, which makes this approach easy to implement anywhere. The excellent sensitivity, even when tested with asymptomatic patient samples, along with the mobile detection scheme and non-invasive sampling procedure, makes this biosensor design ideal for mass screening.
Collapse
Affiliation(s)
- Andreu Vaquer
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
| | - Alejandra Alba-Patiño
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
- University of the Balearic Islands, Chemistry Department, Palma de Mallorca, Spain
| | - Cristina Adrover-Jaume
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
- University of the Balearic Islands, Chemistry Department, Palma de Mallorca, Spain
| | - Steven M Russell
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
| | - María Aranda
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llatzer University Hospital, Spain
| | - Marcio Borges
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llatzer University Hospital, Spain
| | - Joana Mena
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llatzer University Hospital, Spain
| | - Alberto Del Castillo
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llatzer University Hospital, Spain
| | - Antonia Socias
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llatzer University Hospital, Spain
| | - Luisa Martín
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
- Emergency Department, Son Llatzer University Hospital, Spain
| | - María Magdalena Arellano
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
- Emergency Department, Son Llatzer University Hospital, Spain
| | - Miguel Agudo
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
- Emergency Department, Son Llatzer University Hospital, Spain
| | - Marta Gonzalez-Freire
- Translational Research In Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
| | - Manuela Besalduch
- Servicio de Prevención de Riesgos Laborales, Servei de Salut Illes Balears, Spain
| | - Antonio Clemente
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
| | - Enrique Barón
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Spain
| |
Collapse
|
14
|
Wu K, Chugh VK, Krishna VD, Girolamo AD, Wang YA, Saha R, Liang S, Cheeran MCJ, Wang JP. One-Step, Wash-free, Nanoparticle Clustering-Based Magnetic Particle Spectroscopy Bioassay Method for Detection of SARS-CoV-2 Spike and Nucleocapsid Proteins in the Liquid Phase. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44136-44146. [PMID: 34499464 PMCID: PMC8442556 DOI: 10.1021/acsami.1c14657] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 05/04/2023]
Abstract
With the ongoing global pandemic of coronavirus disease 2019 (COVID-19), there is an increasing quest for more accessible, easy-to-use, rapid, inexpensive, and high-accuracy diagnostic tools. Traditional disease diagnostic methods such as qRT-PCR (quantitative reverse transcription-PCR) and ELISA (enzyme-linked immunosorbent assay) require multiple steps, trained technicians, and long turnaround time that may worsen the disease surveillance and pandemic control. In sight of this situation, a rapid, one-step, easy-to-use, and high-accuracy diagnostic platform will be valuable for future epidemic control, especially for regions with scarce medical resources. Herein, we report a magnetic particle spectroscopy (MPS) platform for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biomarkers: spike and nucleocapsid proteins. This technique monitors the dynamic magnetic responses of magnetic nanoparticles (MNPs) and uses their higher harmonics as a measure of the nanoparticles' binding states. By anchoring polyclonal antibodies (pAbs) onto MNP surfaces, these nanoparticles function as nanoprobes to specifically bind to target analytes (SARS-CoV-2 spike and nucleocapsid proteins in this work) and form nanoparticle clusters. This binding event causes detectable changes in higher harmonics and allows for quantitative and qualitative detection of target analytes in the liquid phase. We have achieved detection limits of 1.56 nM (equivalent to 125 fmole) and 12.5 nM (equivalent to 1 pmole) for detecting SARS-CoV-2 spike and nucleocapsid proteins, respectively. This MPS platform combined with the one-step, wash-free, nanoparticle clustering-based assay method is intrinsically versatile and allows for the detection of a variety of other disease biomarkers by simply changing the surface functional groups on MNPs.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Venkatramana D. Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Arturo di Girolamo
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | | | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Shuang Liang
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN 55455, United States
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
15
|
Chugh VK, Wu K, Krishna VD, di Girolamo A, Bloom RP, Wang YA, Saha R, Liang S, Cheeran MCJ, Wang JP. Magnetic Particle Spectroscopy with One-Stage Lock-In Implementation for Magnetic Bioassays with Improved Sensitivities. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:17221-17231. [PMID: 36199678 PMCID: PMC9531866 DOI: 10.1021/acs.jpcc.1c05126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In recent years, magnetic particle spectroscopy (MPS) has become a highly sensitive and versatile sensing technique for quantitative bioassays. It relies on the dynamic magnetic responses of magnetic nanoparticles (MNPs) for the detection of target analytes in the liquid phase. There are many research studies reporting the application of MPS for detecting a variety of analytes including viruses, toxins, nucleic acids, and so forth. Herein, we report a modified version of the MPS platform with the addition of a one-stage lock-in design to remove the feedthrough signals induced by external driving magnetic fields, thus capturing only MNP responses for improved system sensitivity. This one-stage lock-in MPS system is able to detect as low as 781 ng multi-core Nanomag50 iron oxide MNPs (micromod Partikeltechnologie GmbH) and 78 ng single-core SHB30 iron oxide MNPs (Ocean NanoTech). We first demonstrated the performance of this MPS system for bioassay-related applications. Using the SARS-CoV-2 spike protein as a model, we have achieved a detection limit of 125 nM (equal to 5 pmole) for detecting spike protein molecules in the liquid phase. In addition, using a streptavidin-biotin binding system as a proof-of-concept, we show that these single-core SHB30 MNPs can be used for Brownian relaxation-based bioassays while the multi-core Nanomag50 cannot be used. The effects of MNP amount on the concentration-dependent response profiles for detecting streptavidin were also investigated. Results show that by using a lower concentration/ amount of MNPs, concentration-response curves shift to a lower concentration/amount of target analytes. This lower concentration-response indicates the possibility of improved bioassay sensitivities by using lower amounts of MNPs.
Collapse
Affiliation(s)
| | | | - Venkatramana D. Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Arturo di Girolamo
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert P. Bloom
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shuang Liang
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|