1
|
Ghahremani-Nasab M, Babaie S, Bazdar S, Paiva-Santos AC, Del Bakhshayesh MR, Akbari-Gharalari N, Fathi-Karkan S, Ghasemi D, Del Bakhshayesh AR. Infertility treatment using polysaccharides-based hydrogels: new strategies in tissue engineering and regenerative medicine. J Nanobiotechnology 2025; 23:162. [PMID: 40033394 PMCID: PMC11877900 DOI: 10.1186/s12951-025-03267-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/23/2025] [Indexed: 03/05/2025] Open
Abstract
Infertility is a primary health issue affecting about 15% of couples of reproductive ages worldwide, leading to physical, mental, and social challenges. Advances in nanobiotechnology and regenerative medicine are opening new therapeutic horizons for infertility by developing polysaccharide-based nanostructured biomaterials. This review explores the role of tissue engineering and regenerative medicine in infertility treatment, explicitly focusing on the promising potential of polysaccharide-based hydrogels. In this context, using these biomaterials offers unique advantages, including biodegradability, biocompatibility, and the ability to mimic the natural endometrial microenvironment, making them highly effective for applications in endometrial regeneration, ovarian tissue engineering, spermatogenesis support, and controlled drug delivery. This review discusses the various properties and uses of polysaccharide-based hydrogels, like alginate, hyaluronic acid, and chitosan, in helping to restore reproductive function. While these materials hold great promise, some notable challenges to their clinical use include issues like rapid degradation, mechanical instability, and potential immune reactions. Future research should focus on developing hybrid hydrogels, investigating advanced fabrication techniques, and testing these materials in clinical settings. By combining findings from recent studies, this review aims to provide a solid foundation for researchers and clinicians looking to discover new and effective strategies for treating infertility, ultimately connecting research efforts with practical applications in healthcare.
Collapse
Affiliation(s)
- Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Bazdar
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, LAQV, REQUIMTE, University of Coimbra, Coimbra, Portugal
| | | | - Naeimeh Akbari-Gharalari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia,, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Diba Ghasemi
- Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Jiang Y, Ayaz Z, Xiang L, Zhou L, Mamizadeh L, Wang Y, Dong X, Huang N, Leng Y, Akhavan B, Jing F. Sodium Carboxymethylcellulose/Polydopamine Biocellulose Coatings with Enhanced Wet Stability for Implantable Medical Devices. ACS APPLIED BIO MATERIALS 2025; 8:1050-1064. [PMID: 39899808 DOI: 10.1021/acsabm.4c01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Sodium carboxymethylcellulose (CMC) is a biocompatible and biodegradable derivative of cellulose, making it a promising material for biomedical applications. However, its poor stability in aqueous environments has significantly limited its use in long-term biomedical devices. Here, we present for the first time a simple and controllable method to enhance the wet stability of CMC coatings by cross-linking of CMC and polydopamine (PDA) and self-polymerization of PDA for widespread applications in biomedical devices. A series of CMC/PDA coatings were fabricated on the initial PDA layers by using dip coating and subsequently heated at 200 °C. The performance of the CMC/PDA coatings and their chemical and structural stability in aqueous media have been systematically analyzed, and the mechanisms underpinning their robust performance have been revealed. FITR, X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC) results showed that CMC/PDA coatings involved amidation and esterification reactions as well as self-polymerization of PDA. Degradation studies in phosphate-buffered saline (PBS) solution at 37 °C indicated degradation via ester and amide bond cleavage, with the stability of CMC/PDA coatings surpassing that of individual PDA and CMC coatings over a 30-day immersion period. The CMC/PDA coating with a CMC concentration of 15 mg/mL exhibited the highest adhesion strength in an aqueous environment, which was attributed to the high cross-linking of CMC and PDA, as well as the intrinsic stability of PDA. The CMC/PDA coatings demonstrated favorable viability, growth, and proliferation of endothelial cells. The stable and biocompatible biocellulose coatings can be easily applied from aqueous solutions onto almost any type of solid metal and ceramic material, providing a promising dimension for surface engineering of vascular scaffolds and tissue engineering constructs.
Collapse
Affiliation(s)
- Yehao Jiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zainab Ayaz
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Long Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lili Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Leila Mamizadeh
- School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW 2305, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
| | - Yong Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xie Dong
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Nan Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yongxiang Leng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Behnam Akhavan
- School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW 2305, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Fengjuan Jing
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
3
|
Lee JJ, Dinh L, Kim H, Lee J, Lee J, Sung Y, Yeo S, Hwang SJ. Polysaccharide-based emulsion gels for the prevention of postoperative adhesions and as a drug delivery system using 5-fluorouracil. Int J Pharm 2024; 661:124386. [PMID: 38942182 DOI: 10.1016/j.ijpharm.2024.124386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Postoperative tissue adhesion is a well-recognized and common complication. Despite ongoing developments in anti-adhesion agents, complete prevention remains a challenge in clinical practice. Colorectal cancer necessitates both adhesion prevention and postoperative chemotherapy. Accordingly, drug-loading into an anti-adhesion agent could be employed as a treatment strategy to maximize the drug effects through local application and minimize side effects. Herein, we introduce an anti-adhesion agent that functions as a drug delivery system by loading drugs within an emulsion that forms a gel matrix in the presence of polysaccharides, xanthan gum, and pectin. Based on the rheological analysis, the xanthan gum-containing emulsion gel formed a gel matrix with suitable strength and mucosal adhesiveness. In vitro dissolution tests demonstrated sustained drug release over 12 h, while in vivo pharmacokinetic studies revealed a significant increase in the Tmax (up to 4.03 times) and area under the curve (up to 2.62 times). However, most of the drug was released within one day, distributing systemically and raising toxicity concerns, thus limiting its efficacy as a controlled drug delivery system. According to in vivo anti-adhesion efficacy evaluations, the xanthan gum/pectin emulsion gels, particularly F2 and F3, exhibited remarkable anti-adhesion capacity (P < 0.01). The emulsion gel formulation exhibited no cytotoxicity against fibroblasts or epithelial cell lines. Thus, the xanthan gum/pectin emulsion gel exhibits excellent anti-adhesion properties and could be developed as a drug delivery system.
Collapse
Affiliation(s)
- Jong-Ju Lee
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Linh Dinh
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Haneul Kim
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Jooyeon Lee
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Juseung Lee
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Yulseung Sung
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Sooho Yeo
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea.
| | - Sung-Joo Hwang
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea.
| |
Collapse
|
4
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. Int J Biol Macromol 2024; 256:128488. [PMID: 38043653 DOI: 10.1016/j.ijbiomac.2023.128488] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Hydrogels are highly biocompatible biomaterials composed of crosslinked three-dimensional networks of hydrophilic polymers. Owing to their natural origin, polysaccharide-based hydrogels (PBHs) possess low toxicity, high biocompatibility and demonstrate in vivo biodegradability, making them great candidates for use in various biomedical devices, implants, and tissue engineering. In addition, many polysaccharides also show additional biological activities such as antimicrobial, anticoagulant, antioxidant, immunomodulatory, hemostatic, and anti-inflammatory, which can provide additional therapeutic benefits. The porous nature of PBHs allows for the immobilization of antibodies, aptamers, enzymes and other molecules on their surface, or within their matrix, potentiating their use in biosensor devices. Specific polysaccharides can be used to produce transparent hydrogels, which have been used widely to fabricate ocular implants. The ability of PBHs to encapsulate drugs and other actives has been utilized for making neural implants and coatings for cardiovascular devices (stents, pacemakers and venous catheters) and urinary catheters. Their high water-absorption capacity has been exploited to make superabsorbent diapers and sanitary napkins. The barrier property and mechanical strength of PBHs has been used to develop gels and films as anti-adhesive formulations for the prevention of post-operative adhesion. Finally, by virtue of their ability to mimic various body tissues, they have been explored as scaffolds and bio-inks for tissue engineering of a wide variety of organs. These applications have been described in detail, in this review.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy, 428 Church Street, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai College of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur Campus, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, Maharashtra, India
| | - Vinita Kale
- Department of Pharmaceutics, Gurunanak College of Pharmacy, Kamptee Road, Nagpur 440026, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| |
Collapse
|
5
|
Zhao Y, Li R, Liu Y, Song L, Gao Z, Li Z, Peng X, Wang P. An injectable, self-healable, antibacterial, and pro-healing oxidized pullulan polysaccharide/carboxymethyl chitosan hydrogel for early protection of open abdominal wounds. Int J Biol Macromol 2023; 250:126282. [PMID: 37572809 DOI: 10.1016/j.ijbiomac.2023.126282] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Open abdomen (OA) is an effective method for treating critical abdominal conditions such as severe abdominal infections. The temporary abdominal closure (TAC) technique is often used to temporarily restore the physiological environment of the abdominal cavity and maintain the homeostatic balance of the abdominal cavity. However, most of the common TAC materials available today lack bio-responsiveness, tend to abrade the intestinal canal, and lead to delayed tissue healing of the wound. Hydrogels could mimic the extracellular matrix and have shown significant potential in life science fields such as tissue regeneration, wound repair, and controlled drug release. In this study, a composite hydrogel scaffold was constructed by the Schiff base reaction of oxidized pullulan polysaccharide with carboxymethyl chitosan. The hydrogel exhibited excellent self-healing, cellular biocompatibility, and antibacterial and anti-inflammatory abilities, and in experiments it reduced secondary damage caused by friction between tissue and patch, thereby preventing serious complications such as intestinal fistula, promoted M1-M2 polarization of macrophages, reduced the inflammatory response, regulated the inflammatory microenvironment in vivo, promoted angiogenesis and granulation tissue regeneration, and accelerated wound healing. Therefore, our hydrogel provides a new strategy for material-assisted wound protection during OA and has potential clinical applications.
Collapse
Affiliation(s)
- Yeying Zhao
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000, PR China
| | - Ruojing Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000, PR China
| | - Yangyang Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000, PR China
| | - Lei Song
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000, PR China
| | - Zhao Gao
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000, PR China
| | - Ze Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000, PR China; School of Medicine, Nanjing University, Nanjing 210008, PR China.
| | - Xingang Peng
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000, PR China.
| | - Peige Wang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266000, PR China.
| |
Collapse
|
6
|
Popescu I, Constantin M, Bercea M, Coșman BP, Suflet DM, Fundueanu G. Poloxamer/Carboxymethyl Pullulan Aqueous Systems-Miscibility and Thermogelation Studies Using Viscometry, Rheology and Dynamic Light Scattering. Polymers (Basel) 2023; 15:polym15081909. [PMID: 37112056 PMCID: PMC10143542 DOI: 10.3390/polym15081909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Thermally-induced gelling systems based on Poloxamer 407 (PL) and polysaccharides are known for their biomedical applications; however, phase separation frequently occurs in mixtures of poloxamer and neutral polysaccharides. In the present paper, the carboxymethyl pullulan (CMP) (here synthesized) was proposed for compatibilization with poloxamer (PL). The miscibility between PL and CMP in dilute aqueous solution was studied by capillary viscometry. CMP with substitution degrees higher than 0.5 proved to be compatible with PL. The thermogelation of concentrated PL solutions (17%) in the presence of CMP was monitored by the tube inversion method, texture analysis and rheology. The micellization and gelation of PL in the absence or in the presence of CMP were also studied by dynamic light scattering. The critical micelle temperature and sol-gel transition temperature decrease with the addition of CMP, but the concentration of CMP has a peculiar influence on the rheological parameters of the gels. In fact, low concentrations of CMP decrease the gel strength. With a further increase in polyelectrolyte concentration, the gel strength increases until 1% CMP, then the rheological parameters are lowered again. At 37 °C, the gels are able to recover the initial network structure after high deformations, showing a reversible healing process.
Collapse
Affiliation(s)
- Irina Popescu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Marieta Constantin
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Bogdan-Paul Coșman
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Dana Mihaela Suflet
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Gheorghe Fundueanu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
7
|
Pullulan in pharmaceutical and cosmeceutical formulations: A review. Int J Biol Macromol 2023; 231:123353. [PMID: 36681225 DOI: 10.1016/j.ijbiomac.2023.123353] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Pullulan, an α-glucan polysaccharide, is colorless, odorless, non-toxic, non-carcinogenic, highly biocompatible, edible and biodegradable in nature. The long chains of glucopyranose rings in pullulan structure are linked together by α-(1 → 4) and α-(1 → 6) glycosidic linkages. The occurrence of both glycosidic linkages in the pullulan structure contributes to its distinctive properties. The unique structure of pullulan makes it a potent candidate for both pharmaceutical and cosmeceutical applications. In pharmaceuticals, it can be used as a drug carrier and in various dosage formulations. It has been widely used in drug targeting, implants, ocular dosage forms, topical formulations, oral dosage forms, and oral liquid formulations, etc. Pullulan can be used as a potential carrier of active ingredients and their site-specific delivery to skin layers for cosmeceutical applications. It has been extensively used in cosmeceutical formulations like creams, shampoo, lotions, sunscreen, facial packs, etc. The current review highlights applications of pullulan in pharmaceutical and cosmeceutical applications.
Collapse
|
8
|
Chen S, Zheng H, Gao J, Song H, Bai W. High-level production of pullulan and its biosynthesis regulation in Aureobasidium pullulans BL06. Front Bioeng Biotechnol 2023; 11:1131875. [PMID: 36777253 PMCID: PMC9909216 DOI: 10.3389/fbioe.2023.1131875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Pullulan has many potential applications in the food, pharmaceutical, cosmetic and environmental industries. However, the yield and molecular properties of pullulan produced by various strains still need to be promoted to fit the application needs. A novel yeast-like strain Aureobasidium pullulans BL06 producing high molecular weight (Mw) pullulan (3.3 × 106 Da) was isolated and identified in this study. The remarkable Mw of pullulan produced by A. pullulans BL06 was the highest level ever reported thus far. To further regulate the biosynthesis of pullulan in A. pullulans BL06, three gene knockout strains A. pullulans BL06 ΔPMAs, A. pullulans BL06 Δmel, and A. pullulans BL06 ΔPMAsΔmel, were constructed. The results showed that A. pullulans BL06 ΔPMAs could produce 140.2 g/L of moderate Mw (1.3 × 105 Da) pullulan after 120 h of fermentation. The highest yield level of pullulan to date could vastly reduce its production cost and expand its application scope and potential. The application experiments in food preservation showed that the moderate-Mw pullulan obtained in this work could reduce the weight loss of celery cabbages and mangos by 12.5% and 22%, respectively. Thus, the novel strains A. pullulans BL06 and A. pullulans BL06 ΔPMAs possessed unlimited development prospects in pullulan production at various Mw ranges and pullulan applications in multiple fields.
Collapse
Affiliation(s)
- Shuyu Chen
- Colleg of Biotechnology, Tianjin University of Science Technology, Tianjin, China
| | - Hongchen Zheng
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Center of Technology Innovation for Synthetic Biology, Tianjin, China,Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiaqi Gao
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Center of Technology Innovation for Synthetic Biology, Tianjin, China,Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hui Song
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Center of Technology Innovation for Synthetic Biology, Tianjin, China,Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wenqin Bai
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Center of Technology Innovation for Synthetic Biology, Tianjin, China,Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,*Correspondence: Wenqin Bai,
| |
Collapse
|
9
|
Shahriar SMS, Andrabi SM, Islam F, An JM, Schindler SJ, Matis MP, Lee DY, Lee YK. Next-Generation 3D Scaffolds for Nano-Based Chemotherapeutics Delivery and Cancer Treatment. Pharmaceutics 2022; 14:2712. [PMID: 36559206 PMCID: PMC9784306 DOI: 10.3390/pharmaceutics14122712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the leading cause of death after cardiovascular disease. Despite significant advances in cancer research over the past few decades, it is almost impossible to cure end-stage cancer patients and bring them to remission. Adverse effects of chemotherapy are mainly caused by the accumulation of chemotherapeutic agents in normal tissues, and drug resistance hinders the potential therapeutic effects and curing of this disease. New drug formulations need to be developed to overcome these problems and increase the therapeutic index of chemotherapeutics. As a chemotherapeutic delivery platform, three-dimensional (3D) scaffolds are an up-and-coming option because they can respond to biological factors, modify their properties accordingly, and promote site-specific chemotherapeutic deliveries in a sustainable and controlled release manner. This review paper focuses on the features and applications of the variety of 3D scaffold-based nano-delivery systems that could be used to improve local cancer therapy by selectively delivering chemotherapeutics to the target sites in future.
Collapse
Affiliation(s)
- S. M. Shatil Shahriar
- Eppley Institute for Research in Cancer and Allied Diseases, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Surgery—Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Syed Muntazir Andrabi
- Department of Surgery—Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Farhana Islam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | | | - Mitchell P. Matis
- Kansas City Internal Medicine Residency Program, HCA Healthcare, Overland Park, KS 66215, USA
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
| | - Yong-kyu Lee
- 4D Biomaterials Center, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| |
Collapse
|
10
|
Ultra-high molecular weight pullulan-based material with high deformability and shape-memory properties. Carbohydr Polym 2022; 295:119836. [DOI: 10.1016/j.carbpol.2022.119836] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022]
|
11
|
Mondal J, An JM, Surwase SS, Chakraborty K, Sutradhar SC, Hwang J, Lee J, Lee YK. Carbon Nanotube and Its Derived Nanomaterials Based High Performance Biosensing Platform. BIOSENSORS 2022; 12:731. [PMID: 36140116 PMCID: PMC9496036 DOI: 10.3390/bios12090731] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
After the COVID-19 pandemic, the development of an accurate diagnosis and monitoring of diseases became a more important issue. In order to fabricate high-performance and sensitive biosensors, many researchers and scientists have used many kinds of nanomaterials such as metal nanoparticles (NPs), metal oxide NPs, quantum dots (QDs), and carbon nanomaterials including graphene and carbon nanotubes (CNTs). Among them, CNTs have been considered important biosensing channel candidates due to their excellent physical properties such as high electrical conductivity, strong mechanical properties, plasmonic properties, and so on. Thus, in this review, CNT-based biosensing systems are introduced and various sensing approaches such as electrochemical, optical, and electrical methods are reported. Moreover, such biosensing platforms showed excellent sensitivity and high selectivity against not only viruses but also virus DNA structures. So, based on the amazing potential of CNTs-based biosensing systems, healthcare and public health can be significantly improved.
Collapse
Affiliation(s)
- Jagannath Mondal
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Sachin S. Surwase
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Korea
| | - Sabuj Chandra Sutradhar
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Joon Hwang
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Aeronautical & Mechanical Design Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jaewook Lee
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Yong-Kyu Lee
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea
| |
Collapse
|
12
|
Bercea M, Constantin M, Plugariu IA, Oana Daraba M, Luminita Ichim D. Thermosensitive gels of pullulan and poloxamer 407 as potential injectable biomaterials. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119717] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Cheng F, Xu L, Dai J, Yi X, He J, Li H. N, O-carboxymethyl chitosan/oxidized cellulose composite sponge containing ε-poly-l-lysine as a potential wound dressing for the prevention and treatment of postoperative adhesion. Int J Biol Macromol 2022; 209:2151-2164. [PMID: 35500774 DOI: 10.1016/j.ijbiomac.2022.04.195] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
Herein, we designed and fabricated a biodegradable composite sponge which main component contained N, O-carboxymethyl chitosan (N,O-CS) and oxidized cellulose nanocrystals (TOCN) as a potential wound dressing for the prevention and treatment of postoperative adhesion. In order to improve antimicrobial properties of N,O-CS/TOCN composite sponges, natural antimicrobial agents (ε-Poly-l-Lysine,EPL) were successfully introduced and the EPL/N,O-CS/TOCN composite sponge exhibited excellent antibacterial properties and biological security. The EPL/N,O-CS/TOCN composite sponge can be degraded in vivo within 3 weeks. Finally, we analyzed the anti-adhesion performance of EPL/N,O-CS/TOCN composite sponge through a rat model of sidewall defect-cecum abrasion. These results demonstrated that EPL/N,O-CS/TOCN-treated group can effectively reduce the peritoneal adhesion formation than the commercial soluble gauze group and normal saline group, which mainly attribute to the excellent hemostatic function and tissue repair function of EPL/N,O-CS/TOCN composite sponge. It is believed that the EPL/N,O-CS/TOCN composite sponge will prove to be as a new medical device treat the internal tissue/organ repair and simultaneous prevention of postoperative adhesion.
Collapse
Affiliation(s)
- Feng Cheng
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China
| | - Lei Xu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jiliang Dai
- College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, PR China
| | - Xiaotong Yi
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jinmei He
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Hongbin Li
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China; College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, PR China.
| |
Collapse
|
14
|
Huang YC, Liu ZH, Kuo CY, Chen JP. Photo-Crosslinked Hyaluronic Acid/Carboxymethyl Cellulose Composite Hydrogel as a Dural Substitute to Prevent Post-Surgical Adhesion. Int J Mol Sci 2022; 23:6177. [PMID: 35682853 PMCID: PMC9181059 DOI: 10.3390/ijms23116177] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
A dural substitute is frequently used to repair dura mater during neurosurgical procedures. Although autologous or commercially available dural substitutes matched most of the requirements; difficulties during dural repair, including insufficient space for suturing, insufficient mechanical strength, easy tear and cerebrospinal fluid leakage, represent major challenges. To meet this need, a photo-crosslinked hydrogel was developed as a dural substitute/anti-adhesion barrier in this study, which can show sol-to-gel phase transition in situ upon short-time exposure to visible light. For this purpose, hyaluronic acid (HA) and carboxymethyl cellulose (CMC), materials used in abdominal surgery for anti-adhesion purposes, were reacted separately with glycidyl methacrylate to form hyaluronic acid methacrylate (HAMA) and carboxymethyl cellulose methacrylate (CMCMA). The HA/CMC (HC) hydrogels with different HA compositions could be prepared by photo-crosslinking HAMA and CMCMA with a 400 nm light source using lithium phenyl-2,4,6-trimethylbenzoylphosphinate as a photo-initiator. From studies of physico-chemical and biological properties of HC composite hydrogels, they are bio-compatible, bio-degradable and mechanically robust, to be suitable as a dural substitute. By drastically reducing attachment and penetration of adhesion-forming fibroblasts in vitro, the HC hydrogel can also act as an anti-adhesion barrier to prevent adhesion formation after dural repair. From in vivo study in rabbits, the HC hydrogel can repair dural defects as well as protect the dura from post-operative adhesion, endorsing the possible application of this hydrogel as a novel dural substitute.
Collapse
Affiliation(s)
- Yin-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-C.H.); (Z.-H.L.)
- Department of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-C.H.); (Z.-H.L.)
- Department of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
| | - Jyh-Ping Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-C.H.); (Z.-H.L.)
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
- Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
15
|
An JM, Shahriar SMS, Lee DY, Hwang SR, Lee YK. Pore Size-Dependent Stereoscopic Hydrogels Enhance the Therapeutic Efficiency of Botulinum Toxin for the Treatment of Nerve-Related Diseases. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19139-19153. [PMID: 35452222 DOI: 10.1021/acsami.2c01738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Botulinum toxin (BoNT) is a major neurotherapeutic protein that has been used at low doses for diverse pharmacological applications. However, the pleiotropic effect of BoNT depends on multiple periodic injections owing to its rapid elimination profile, short-term therapeutic effect, and high mortality rate when administered at high doses. In addition to low patient compliance, these drawbacks represent the significant challenges that limit the further clinical use of BoNT. This study developed a new hydrogel-based single dosage form of BoNT by employing a one-step cross-linking chemistry. Its controlled porous structures and composition facilitated uniform drug distribution inside the hydrogel and controllable release of BoNT mediated by slow diffusion. A single dose remained stable for at least 2.5 months and showed sustained effect for at least 20 weeks, meeting the requirements for a single-dose form of BoNT. Additionally, this dosage form was evaluated as safe from all aspects of toxicology. This delivery system resulted in a 100% survival rate after administering a BoNT dose of 30 units, while a dose of more than 5 units of naked BoNT caused a 100% mortality rate within a few days. Overall, this strategy could provide patients with the first single-dose treatment option of BoNT and improve their quality of life.
Collapse
Affiliation(s)
- Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- KB Biomed Inc., Chungju 27469, Republic of Korea
| | - S M Shatil Shahriar
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- KB Biomed Inc., Chungju 27469, Republic of Korea
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5940, United States
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Yong-Kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- KB Biomed Inc., Chungju 27469, Republic of Korea
| |
Collapse
|
16
|
Liang W, He W, Huang R, Tang Y, Li S, Zheng B, Lin Y, Lu Y, Wang H, Wu D. Peritoneum-Inspired Janus Porous Hydrogel with Anti-Deformation, Anti-Adhesion, and Pro-Healing Characteristics for Abdominal Wall Defect Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108992. [PMID: 34981867 DOI: 10.1002/adma.202108992] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Implantable meshes used in tension-free repair operations facilitate treatment of internal soft-tissue defects. However, clinical meshes fail to achieve anti-deformation, anti-adhesion, and pro-healing properties simultaneously, leading to undesirable surgery outcomes. Herein, inspired by the peritoneum, a novel biocompatible Janus porous poly(vinyl alcohol) hydrogel (JPVA hydrogel) is developed to achieve efficient repair of internal soft-tissue defects by a facile yet efficient strategy based on top-down solvent exchange. The densely porous and smooth bottom-surface of JPVA hydrogel minimizes adhesion of fibroblasts and does not trigger any visceral adhesion, and its loose extracellular-matrix-like porous and rough top-surface can significantly improve fibroblast adhesion and tissue growth, leading to superior abdominal wall defect treatment to commercially available PP and PCO meshes. With unique anti-swelling property (maximum swelling ratio: 6.4%), JPVA hydrogel has long-lasting anti-deformation performance and maintains high mechanical strength after immersion in phosphate-buffered saline (PBS) for 14 days, enabling tolerance to the maximum abdominal pressure in an internal wet environment. By integrating visceral anti-adhesion and defect pro-healing with anti-deformation, the JPVA hydrogel patch shows great prospects for efficient internal soft-tissue defect repair.
Collapse
Affiliation(s)
- Weiwen Liang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Wenyi He
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Rongkang Huang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Youchen Tang
- Center of Accurate Diagnosis, Treatment and Transformation of Bone and Joint Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, P. R. China
| | - Shimei Li
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Bingna Zheng
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- Center of Accurate Diagnosis, Treatment and Transformation of Bone and Joint Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, P. R. China
| | - Yayu Lin
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yuheng Lu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Hui Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Dingcai Wu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- Center of Accurate Diagnosis, Treatment and Transformation of Bone and Joint Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, P. R. China
| |
Collapse
|
17
|
Singla P, Garg S, McClements J, Jamieson O, Peeters M, Mahajan RK. Advances in the therapeutic delivery and applications of functionalized Pluronics: A critical review. Adv Colloid Interface Sci 2022; 299:102563. [PMID: 34826745 DOI: 10.1016/j.cis.2021.102563] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 11/13/2021] [Indexed: 12/22/2022]
Abstract
Pluronic (PEO-PPO-PEO) block copolymers can form nano-sized micelles with a structure composed of a hydrophobic PPO core and hydrophilic PEO shell layer. Pluronics are U.S. Food and Drug Administration approved polymers, which are widely used for solubilization of drugs and their delivery, gene/therapeutic delivery, diagnostics, and tissue engineering applications due to their non-ionic properties, non-toxicity, micelle forming ability, excellent biocompatibility and biodegradability. Although Pluronics have been employed as drug carrier systems for several decades, numerous issues such as rapid dissolution, shorter residence time in biological media, fast clearance and weak mechanical strength have hindered their efficacy. Pluronics have been functionalized with pH-sensitive, biological-responsive moieties, antibodies, aptamers, folic acid, drugs, different nanoparticles, and photo/thermo-responsive hydrogels. These functionalization strategies enable Pluronics to act as stimuli responsive and targeted drug delivery vehicles. Moreover, Pluronics have emerged in nano-emulsion formulations and have been utilized to improve the properties of cubosomes, dendrimers and nano-sheets, including their biocompatibility and aqueous solubility. Functionalization of Pluronics results in the significant improvement of target specificity, loading capacity, biocompatibility of nanoparticles and stimuli responsive hydrogels for the promising delivery of a range of drugs. Therefore, this review presents an overview of all advancements (from the last 15 years) in functionalized Pluronics, providing a valuable tool for industry and academia in order to optimize their use in drug or therapeutic delivery, in addition to several other biomedical applications.
Collapse
Affiliation(s)
- Pankaj Singla
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Saweta Garg
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Jake McClements
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Oliver Jamieson
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Marloes Peeters
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom.
| | - Rakesh Kumar Mahajan
- Department of Chemistry, UGC-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
18
|
Shahriar SMS, Nafiujjaman M, An JM, Revuri V, Nurunnabi M, Han DW, Lee YK. Graphene: A Promising Theranostic Agent. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:149-176. [DOI: 10.1007/978-981-16-4923-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Prospects for prevention of adhesion process during cardiac surgical interventions. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.6-2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The article is devoted to the problem of prevention of adhesions in cardiac surgery. It was determined that the problem is urgent due to the increase in the number of heart surgeries. The formation of adhesions is a reaction of the body after surgery, which is a stage of healing and partly performs a protective function. Nevertheless, the presence of adhesions violates the mechanical properties of the heart, negatively affects central hemodynamics, complicates the surgeon’s task during repeated surgical interventions and increases the risk of repeated operations.It has been shown that at present, for the prevention of adhesions, researchers tend to use biodegradable barrier materials with biocompatibility and the ability to dissolve after performing the barrier function. The main anti-adhesion agents used in cardiac surgery are membranes and gels. The requirements for an “ideal” agent for the prevention of adhesion were determined: biocompatibility, no irritating effect, no effect on wound healing, suppression of the growth of connective tissue in the pericardium.Conclusions. Until now, none of the funds has all the necessary qualities to prevent adhesion in the pericardium. Therefore, the search for effective methods for the prevention of postoperative adhesions remains relevant for cardiac surgery.
Collapse
|