1
|
Shi Y, Deng Y, Du G, Fu L, Huang B, Xu C, Lin B. In situ synthesis of HKUST-1 on copper-ammonia fiber for preparation of quaternary-ammonium chitosan based active packaging with sustained-release cinnamaldehyde. Int J Biol Macromol 2025; 300:140342. [PMID: 39870284 DOI: 10.1016/j.ijbiomac.2025.140342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Cinnamaldehyde (CIN) is gaining interest as a highly effective natural antimicrobial agent to extend the shelf life of fruits. However, its inherent instability limits further applications. In this work, a new strategy for the synthesis of HKUST-1 to encapsulate CINs by in situ growth method using copper-ammonia fiber as precursors is proposed. Subsequently, combining it with chitosan quaternary ammonium salt (CQAS) to formulate chitosan quaternary ammonium salt/copper-ammonia fiber@HKUST-1/cinnamaldehyde (CCAHC) packaging film. Based on copper-ammonia fiber to prepared HKUST-1, on the one hand, it has excellent compatibility with CQAS and improves the mechanical properties of the film. On the other hand, its porous structure also encapsulates CIN and significantly improves the stability of CIN (203h). Benefiting from the sustained release of CIN and Cu2+ from HKUST-1, CCAHC film not only exhibited long-lasting antimicrobial activity (12 days, 95 %), which was effective in prolonging the shelf life of strawberries, but also excellent antioxidant properties (20 h, 84 %), which maintained the good appearance of fresh-cut apples (over 14 h). Moreover, CCAHC films exhibited the great degradability in the soli, which promised it becoming a green packaging material. Therefore, this work provides an innovative method for designing CIN encapsulation and preparing bioactive packaging films.
Collapse
Affiliation(s)
- Yuyan Shi
- School of Chemistry and Chemical Engineering, Guangxi University, 100 East University Road, Nanning 530004, PR China
| | - Yongfu Deng
- School of Chemistry and Chemical Engineering, Guangxi University, 100 East University Road, Nanning 530004, PR China
| | - Guangwu Du
- School of Chemistry and Chemical Engineering, Guangxi University, 100 East University Road, Nanning 530004, PR China
| | - Lihua Fu
- School of Chemistry and Chemical Engineering, Guangxi University, 100 East University Road, Nanning 530004, PR China
| | - Bai Huang
- School of Chemistry and Chemical Engineering, Guangxi University, 100 East University Road, Nanning 530004, PR China
| | - Chuanhui Xu
- School of Chemistry and Chemical Engineering, Guangxi University, 100 East University Road, Nanning 530004, PR China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, 100 East University Road, Nanning 530004, PR China.
| |
Collapse
|
2
|
Emam HE, Abdelhameed RM, Darwesh OM, Ahmed HB. Ln-MOF in production of durable antimicrobial and UV-Protective fluorescent cotton fabric for potential application in military textiles. Sci Rep 2025; 15:1070. [PMID: 39774985 PMCID: PMC11707025 DOI: 10.1038/s41598-024-84020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Industrialization of military textiles faces many challenges and some requirements such as durability, protection and suitability for hostile environment must be provided. Herein, fluorescent protective cotton with ultraviolet radiation (UVR)-protection and antimicrobial property was currently prepared via the immobilization of lanthanide-metal organic framework (Ln-MOF). Cotton fabrics were primarily activated via cationization process with 3-Chloro-2-hydroxypropyltrimethyl ammonium chloride to obtain the cationized cotton (Q-cotton). Subsequently, Ln-MOFs based on Europium (Eu) and Terbium (Tb) were separately immobilized within cotton and Q-cotton fabrics. The obtained Ln-MOF@fabrics showed good fluorescent character, while three and four emission bands were estimated for Eu-MOF@fabric and Tb-MOF@fabric, respectively, related to the electron transition from 5D0 to 7F0-4 in Eu3+ and from 5D4 to 7F3-6 in Tb3+. After Ln-MOF incorporation, UVR-protection factor (UPF) was significantly enlarged from 1.9 (insufficient UPF) to 22.1-25.6 (good UPF) without cationization and to 32.4-37.8 (very good UPF) for Q-cotton. Against three different pathogens (Escherichia coli, staphylococcus Aureus and Candida albicans), Ln-MOF@fabrics exhibited good microbial reduction of 68-79% and 81-91% in case of cotton and Q-cotton, respectively. The cationization improved the functionality and durability of fabrics, while the acquired functions were still existed even after 10 repetitive washings.
Collapse
Affiliation(s)
- Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Fibers, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Osama M Darwesh
- Agricultural Microbiology Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt.
| |
Collapse
|
3
|
Zhang W, Liu H, Yan L, Mei X, Hou Z. Combining emulsion electrospinning with surface functionalization to fabricate multistructural PLA/CS@ZIF-8 nanofiber membranes toward pH-responsive dual drug delivery. Int J Biol Macromol 2023; 253:126506. [PMID: 37659502 DOI: 10.1016/j.ijbiomac.2023.126506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/19/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Developing of the multifunctional polymeric carrier for controlled drug release is still one of most challenging task. In this work, a pH-responsive dual drug delivery system was designed and prepared based on the zeolitic imidazolate framework-8 (ZIF-8). The poly(lactic acid)/chitosan (PLA/CS) core-shell nanofiber membranes by emulsion electrospinning, which the hydrophilic drug (Astragalus Polysacharin, APS) was encapsulated in the CS core and the hydrophobic drug (Camptothecin, CPT) was loaded into the PLA shell, respectively. Subsequently, ZIF-8 nanoparticles served as the protective layer were immobilized on the surface of PLA/CS to form multi-structural PLA/CS@ZIF-8 nanofiber membranes. In vitro drug release of nanofiber membranes were studied in the acidic and neutral medium, respectively. The results were that the hydrophilicity and surface roughness of nanofiber membranes rose with increasing of 2-MIM concentrations. The nanofiber membranes also had excellent pH-responsive and controlled release property. Furthermore, the drug release of PLA/CS@ZIF-8 for either APS or CPT were all carried out in a coexisting manner of diffusion and skeleton corrosion. In addition, in vitro cytotoxicity assay indicated nanofiber membranes with good cytocompatibility. Therefore, the multi-structured PLA/CS@ZIF-8 nanofiber membranes has been used as a potential pH-responsive dual drug release system.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, College of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Hongming Liu
- BeiJing Shidabocheng Technology Co., Ltd., Beijing 102200, China
| | - Li Yan
- College of Humanities, Tiangong University, Tianjin 300387, China
| | - Xi Mei
- State Key Laboratory of Separation Membranes and Membrane Processes, College of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zikang Hou
- State Key Laboratory of Separation Membranes and Membrane Processes, College of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
4
|
Liang C, Li J, Chen Y, Ke L, Zhu J, Zheng L, Li XP, Zhang S, Li H, Zhong GJ, Xu H. Self-Charging, Breathable, and Antibacterial Poly(lactic acid) Nanofibrous Air Filters by Surface Engineering of Ultrasmall Electroactive Nanohybrids. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38048182 DOI: 10.1021/acsami.3c13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Despite the great promise in the development of biodegradable and ecofriendly air filters by electrospinning of poly(lactic acid) (PLA) nanofibrous membranes (NFMs), the as-electrospun PLA nanofibers are generally characterized by poor electroactivity and smooth surface, challenging the exploitation of electrostatic adsorption and physical interception that are in need for efficient removal of pathogens and particulate matters (PMs). Herein, a combined "electrospinning-electrospray" strategy was disclosed to functionalize the PLA nanofibers by direct anchoring of highly dielectric BaTiO3@ZIF-8 nanohybrids (BTO@ZIF-8), conferring simultaneous promotion of surface roughness, electret properties (surface potential as high as 7.5 kV), and self-charging capability (∼190% increase in tribo-output voltage compared to that of pure PLA). Benefiting from the well-tailored morphology and increased electroactivity, the electrospun-electrosprayed PLA/BTO@ZIF-8 exhibited excellent PM-capturing performance (up to 96.54% for PM0.3 and 99.49% for PM2.5) while providing desirable air resistance (only 87 Pa at 32 L/min) due primarily to the slip flow of air molecules over the nanohybrid protrusions. This was accompanied by excellent antibacterial properties (99.9% inhibition against both Staphylococcus aureus and Escherichia coli), arising presumably from the synergistic effects of enhanced reactive oxygen species (ROS) generation, plentiful ion release, and surface charges. Our proposed strategy opens up pathways to afford exceptional combination of high-efficiency and low-resistance filtration, excellent antibacterial performance, and mechanical robustness without sacrificing the biodegradation profiles of PLA NFMs, holding potential implications for efficient and long-term healthcare.
Collapse
Affiliation(s)
- Chenyu Liang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiaqi Li
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Yuyang Chen
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Lv Ke
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jintuo Zhu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Lina Zheng
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Xiao-Peng Li
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
| |
Collapse
|
5
|
Eagleton AM, Ambrogi EK, Miller SA, Vereshchuk N, Mirica KA. Fiber Integrated Metal-Organic Frameworks as Functional Components in Smart Textiles. Angew Chem Int Ed Engl 2023; 62:e202309078. [PMID: 37614205 PMCID: PMC11196116 DOI: 10.1002/anie.202309078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Owing to high modularity and synthetic tunability, metal-organic frameworks (MOFs) on textiles are poised to contribute to the development of state-of-the-art wearable systems with multifunctional performance. While these composite materials have demonstrated promising functions in sensing, filtration, detoxification, and biomedicine, their applicability in multifunctional systems is only beginning to materialize. This review highlights the multifunctionality and versatility of MOF-integrated textile systems. It summarizes the operational goals of MOF@textile composites, encompassing sensing, filtration, detoxification, drug delivery, UV protection, and photocatalysis. Building upon these recent advances, this review concludes with an outlook on emerging opportunities for the diverse applications of MOF@textile systems in the realm of smart wearables.
Collapse
Affiliation(s)
- Aileen M Eagleton
- Department of Chemistry, Dartmouth College, Burke Laboratory, 41 College Street, Hanover, NH, 03755, USA
| | - Emma K Ambrogi
- Department of Chemistry, Dartmouth College, Burke Laboratory, 41 College Street, Hanover, NH, 03755, USA
| | - Sophia A Miller
- Department of Chemistry, Dartmouth College, Burke Laboratory, 41 College Street, Hanover, NH, 03755, USA
| | - Nataliia Vereshchuk
- Department of Chemistry, Dartmouth College, Burke Laboratory, 41 College Street, Hanover, NH, 03755, USA
| | - Katherine A Mirica
- Department of Chemistry, Dartmouth College, Burke Laboratory, 41 College Street, Hanover, NH, 03755, USA
| |
Collapse
|
6
|
Moosavi NS, Yamini Y. Growth of bimetallic Ni-Co MOFs on a skeleton of electrospun PAN nanofibers and coating on a thin film for SPME of amitriptyline and nortriptyline in urine and plasma samples. J Pharm Biomed Anal 2023; 236:115755. [PMID: 37778203 DOI: 10.1016/j.jpba.2023.115755] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
In this research, composited bimetallic organic framework-polyacrylonitrile (Ni-Co MOFs-PAN) was applied for thin-film solid phase microextraction (TF-SPME) of tricyclic antidepressant (TCA) drugs from biological samples. The separation and quantification of the analytes were accomplished by HPLC-UV. First, seeded nanofibers with organic ligands were electrospun on a sheet of foil. Then, with the uniform in-situ solvothermal growth of Ni-Co MOFs on the skeletal surface of nanofibers, the nanoparticles were successfully attached to the surfaces without effective bonds and produced a thin layer with a high flexibility, large active surface and abundant functional groups for adsorption. The characteristics of the produced nanocomposite were investigated by Fourier-transform infrared spectroscopy, field emission-scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and Brunauer-Emmett-Teller analysis. The stirring rate, pH, ionic strength, adsorption and desorption time along with type and volume of desorption solvents as influential factors on extraction efficiencies of the analytes, were optimized by one variable at a time method. Under optimized conditions, wide linear range for analytes in water and plasma matrices were obtained from 0.2 to 1000.0 μg L-1 and 1.0-1000.0 μg L-1, respectively, with R2 ≥ 0.9925. The limits of detection were in the range of 0.06-0.3 μg L-1 in different media. Good repeatability and reproducibility were attained within intra-day, inter-day and film-to-film RSDs% (n = 3) below 3.3 %, 3.9 % and 4.7 %, respectively. Since desirable relative recoveries were calculated between 91.4 % and 100.4 %. The method can be used for the successful extraction and measurement of amitriptyline and nortriptyline as its metabolite in different sampling time from urine and plasma matrices.
Collapse
Affiliation(s)
- Negar Sabahi Moosavi
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
7
|
Dai Y, Zhang G, Peng Y, Li Y, Chi H, Pang H. Recent progress in 1D MOFs and their applications in energy and environmental fields. Adv Colloid Interface Sci 2023; 321:103022. [PMID: 39491441 DOI: 10.1016/j.cis.2023.103022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
Metal organic frameworks (MOFs) are porous coordination polymers with adjustable nanostructure, high porosity and large surface areas. These features make MOFs, their derivates and composites all delivered remarkable potential in energy and environmental fields, such as rechargeable batteries, supercapacitors, catalysts, water purification and desalination, gas treatment, toxic matter degradation, etc. In particular, one-dimensional (1D) MOFs have generated extensive attention due to their unique 1D nanostructures. To prepare 1D MOF nanostructures, it is necessary to explore and enhance synthesis routes. In this review, the preparation of 1D MOF materials and their recent process applied in energy and environmental fields will be discussed. The relationship between MOFs' 1D morphologies and the properties in their applications will also be analyzed. Finally, we will also summary and make perspectives about the future development of 1D MOFs in fabrication and applications in energy and environmental fields.
Collapse
Affiliation(s)
- Yunyi Dai
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Guangxun Zhang
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yi Peng
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yuan Li
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Heng Chi
- Dean's Office, Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
8
|
Yu S, Guo Z, Zhou Y, Li C. Research progress of MOFs/carbon nanocomposites on promoting ORR in microbial fuel cell cathodes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93422-93434. [PMID: 37561294 DOI: 10.1007/s11356-023-29169-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
With the rapid development of the economy, energy demand is more urgent. Microbial fuel cells (MFCs) have the advantages of non-toxic, safety, and environmental protection, and are considered the ideal choice for the next generation of energy storage equipment. However, the slow kinetics of oxygen reduction reaction (ORR) on MFC air cathodes and the high cost of traditional platinum (Pt) catalysts hinder their practical application, so there is a need to develop efficient, low-cost, and stable electrocatalysts as alternatives. Recently, metal-organic framework (MOFs) has attracted wide attention in electrocatalysis. Electrocatalysts prepared by the nanocomposite of MOFs and carbon nanomaterials have multiple advantages, such as adjustable chemical properties, high specific surface area, and good electrical conductivity, which have been proven to be a promising electrocatalytic material. In this paper, the latest research progress of metal-organic frames (MOFs) and carbon nanocomposites is reviewed, and the preparation methods and modification of MOFs and carbon nanofibers, carbon nanotubes, and graphene composites are introduced, respectively, as well as their applications in MFC cathode. Finally, the main prospects of MOFs/carbon nanocomposite catalysts are put forward.
Collapse
Affiliation(s)
- Shuyan Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
- Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Zhen Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
- Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
- Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China.
| |
Collapse
|
9
|
Molco M, Keilin A, Lunken A, Ziv Sharabani S, Chkhaidze M, Edelstein-Pardo N, Reuveni T, Sitt A. Controlling Nano-to-Microscale Multilevel Architecture in Polymeric Microfibers through Polymerization-Induced Spontaneous Phase Separation. Polymers (Basel) 2023; 15:polym15112537. [PMID: 37299336 DOI: 10.3390/polym15112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Hierarchically structured polymeric fibers, composed of structural nanoscale motifs that assemble into a microscale fiber are frequently found in natural fibers including cellulose and silk. The creation of synthetic fibers with nano-to-microscale hierarchical structures represents a promising avenue for the development of novel fabrics with distinctive physical, chemical, and mechanical characteristics. In this work, we introduce a novel approach for creating polyamine-based core-sheath microfibers with controlled hierarchical architectures. This approach involves a polymerization-induced spontaneous phase separation and subsequent chemical fixation. Through the use of various polyamines, the phase separation process can be manipulated to produce fibers with diverse porous core architectures, ranging from densely packed nanospheres to segmented "bamboo-stem" morphology. Moreover, the nitrogen-rich surface of the core enables both the chemisorption of heavy metals and the physisorption of proteins and enzymes. Our method offers a new set of tools for the production of polymeric fibers with novel hierarchical morphologies, which has a high potential for a wide range of applications such as filtering, separation, and catalysis.
Collapse
Affiliation(s)
- Maya Molco
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Keilin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adira Lunken
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shiran Ziv Sharabani
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mark Chkhaidze
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nicole Edelstein-Pardo
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tomer Reuveni
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amit Sitt
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
10
|
Pu M, Ye D, Wan J, Xu B, Sun W, Li W. Zinc-based metal–organic framework nanofibers membrane ZIF-65/PAN as efficient peroxymonosulfate activator to degrade aqueous ciprofloxacin. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Liu X, Li P, Chen J, Jiang P, Mai YW, Huang X. Hierarchically porous composite fabrics with ultrahigh metal organic framework loading for zero-energy-consumption heat dissipation. Sci Bull (Beijing) 2022; 67:1991-2000. [DOI: 10.1016/j.scib.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
|
12
|
Hu Y, Hu B, Ge Y, Nie P, Yang J, Huang M, Liu J. In-situ synthesis of UiO-66-NH2 on porous carbon nanofibers for high performance defluoridation by capacitive deionization. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Curcumin-loaded HKUST-1@ carboxymethyl starch-based composites with moisture-responsive release properties and synergistic antibacterial effect for perishable fruits. Int J Biol Macromol 2022; 214:181-191. [PMID: 35700848 DOI: 10.1016/j.ijbiomac.2022.06.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/22/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022]
Abstract
The spoilage of fruit is one of the most important causes of fruit waste. High humidity by fresh fruit respiration leads to bacterial reproduction, which is the key factor of products corruption. Herein, a biological multifunctional film (Cur-HKUST-1@CMS/PVA) for fruits preservation with a high moisture environment was developed by cross-linking carboxymethyl starch (CMS)/polyvinyl alcohol (PVA) with MOF-199 (HKUST-1), and loaded with curcumin. The hydrophilic CMS facilitates water adsorption and moisture can stimulate curcumin release from HKUST-1. HKUST-1 not only acts as curcumin carriers but also forms synergistic antibacterial with curcumin to improve the antibacterial activity of the composites. XRD and SEM demonstrated that moisture disrupts the structure of HKUST-1 and releases curcumin and the results showed that the release of curcumin increased from 25.11 % to 58.32 % after moisture stimulation. In addition, Cur-HKUST-1@CMS/PVA had excellent antibacterial activity and antioxidant ability. As validation, the film can keep pitaya and avocado freshness at least 4 days longer than the control, confirming the effectiveness of Cur-HKUST-1@CMS/PVA in preventing fruit decay. Consequently, Cur-HKUST-1@CMS/PVA is a promising active packaging material for improve the shelf life of perishable fruits.
Collapse
|
14
|
Jia J, Wu H, Xu L, Dong F, Jia Y, Liu X. Removal of Acidic Organic Ionic Dyes from Water by Electrospinning a Polyacrylonitrile Composite MIL101(Fe)-NH 2 Nanofiber Membrane. Molecules 2022; 27:molecules27062035. [PMID: 35335397 PMCID: PMC8954605 DOI: 10.3390/molecules27062035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
A nanofiber metal–organic framework filter, a polyacrylonitrile (PAN) nanofiber membrane composite with an iron/2-amino-terephthalic acid-based metal–organic framework (MIL101(Fe)-NH2), was prepared by one-step electrospinning. MIL101(Fe)-NH2 was combined into the polymer nanofibers in situ. PAN-MIL101(Fe)-NH2 composite nanofiber membranes (NFMs) were prepared from a homogeneous spinning stock containing MIL101(Fe)-NH2 prebody fluid and PAN. Crystallization of MIL101(Fe)-NH2 and solidification of the polymer occurred simultaneously during electrospinning. The PAN-MIL101(Fe)-NH2 composite NFM showed that MIL101(Fe)-NH2 was uniformly distributed throughout the nanofiber and was used to adsorb and separate acidic organic ionic dyes from the aqueous solution. The results of Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction analysis showed that MIL101(Fe)-NH2 crystals were effectively bonded in the PAN nanofiber matrix, and the crystallinity of MIL101(Fe)-NH2 crystals remained good, while the distribution was uniform. Owing to the synergistic effect of PAN and the MIL101(Fe)-NH2 crystal, the PAN-MIL101(Fe)-NH2 composite NFM showed a fast adsorption rate for acidic ionic dyes. This study provides a reference for the rapid separation and purification of organic ionic dyes from wastewater.
Collapse
Affiliation(s)
| | | | | | | | | | - Xi Liu
- Correspondence: (Y.J.); or (X.L.)
| |
Collapse
|
15
|
Efficient immobilization of catalase on mesoporous MIL-101 (Cr) and its catalytic activity assay. Enzyme Microb Technol 2022; 156:110005. [DOI: 10.1016/j.enzmictec.2022.110005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/19/2022]
|
16
|
Cheng C, Shen C, Lai OM, Tan CP, Cheong LZ. Biomimetic self-assembly of lipase-zeolitic imidazolate frameworks with enhanced biosensing of protox inhibiting herbicides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4974-4984. [PMID: 34661208 DOI: 10.1039/d1ay01307f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Protox inhibiting herbicides such as nitrofen have detrimental effects on the environment and human health. The current work aims to fabricate a Candida rugosa lipase (CRL)-based electrochemical sensor for rapid and sensitive detection of protox inhibiting herbicides (nitrofen). We proposed the use of poly(vinylpyrrolidone) (PVP) and amino-acids to promote accumulation of Zn2+ ions at the surfaces of Candida rugosa lipase (CRL) and subsequently induce self-assembly of a CRL-zeolitic imidazolate framework (ZIF) structure. This process can be easily and rapidly achieved via a one-pot facile self-assembly method. Steady-state fluorescence spectroscopy indicated that CRL has undergone a conformational change following encapsulation within the ZIF structure. This conformational change is beneficial as the prepared PVP/Glu/CRL@ZIF-8 exhibited enhanced catalytic activity (207% of native CRL), and higher substrate affinity (lower Km than native CRL) and showed high stability under harsh denaturing conditions. PVP/Glu/CRL@ZIF-8 was finally used for electrochemical biosensing of nitrofen. The fabricated biosensor has a wide linear detection range (0-100 μM), a lower limit of detection and a good recovery rate.
Collapse
Affiliation(s)
- Chuanchuan Cheng
- Department of Food Science, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China.
| | - Cai Shen
- Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan Road, Ningbo 315201, China
| | - Oi-Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology & Bimolecular Sciences, Universiti Putra Malaysia UPM, 43400 Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia UPM, 43400 Serdang, Selangor, Malaysia
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Malaysia
| | - Ling-Zhi Cheong
- Department of Food Science, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
17
|
Sharma D, Satapathy BK. Polymer Substrate-Based Transition Metal Modified Electrospun Nanofibrous Materials: Current Trends in Functional Applications and Challenges. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1972006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K. Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|