1
|
Kim M, Park H, Kim E, Chung M, Oh JH. Photo-crosslinkable organic materials for flexible and stretchable electronics. MATERIALS HORIZONS 2025. [PMID: 40202255 DOI: 10.1039/d4mh01757a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
As technology advances to enhance human perceptual experiences of the surrounding environment, significant research on stretchable electronics is actively progressing, spanning from the synthesis of materials to their applications in fully integrated devices. A critical challenge lies in developing materials that can maintain their electrical properties under substantial stretching. Photo-crosslinkable organic materials have emerged as a promising solution due to their ability to be precisely modified with light to achieve desired properties, such as enhanced durability, stable conductivity, and micropatterning. This review examines recent research on photo-crosslinkable organic materials, focusing on their components and integration within stretchable electronic devices. We explore the essential characteristics required for each device component (insulators, semiconductors, and conductors) and explain how photo-crosslinking technology addresses these needs through its principles and implementation. Additionally, we discuss the integration and utilization of these components in real-world applications, including physical sensors, organic field-effect transistors (OFETs), and organic solar cells (OSCs). Finally, we offer a concise perspective on the future directions and potential challenges in ongoing research on photo-crosslinkable organic materials.
Collapse
Affiliation(s)
- Minsung Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Hayeong Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Eunjin Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Minji Chung
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Zhang J, Chen Q, Li M, Zhang G, Zhang Z, Deng X, Xue J, Zhao C, Xiao C, Ma W, Li W. Carboxylating Elastomer via Thiol-Ene Click Reaction to Improve Miscibility with Conjugated Polymers for Mechanically Robust Organic Solar Cells with Efficiency of 19. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312805. [PMID: 38319917 DOI: 10.1002/adma.202312805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Incorporating flexible insulating polymers is a straightforward strategy to enhance the mechanical properties of rigid conjugated polymers, enabling their use in flexible electronic devices. However, maintaining electronic characteristics simultaneously is challenging due to the poor miscibility between insulating polymers and conjugated polymers. This study introduces the carboxylation of insulating polymers as an effective strategy to enhance miscibility with conjugated polymers via surface energy modulation and hydrogen bonding. The carboxylated elastomer, synthesized via a thiol-ene click reaction, closely matches the surface energy of the conjugated polymer. This significantly improves the mechanical properties, achieving a high crack-onset strain of 21.48%, surpassing that (5.93%) of the unmodified elastomer:conjugated polymer blend. Upon incorporating the carboxylated elastomer into PM6:L8-BO-based organic solar cells, an impressive power conversion efficiency of 19.04% is attained, which top-performs among insulating polymer-incorporated devices and outperforms devices with unmodified elastomer or neat PM6:L8-BO. The superior efficiency is attributed to the optimized microstructures and enhanced crystallinity for efficient and balanced charge transport, and suppressed charge recombination. Furthermore, flexible devices with 5% carboxylated elastomer exhibit superior mechanical stability, retaining ≈88.9% of the initial efficiency after 40 000 bending cycles at a 1 mm radius, surpassing ≈83.5% for devices with 5% unmodified elastomer.
Collapse
Affiliation(s)
- Junjie Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Mengdi Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Guangcong Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhou Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiangmeng Deng
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chaowei Zhao
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Ye L, Yang Y, Liu C, Duan X, Wang S, Li W, Sun X, Wang T, Ma W, Li W, Sun Y. Directly Cross-Linked Conjugated Polymer Donor Enables Efficient Polymer Solar Cells with Extraordinary Mechanical Robustness. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303226. [PMID: 37312403 DOI: 10.1002/smll.202303226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/03/2023] [Indexed: 06/15/2023]
Abstract
A cross-linking strategy can result in a three-dimensional network of interconnected chains for the copolymers, thereby improving their mechanical performance. In this work, a series of cross-linked conjugated copolymers, named PC2, PC5, and PC8, constructed with different ratios of monomers are designed and synthesized. For comparison, a random linear copolymer, PR2 is also synthesized based on the similar monomers. When blended with Y6 acceptor, the cross-linked polymers PC2, PC5, and PC8-based polymer solar cells (PSCs) achieve superior power conversion efficiencies (PCEs) of 17.58%, 17.02%, and 16.12%, respectively, which are higher than that (15.84%) of the random copolymer PR2-based devices. Moreover, the PCE of PC2:Y6-based flexible PSC retains ≈88% of the initial efficiency value after 2000 bending cycles, overwhelming the PR2:Y6-based device with the remaining 12.8% of the initial PCE. These results demonstrate that the cross-linking strategy is a feasible and facile approach to developing high-performance polymer donors for the fabrication of flexible PSCs.
Collapse
Affiliation(s)
- Linglong Ye
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yinuo Yang
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Chunhui Liu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xiaopeng Duan
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Shijie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiaobo Sun
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Weiwei Li
- State Key Laboratory of Organic-Inorganic Composites & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanming Sun
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
4
|
Zhao N, Zhang R, Zou X, Su X, Dang F, Wen G, Zhang W, Zheng K, Chen H, Wu K. Photoinduced Polaron Formation in a Polymerized Electron-Acceptor Semiconductor. J Phys Chem Lett 2022; 13:5143-5150. [PMID: 35658092 DOI: 10.1021/acs.jpclett.2c01015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymerized small molecular acceptor (PSMA) based all-polymer solar cells (all-PSC) have achieved power conversion efficiencies (PCE) over 16%, and the PSMA is considered to hold great promise for further improving the performance of all-PSC. Yet, in comparison with that of the polymer donor, the photophysics of a polymerized acceptor remains poorly understood. Herein, the excited state dynamics in a polymerized acceptor PZT810 was comprehensively investigated under various pump intensities and photon energies. The excess excitation energy was found to play a key role in excitons dissociation into free polarons for neat PSMA films, while free polarons cannot be generated from the polaron pairs in neat acceptor films. This work reveals an in-depth understanding of relaxation dynamics for PSMAs and that the underlying photophysical origin of PSMA can be mediated by excitation energies and intensities. These results would benefit the realization of the working mechanism for all-PSC and the designing of new PSMAs.
Collapse
Affiliation(s)
- Ningjiu Zhao
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Rui Zhang
- Department of Physics, Chemsitry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Xianshao Zou
- Division of Chemical Physics, Lund University, Lund, 22100, Sweden
| | - Xiaojun Su
- Department of Basic Courses, Guangzhou Maritime University, Guangzhou, 510725, China
| | - Fan Dang
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Guanzhao Wen
- School of Physics and Materials Science, Guangzhou University, Guangzhou, 510006, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou, 510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou, 510006, China
- Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China
| | - Kaibo Zheng
- Division of Chemical Physics, Lund University, Lund, 22100, Sweden
| | - Hailong Chen
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Kehui Wu
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| |
Collapse
|
5
|
Dong H, Shi G, Wang X, Chen X. Synthesis and characterization of conjugated donor-acceptor copolymers of benzodipyrrolidone and naphthodithiophene. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hao Dong
- Key Laboratory of Rubber-Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Ganhui Shi
- Key Laboratory of Rubber-Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianjian Wang
- Key Laboratory of Rubber-Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xuegang Chen
- Key Laboratory of Rubber-Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|