1
|
Formalik F, Mazur B, Joodaki F, Kuchta B, Snurr RQ. Small Rotations, Big Effects: Lessons from Water Adsorption in NU-1000. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:3752-3761. [PMID: 40008205 PMCID: PMC11848914 DOI: 10.1021/acs.jpcc.4c06889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
In this study, the adsorption mechanism of water in the metal-organic framework NU-1000 was investigated using molecular simulations. The simulations predict a significant impact of small changes in terminal aquo ligand orientation on the shape and pressure of the condensation step in the water adsorption isotherm. The analysis revealed that the rotational mobility of aquo ligands, often neglected in computational studies, can shift the condensation step by up to 20% in the relative humidity scale. By examining adsorption modes and interaction sites, it was demonstrated that configurational changes in the Zr6O8 node affect water adsorption significantly and can change the nature of the interactions from hydrophobic to hydrophilic. We propose a robust approach to account for these changes in simulations, achieving good agreement with experimental results. This work underscores the necessity of considering local, molecular flexibility in water adsorption simulations to avoid mischaracterization of MOFs' water adsorption properties.
Collapse
Affiliation(s)
- Filip Formalik
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Micro, Nano and Biomedical Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Bartosz Mazur
- Department
of Micro, Nano and Biomedical Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Faramarz Joodaki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Bogdan Kuchta
- Department
of Micro, Nano and Biomedical Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Randall Q. Snurr
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Gao G, Li M, Qi X, Cao Y, Zhang W, Ma Y, Tang B. A Highly Selective Ammonia Ratiometric Fluorescence Sensor Based on Multifunctional Metal-Organic Framework Platform with Rich Brønsted Acidic Metal Clusters. Anal Chem 2024; 96:19706-19713. [PMID: 39585964 DOI: 10.1021/acs.analchem.4c04858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Ammonia is a critical chemical in industry and our daily life, but its corrosiveness and toxicity also require enough attention. With the increasing pursuit of beauty, the safety of cosmetics has aroused widespread concern. Aqueous ammonia has been widely used as a universal additive in cosmetics, especially in different types of hair dye products. However, a high concentration of ammonia is toxic to human beings. In addition, improper treatment and discharge of substances with high ammonia content can also cause pollution of human domestic water. Therefore, it is of great significance to accurately monitor the level of aqueous ammonia in relative cosmetics for safe beauty and in our domestic water for daily health. In this work, a highly selective and sensitive ratiometric fluorescent sensor UiO-66-NH2@O170 was carefully designed to quickly and accurately detect the concentration of aqueous ammonia in different brands of hair dyes and human domestic water. The detection limit was as low as 83.5 nM, and the recovery rate ranged from 98.2 to 102.9%. In addition, while evaluating the actual application performance of the sensor, a novel detection mechanism based on the rich Brønsted acidic response sites on the metal clusters of the fluorescent MOF materials was demonstrated here.
Collapse
Affiliation(s)
- Guorui Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Mengnan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xin Qi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yanyu Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wanting Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266200, P. R. China
| |
Collapse
|
3
|
Huang Y, Ren Z, Fan Z, Zhang H, Wu Y, Wang Y, Hu Z, Quan X, Wang Z, Niu Z. Isolation of Polyethylene Glycol with Larger Molecular Weights via Metal-Organic Frameworks. Macromol Rapid Commun 2024; 45:e2400535. [PMID: 39078658 DOI: 10.1002/marc.202400535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Indexed: 07/31/2024]
Abstract
Polymer products typically present as mixtures with a range of molecular weights, which notably influence the expression of their properties. In this study, a technique is proposed to separate polyethylene glycol (PEG) mixtures of varying molecular weights using metal-organic frameworks (MOFs), thereby narrowing down their molecular weight distribution. Due to the hydrogen bond interactions between PEG and -OH groups in the pores of NU-1000, NU-1000 can selectively adsorb PEG with larger molecular weights from PEG mixture. This separation method consistently yields with narrower molecular weight distribution across multiple cycles. This is the first application of MOFs in regulating the dispersity (Ð) of polymers in solution, providing a novel approach for separating and purifying mixed molecular weight polymers.
Collapse
Affiliation(s)
- Yali Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Ziye Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Ziwen Fan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Hanwen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Yueyue Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Zhuoyi Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Xueheng Quan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Zhao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| |
Collapse
|
4
|
Lu W, De Alwis Jayasinghe D, Schröder M, Yang S. Ammonia Storage in Metal-Organic Framework Materials: Recent Developments in Design and Characterization. ACCOUNTS OF MATERIALS RESEARCH 2024; 5:1279-1290. [PMID: 39478984 PMCID: PMC11519835 DOI: 10.1021/accountsmr.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024]
Abstract
Since the advent of the Haber-Bosch process in 1910, the global demand for ammonia (NH3) has surged, driven by its applications in agriculture, pharmaceuticals, and energy. Current methods of NH3 storage, including high-pressure storage and transportation, present significant challenges due to their corrosive and toxic nature. Consequently, research has turned towards metal-organic framework (MOF) materials as potential candidates for NH3 storage due to their potential high adsorption capacities and structural tunability. MOFs are coordination networks composed of metal nodes and organic linkers, offering unprecedented porosity and surface area, and allowing incorporation of various functional groups and metal sites that can enhance NH3 adsorption. However, the stability of MOFs in the presence of NH3 is a significant concern since many degrade upon exposure to NH3, primarily due to ligand displacement and framework collapse. To address this, recent studies have focused on the synthesis and postsynthetic modification of MOFs to enhance both NH3 uptake and stability. In this Account, we summarize recent developments in the design and characterization of MOFs for NH3 storage. The choice of metal centers in MOFs is crucial for stability and performance. High-valence metals such as AlIII and TiIV form strong metal-linker bonds, enhancing the stability of the framework to NH3. The MFM-300 series of materials composed of high-valence 3+ and 4+ metal ions and carboxylic linkers demonstrates high stability and high NH3 uptake capacities. Ligand functionalization is another effective strategy for improving the NH3 adsorption. Polar functional groups such as -NH2, -OH, and -COOH enhance the interaction between the framework and NH3, particularly at low partial pressures, while postsynthetic modification allows fine-tuning of these functionalities to optimize the framework for higher adsorption capacities and stability. For example, MFM-303(Al), incorporating free carboxylic acid groups, exhibits a high NH3 packing density comparable to that of solid NH3. Creating defect sites by removing linkers or adding metal ions increases the number of active sites available for NH3 adsorption and shows promise for enhancing uptake. UiO-66, a stable MOF framework, can be modified to include defect sites, significantly enhancing the level of NH3 uptake. The full characterization of MOFs and especially their interactions with NH3 are vital for understanding and improving their performance. Techniques such as neutron powder diffraction (NPD), inelastic neutron scattering (INS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), electron paramagnetic resonance (EPR) spectroscopy, and solid-state nuclear magnetic resonance (ssNMR) spectroscopy can elucidate host-guest interactions and binding dynamics between NH3 and the framework structure and afford crucial information for the future design and rational development of new sorbents. This Account highlights our current strategies for the synthesis and characterization of MOFs for NH3 capture, providing an overview of this rapidly evolving field.
Collapse
Affiliation(s)
- Wanpeng Lu
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | | | - Martin Schröder
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Sihai Yang
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
- College
of Chemistry and Molecular Engineering, Beijing National Laboratory
for Molecular Sciences, Peking University, Beijing, China, 100871
| |
Collapse
|
5
|
Lu W, Chen Y, Wang Z, Guo L, Chen J, Ma Y, Li W, Li J, He M, Fan M, Sheveleva AM, Tuna F, McInnes EJL, Frogley MD, Chater PA, Dejoie C, Schröder M, Yang S. High ammonia adsorption in copper-carboxylate materials: host-guest interactions and crystalline-amorphous-crystalline phase transitions. Chem Commun (Camb) 2024; 60:12385-12388. [PMID: 39370930 PMCID: PMC11457036 DOI: 10.1039/d4cc02604g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024]
Abstract
We report the high NH3 uptake in a series of copper-carboxylate materials, namely MFM-100, MFM-101, MFM-102, MFM-126, MFM-127, MFM-190(F), MFM-170, and Cu-MOP-1a. At 273 K and 1 bar, MFM-101 shows an exceptional uptake of 21.9 mmol g-1. The presence of Cu(II)⋯NH3 interactions and changes in coordination at the [Cu2(O2CR)4] paddlewheel are analysed and discussed.
Collapse
Affiliation(s)
- Wanpeng Lu
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Yinlin Chen
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Zi Wang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Lixia Guo
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
| | - Jin Chen
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Yujie Ma
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Weiyao Li
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Jiangnan Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
| | - Meng He
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Mengtian Fan
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Alena M Sheveleva
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
- Photon Science Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Floriana Tuna
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
- Photon Science Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Eric J L McInnes
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
- Photon Science Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Mark D Frogley
- Diamond Light Source, Harwell Science Campus, Oxfordshire, OX11 0DE, UK
| | - Philip A Chater
- Diamond Light Source, Harwell Science Campus, Oxfordshire, OX11 0DE, UK
| | - Catherine Dejoie
- European Synchrotron Radiation Facility, Grenoble, 38043, France
| | - Martin Schröder
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Ono K, Ishikawa T, Masano S, Kawai H, Goto K. Reversible Adsorption of Ammonia in the Crystalline Solid of a CO 2H-Functionalized Cyclic Oligophenylene. J Am Chem Soc 2024; 146:21417-21427. [PMID: 38994862 DOI: 10.1021/jacs.4c03798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Ammonia (NH3) is a viable candidate for the storage and distribution of hydrogen (H2) due to its exceptional volumetric and gravimetric hydrogen energy density. Therefore, it is desirable to develop NH3 storage materials that exhibit robust stability across numerous adsorption-desorption cycles. While porous materials with polymeric frameworks are often used for NH3 capture, achieving reversible NH3 uptake remains a formidable challenge, primarily due to the high reactivity of NH3. Here, we advocate the use of CO2H-functionalized cyclic oligophenylene 1a with high chemical stability as a novel single-molecule-based adsorbent for NH3. Simple reprecipitation of 1a selectively yielded microporous crystalline solid 1a (N). Crystalline 1a (N) adsorbs up to 8.27 mmol/g of NH3 at 100 kPa and 293 K. Adsorbed NH3 in the pore of 1a (N) has a packing density of 0.533 g/cm3 at 293 K, which is close to the density of liquid NH3 (0.681 g/cm3 at 240 K). Crystalline 1a (N) also exhibits reversible NH3 adsorption over at least nine cycles, sustaining its storage capacity (1st cycle: 8.27 mmol/g; 9th cycle: 8.25 mmol/g at 100 kPa and 293 K) and crystallinity. During each desorption cycle, NH3 was removed from 1a (N) under reduced pressure (∼65 Pa), leaving <3% of the total uptake, and 1a (N) was fully purged under dynamic vacuum conditions (∼5 × 10-4 Pa at 293 K for 1 h) before the subsequent adsorption cycles. Thus, microporous crystalline 1a (N) can reliably adsorb and desorb NH3 repeatedly, which avoids the need for heat-based activation between cycles.
Collapse
Affiliation(s)
- Kosuke Ono
- School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tomoki Ishikawa
- School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shion Masano
- School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Hidetoshi Kawai
- Department of Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kei Goto
- School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
7
|
Oh H, Lee G, Oh M. A Drop-and-Drain Method for Convenient and Efficient Fabrication of MOF/Fiber Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306543. [PMID: 38196152 DOI: 10.1002/smll.202306543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Indexed: 01/11/2024]
Abstract
The fabrication of flexible composites by integrating metal-organic frameworks (MOFs) with flexible substrates is a critical strategy for developing advanced materials with excellent feasibility and processability. These flexible MOF-based composites play a particularly important role in the separation and purification processes. However, several drawbacks remain challenge to overcome such as long processing time, high-cost, complicated processes, or harsh reaction conditions. In this paper, a convenient and efficient method is reported for fabricating MOF/fiber composites using a simple drop-and-drain (D&D) process. By exploiting the electrostatic interactions between the positively charged MOF particles and negatively charged fiber-based flexible substrates, a uniform coating of MOF on flexible fibers are achieved. This is accomplished by allowing the MOF ink to drop and drain through a substrate using a custom-made Teflon cell. Additionally, the D&D method enables the production of multiple layers of composites in a single-step process. UiO-66 and ZIF-8 submicroparticles and various substrates such as cotton-pad, cotton-fabric, nylon-fabric, PET-fabric, and filter-paper are employed to create flexible MOF/fiber composites. These composites demonstrate outstanding capacities for capturing negatively charged organic dyes, including methyl orange and indigo carmine. Furthermore, the MOF/fiber composites can be reused for dye capture after a simple washing process.
Collapse
Affiliation(s)
- Hyunjeong Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gihyun Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
8
|
Abazari R, Sanati S, Bajaber MA, Javed MS, Junk PC, Nanjundan AK, Qian J, Dubal DP. Design and Advanced Manufacturing of NU-1000 Metal-Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306353. [PMID: 37997226 DOI: 10.1002/smll.202306353] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Metal-organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - Ashok Kumar Nanjundan
- Schole of Engineering, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry & Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
9
|
Obeso JL, López-Cervantes VB, Flores CV, Martínez A, Amador-Sánchez YA, Portillo-Velez NS, Lara-García HA, Leyva C, Solis-Ibarra D, Peralta RA. CYCU-3: an Al(III)-based MOF for SO 2 capture and detection. Dalton Trans 2024; 53:4790-4796. [PMID: 38372055 DOI: 10.1039/d3dt04073a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The Al(III)-based MOF CYCU-3 exhibits a relevant SO2 adsorption performance with a total uptake of 11.03 mmol g-1 at 1 bar and 298 K. CYCU-3 displays high chemical stability towards dry and wet SO2 exposure. DRIFTS experiments and computational calculations demonstrated that hydrogen bonding between SO2 molecules and bridging Al(III)-OH groups are the preferential adsorption sites. In addition, photoluminescence experiments demonstrated the relevance of CYCU-3 for application in SO2 detection with good selectivity for SO2 over CO2 and H2O. The change in fluorescence performance demonstrates a clear turn-on effect after SO2 interaction. Finally, the suppression of ligand-metal energy transfer along with the enhancement of ligand-centered π* → π electronic transition was proposed as a plausible fluorescence mechanism.
Collapse
Affiliation(s)
- Juan L Obeso
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Valeria B López-Cervantes
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico
| | - Catalina V Flores
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Ana Martínez
- Departamento de Materiales de baja Dimensionalidad. Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Interior SN, Ciudad Universitaria, CP 04510, Coyoacán, CDMX, Mexico
| | - Yoarhy A Amador-Sánchez
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - N S Portillo-Velez
- Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, Mexico.
| | - Hugo A Lara-García
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Mexico City 0100, Mexico
| | - Carolina Leyva
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico
| | - Diego Solis-Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Ricardo A Peralta
- Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, Mexico.
| |
Collapse
|
10
|
Liu J, Prelesnik JL, Patel R, Kramar BV, Wang R, Malliakas CD, Chen LX, Siepmann JI, Hupp JT. A Nanocavitation Approach to Understanding Water Capture, Water Release, and Framework Physical Stability in Hierarchically Porous MOFs. J Am Chem Soc 2023; 145:27975-27983. [PMID: 38085867 DOI: 10.1021/jacs.3c07624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Chemically stable metal-organic frameworks (MOFs) featuring interconnected hierarchical pores have proven to be promising for a remarkable variety of applications. Nevertheless, the framework's susceptibility to capillary-force-induced pore collapse, especially during water evacuation, has often limited practical applications. Methodologies capable of predicting the relative magnitudes of these forces as functions of the pore size, chemical composition of the pore walls, and fluid loading would be valuable for resolution of the pore collapse problem. Here, we report that a molecular simulation approach centered on evacuation-induced nanocavitation within fluids occupying MOF pores can yield the desired physical-force information. The computations can spatially pinpoint evacuation elements responsible for collapse and the chemical basis for mitigation of the collapse of modified pores. Experimental isotherms and difference-electron density measurements of the MOF NU-1000 and four chemical variants validate the computational approach and corroborate predictions regarding relative stability, anomalous sequence of pore-filling, and chemical basis for mitigation of destructive forces.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry and Materials Science, and Department of Chemical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Jesse L Prelesnik
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Roshan Patel
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 412 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Boris V Kramar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rui Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christos D Malliakas
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - J Ilja Siepmann
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 412 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Guo L, Hurd J, He M, Lu W, Li J, Crawshaw D, Fan M, Sapchenko S, Chen Y, Zeng X, Kippax-Jones M, Huang W, Zhu Z, Manuel P, Frogley MD, Lee D, Schröder M, Yang S. Efficient capture and storage of ammonia in robust aluminium-based metal-organic frameworks. Commun Chem 2023; 6:55. [PMID: 36964287 PMCID: PMC10039057 DOI: 10.1038/s42004-023-00850-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/06/2023] [Indexed: 03/26/2023] Open
Abstract
The development of stable sorbent materials to deliver reversible adsorption of ammonia (NH3) is a challenging task. Here, we report the efficient capture and storage of NH3 in a series of robust microporous aluminium-based metal-organic framework materials, namely MIL-160, CAU-10-H, Al-fum, and MIL-53(Al). In particular, MIL-160 shows high uptakes of NH3 of 4.8 and 12.8 mmol g-1 at both low and high pressure (0.001 and 1.0 bar, respectively) at 298 K. The combination of in situ neutron powder diffraction, synchrotron infrared micro-spectroscopy and solid-state nuclear magnetic resonance spectroscopy reveals the preferred adsorption domains of NH3 molecules in MIL-160, with H/D site-exchange between the host and guest and an unusual distortion of the local structure of [AlO6] moieties being observed. Dynamic breakthrough experiments confirm the excellent ability of MIL-160 to capture of NH3 with a dynamic uptake of 4.2 mmol g-1 at 1000 ppm. The combination of high porosity, pore aperture size and multiple binding sites promotes the significant binding affinity and capacity for NH3, which makes it a promising candidate for practical applications.
Collapse
Affiliation(s)
- Lixia Guo
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Joseph Hurd
- Department of Chemical Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Meng He
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Wanpeng Lu
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Jiangnan Li
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Danielle Crawshaw
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Mengtian Fan
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Sergei Sapchenko
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Yinlin Chen
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Xiangdi Zeng
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Meredydd Kippax-Jones
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, UK
| | - Wenyuan Huang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Zhaodong Zhu
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Pascal Manuel
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, UK
| | - Mark D Frogley
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, UK
| | - Daniel Lee
- Department of Chemical Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Martin Schröder
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
12
|
Carné-Sánchez A, Martínez-Esaín J, Rookard T, Flood CJ, Faraudo J, Stylianou KC, Maspoch D. Ammonia Capture in Rhodium(II)-Based Metal-Organic Polyhedra via Synergistic Coordinative and H-Bonding Interactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6747-6754. [PMID: 36695491 PMCID: PMC9923682 DOI: 10.1021/acsami.2c19206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Ammonia (NH3) is among the world's most widely produced bulk chemicals, given its extensive use in diverse sectors such as agriculture; however, it poses environmental and health risks at low concentrations. Therefore, there is a need for developing new technologies and materials to capture and store ammonia safely. Herein, we report for the first time the use of metal-organic polyhedra (MOPs) as ammonia adsorbents. We evaluated three different rhodium-based MOPs: [Rh2(bdc)2]12 (where bdc is 1,3-benzene dicarboxylate); one functionalized with hydroxyl groups at its outer surface [Rh2(OH-bdc)2]12 (where OH-bdc is 5-hydroxy-1,3-benzene dicarboxylate); and one decorated with aliphatic alkoxide chains at its outer surface [Rh2(C12O-bdc)2]12 (where C12O-bdc is 5-dodecoxybenzene-1,3-benzene dicarboxylate). Ammonia-adsorption experiments revealed that all three Rh-MOPs strongly interact with ammonia, with uptake capacities exceeding 10 mmol/gMOP. Furthermore, computational and experimental data showed that the mechanism of the interaction between Rh-MOPs and ammonia proceeds through a first step of coordination of NH3 to the axial site of the Rh(II) paddlewheel cluster, which triggers the adsorption of additional NH3 molecules through H-bonding interaction. This unique mechanism creates H-bonded clusters of NH3 on each Rh(II) axial site, which accounts for the high NH3 uptake capacity of Rh-MOPs. Rh-MOPs can be regenerated through their immersion in acidic water, and upon activation, their ammonia uptake can be recovered for at least three cycles. Our findings demonstrate that MOPs can be used as porous hosts to capture corrosive molecules like ammonia, and that their surface functionalization can enhance the ammonia uptake performance.
Collapse
Affiliation(s)
- Arnau Carné-Sánchez
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona
Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jordi Martínez-Esaín
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona
Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Tanner Rookard
- Materials
Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Christopher J. Flood
- Materials
Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Jordi Faraudo
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain
| | - Kyriakos C. Stylianou
- Materials
Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Daniel Maspoch
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona
Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
13
|
MOFs with bridging or terminal hydroxo ligands: Applications in adsorption, catalysis, and functionalization. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Xiao J, Shi S, Yao L, Feng J, Zuo J, He Q. Fast and Ultrasensitive Electrochemical Detection for Antiviral Drug Tenofovir Disoproxil Fumarate in Biological Matrices. BIOSENSORS 2022; 12:1123. [PMID: 36551090 PMCID: PMC9775179 DOI: 10.3390/bios12121123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Tenofovir disoproxil fumarate (TDF) is an antiretroviral medication with significant curative effects, so its quantitative detection is important for human health. At present, there are few studies on the detection of TDF by electrochemical sensors. This work can be a supplement to the electrochemical detection of TDF. Moreover, bare electrodes are susceptible to pollution, and have high overvoltage and low sensitivity, so it is crucial to find a suitable electrode material. In this work, zirconium oxide (ZrO2) that has a certain selectivity to phosphoric acid groups was synthesized by a hydrothermal method with zirconyl chloride octahydrate as the precursor. A composite modified glassy carbon electrode for zirconium oxide-chitosan-multiwalled carbon nanotubes (ZrO2-CS-MWCNTs/GCE) was used for the first time to detect the TDF, and achieved rapid, sensitive detection of TDF with a detection limit of sub-micron content. The ZrO2-CS-MWCNTs composite was created using sonication of a mixture of ZrO2 and CS-MWCNTs solution. The composite was characterized using scanning electron microscopy (SEM) and cyclic voltammetry (CV). Electrochemical analysis was performed using differential pulse voltammetry (DPV). Compared with single-material electrodes, the ZrO2-CS-MWCNTs/GCE significantly improves the electrochemical sensing of TDF due to the synergistic effect of the composite. Under optimal conditions, the proposed method has achieved good results in linear range (0.3~30 μM; 30~100 μM) and detection limit (0.0625 μM). Moreover, the sensor has the merits of simple preparation, good reproducibility and good repeatability. The ZrO2-CS-MWCNTs/GCE has been applied to the determination of TDF in serum and urine, and it may be helpful for potential applications of other substances with similar structures.
Collapse
Affiliation(s)
- Jingyun Xiao
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
- Hunan Qianjin Xiangjiang Pharmaceutical Joint Stock Co., Ltd., Zhuzhou 412001, China
- Geriatric Rehabilitation Department, Zhuzhou People’s Hospital, Zhuzhou 421007, China
| | - Shuting Shi
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Liangyuan Yao
- Hunan Qianjin Xiangjiang Pharmaceutical Joint Stock Co., Ltd., Zhuzhou 412001, China
| | - Jinxia Feng
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Jinsong Zuo
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Quanguo He
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
- Hunan Qianjin Xiangjiang Pharmaceutical Joint Stock Co., Ltd., Zhuzhou 412001, China
- Geriatric Rehabilitation Department, Zhuzhou People’s Hospital, Zhuzhou 421007, China
| |
Collapse
|
15
|
Hicks KE, Wolek ATY, Farha OK, Notestein JM. The Dependence of Olefin Hydrogenation and Isomerization Rates on Zirconium Metal–Organic Framework Structure. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenton E. Hicks
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| | - Andrew T. Y. Wolek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Justin M. Notestein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois60208, United States
| |
Collapse
|
16
|
Shi Y, Wang Z, Li Z, Wang H, Xiong D, Qiu J, Tian X, Feng G, Wang J. Anchoring LiCl in the Nanopores of Metal–Organic Frameworks for Ultra‐High Uptake and Selective Separation of Ammonia. Angew Chem Int Ed Engl 2022; 61:e202212032. [DOI: 10.1002/anie.202212032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yunlei Shi
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Zhenxiang Wang
- State Key Laboratory of Coal Combustion School of Energy and Power Engineering Huazhong University of Science and Technology (HUST) Wuhan Hubei 430074 P. R. China
| | - Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Dazhen Xiong
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Jikuan Qiu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiaoxin Tian
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Guang Feng
- State Key Laboratory of Coal Combustion School of Energy and Power Engineering Huazhong University of Science and Technology (HUST) Wuhan Hubei 430074 P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
17
|
Li J, Xiao Y, shui F, Yi M, Zhang Z, Liu X, Zhang L, You Z, Yang R, Yang S, Li B, Bu X. Extremely Stable Sulfuric Acid Covalent Organic Framework for Highly Effective Ammonia Capture. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinli Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 P. R. China
| | - Yun Xiao
- General English Department, College of Foreign Languages, Nankai University Tianjin 300071 China
| | - Feng shui
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 P. R. China
| | - Mao Yi
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 P. R. China
| | - Zhiyuan Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 P. R. China
| | - Xiongli Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 P. R. China
| | - Laiyu Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 P. R. China
| | - Zifeng You
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 P. R. China
| | - Rufeng Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 P. R. China
| | - Shiqi Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 P. R. China
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 P. R. China
| | - Xian‐He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 P. R. China
| |
Collapse
|
18
|
Wang Q, Pengmei Z, Pandharkar R, Gagliardi L, Hupp JT, Notestein JM. Investigating the Effect of Metal Nuclearity on Activity for Ethylene Hydrogenation by Metal-Organic-Framework-Supported oxy-Ni(II) Catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Kittikhunnatham P, Leith GA, Mathur A, Naglic JK, Martin CR, Park KC, McCullough K, Jayaweera HDAC, Corkill RE, Lauterbach J, Karakalos SG, Smith MD, Garashchuk S, Chen DA, Shustova NB. A Metal‐Organic Framework (MOF)‐Based Multifunctional Cargo Vehicle for Reactive‐Gas Delivery and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Gabrielle A. Leith
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Abhijai Mathur
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Jennifer K. Naglic
- Department of Chemical Engineering University of South Carolina Columbia SC 29208 USA
| | - Corey R. Martin
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Katherine McCullough
- Department of Chemical Engineering University of South Carolina Columbia SC 29208 USA
| | | | - Ryan E. Corkill
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Jochen Lauterbach
- Department of Chemical Engineering University of South Carolina Columbia SC 29208 USA
| | - Stavros G. Karakalos
- Department of Chemical Engineering University of South Carolina Columbia SC 29208 USA
| | - Mark D. Smith
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Donna A. Chen
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Natalia B. Shustova
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| |
Collapse
|
20
|
Kirlikovali KO, Chen Z, Wang X, Mian MR, Alayoglu S, Islamoglu T, Farha OK. Investigating the Influence of Hexanuclear Clusters in Isostructural Metal-Organic Frameworks on Toxic Gas Adsorption. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3048-3056. [PMID: 34995051 DOI: 10.1021/acsami.1c20518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The efficient capture of toxic gases, such as ammonia (NH3) and sulfur dioxide (SO2), can protect the general population and mitigate widespread air pollution. Metal-organic frameworks (MOFs) comprise a tunable class of adsorbents with high surface areas that can meet this challenge by selectively capturing these gases at low concentrations. In this work, we explored how modifying the metal ions in the node of an isostructural MOF series from a transition metal to a lanthanide or actinide influences the electronic environment of the node-based active site. Next, we investigated the adsorption properties of each MOF toward the relatively basic NH3 and relatively acidic SO2 gases. Within the NU-907 family of MOFs, we found that Zr6-NU-907 exhibits the best uptake toward NH3 at low pressures, while Th6-NU-907 demonstrates the best low-pressure performance for SO2 adsorption. Tracking the infrared (IR) stretching frequency of the node-based μ3-OH groups provides insights into the electronegativity of the metal ion and suggests that the most electronegative metal ion (Zr) affords the node with the best NH3 uptake at low pressures. In contrast, the Th6 node contains additional coordinated water groups relative to the other M6 nodes, which appears to yield the MOF with the greatest affinity for SO2 uptake that occurs predominately through reversible physisorption interactions. Finally, in situ NH3 IR spectroscopic studies indicate that both NH4+ and Lewis-bound NH3 species form during adsorption. Combined, these results suggest that tuning the electronic properties and structure of the node-based active site in an MOF presents a viable strategy to change the affinity of an MOF toward toxic gases.
Collapse
Affiliation(s)
- Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhijie Chen
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Selim Alayoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
Wang J, Zhang Y, Su Y, Liu X, Zhang P, Lin RB, Chen S, Deng Q, Zeng Z, Deng S, Chen B. Fine pore engineering in a series of isoreticular metal-organic frameworks for efficient C 2H 2/CO 2 separation. Nat Commun 2022; 13:200. [PMID: 35017555 PMCID: PMC8752597 DOI: 10.1038/s41467-021-27929-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/21/2021] [Indexed: 01/09/2023] Open
Abstract
The separation of C2H2/CO2 is not only industrially important for acetylene purification but also scientifically challenging owing to their high similarities in physical properties and molecular sizes. Ultramicroporous metal-organic frameworks (MOFs) can exhibit a pore confinement effect to differentiate gas molecules of similar size. Herein, we report the fine-tuning of pore sizes in sub-nanometer scale on a series of isoreticular MOFs that can realize highly efficient C2H2/CO2 separation. The subtle structural differences lead to remarkable adsorption performances enhancement. Among four MOF analogs, by integrating appropriate pore size and specific binding sites, [Cu(dps)2(SiF6)] (SIFSIX-dps-Cu, SIFSIX = SiF62-, dps = 4.4'-dipyridylsulfide, also termed as NCU-100) exhibits the highest C2H2 uptake capacity and C2H2/CO2 selectivity. At room temperature, the pore space of SIFSIX-dps-Cu significantly inhibits CO2 molecules but takes up a large amount of C2H2 (4.57 mmol g-1), resulting in a high IAST selectivity of 1787 for C2H2/CO2 separation. The multiple host-guest interactions for C2H2 in both inter- and intralayer cavities are further revealed by dispersion-corrected density functional theory and grand canonical Monte Carlo simulations. Dynamic breakthrough experiments show a clean C2H2/CO2 separation with a high C2H2 working capacity of 2.48 mmol g-1.
Collapse
Affiliation(s)
- Jun Wang
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Yan Zhang
- Jiangxi University of Chinese Medicine, Nanchang, 330031, Jiangxi, PR China
| | - Yun Su
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Xing Liu
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Peixin Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China.
| | - Shixia Chen
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Qiang Deng
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Zheling Zeng
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, PR China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E. Tyler Mall, Tempe, AZ, 85287, USA.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0698, USA.
| |
Collapse
|
22
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
23
|
Kittikhunnatham P, Leith GA, Mathur A, Naglic JK, Martin CR, Park KC, McCullough K, Jayaweera HDAC, Corkill RE, Lauterbach J, Karakalos SG, Smith MD, Garashchuk S, Chen DA, Shustova NB. A MOF Multifunctional Cargo Vehicle for Reactive Gas Delivery and Catalysis. Angew Chem Int Ed Engl 2021; 61:e202113909. [PMID: 34845811 DOI: 10.1002/anie.202113909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 11/06/2022]
Abstract
Efficient delivery of reactive and toxic gaseous reagents to organic reactions was studied using metal-organic frameworks (MOFs). Simultaneous cargo vehicle and catalytic capabilities of several MOFs were probed for the first time using the examples of aromatization, aminocarbonylation, and carbonylative Suzuki-Miyaura coupling reactions. These reactions highlight that MOFs can serve a dual role as a gas cargo vehicle and a catalyst, leading to product formation with yields similar to reactions employing pure gases. Furthermore, the MOFs can be recycled without sacrificing product yield, while simultaneously maintaining crystallinity. The reported findings were supported crystallographically and spectroscopically (e.g., diffuse reflectance infrared Fourier transform spectroscopy), foreshadowing a pathway for the development of multifunctional MOF-based reagent-catalyst cargo vessels for reactive reagents, as an attractive alternative to the use of toxic pure gases or gas generators.
Collapse
Affiliation(s)
- Preecha Kittikhunnatham
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Gabrielle A Leith
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29201, Columbia, UNITED STATES
| | - Abhijai Mathur
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Jennifer K Naglic
- University of South Carolina College of Engineering and Computing, Chemical Engineering, 301 Main Street, 29208, Columbia, UNITED STATES
| | - Corey R Martin
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Kyoung Chul Park
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Katherine McCullough
- University of South Carolina College of Engineering and Computing, Chemical Engineering, 301 Main Street, 29208, Columbia, UNITED STATES
| | - H D A Chathumal Jayaweera
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Ryan E Corkill
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Jochen Lauterbach
- University of South Carolina College of Engineering and Computing, Chemical Engineering, 301 Main Street, 29208, Columbia, UNITED STATES
| | - Stavros G Karakalos
- University of South Carolina College of Engineering and Computing, Chemical Engineering, 301 Main Street, 29208, Coulmbia, UNITED STATES
| | - Mark D Smith
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Sophya Garashchuk
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Donna A Chen
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Natalia B Shustova
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter street GSRC-533, SC, Columbia, UNITED STATES
| |
Collapse
|
24
|
Wang X, Li L, Li K, Su R, Zhao Y, Gao S, Guo W, Luan Z, Liang G, Xi H, Zou R. Hierarchically porous metal hydroxide/metal-organic framework composite nanoarchitectures as broad-spectrum adsorbents for toxic chemical filtration. J Colloid Interface Sci 2021; 606:272-285. [PMID: 34390994 DOI: 10.1016/j.jcis.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 11/24/2022]
Abstract
We demonstrate that the hierarchically porous metal hydroxide/metal-organic framework composite nanoarchitectures exhibit broad-spectrum removal activity for three chemically distinct toxic gases, viz. acid gases, base gases, and nitrogen oxides. A facile and general in-situ hydrolysis strategy combined with gentle ambient pressure drying (APD) was utilized to integrate both Zr(OH)4 and Ti(OH)4 with the amino-functionalized MOF-808 xerogel (G808-NH2). The M(OH)4/G808-NH2 xerogel composites manifested 3D crystalline porous networks and substantially hierarchical porosity, with controllable amounts of amorphous M(OH)4 nanoparticles residing at the edge of xerogel particles. Microbreakthrough tests were performed under both dry and moist conditions to evaluate the filtration capabilities of the composites against three representative compounds: SO2, NH3, and NO2. Compared with the pristine G808-NH2 xerogel, the incorporation of M(OH)4 effectively enhanced the broad-spectrum toxic chemical mitigation ability of the material, with the highest SO2, NH3, and NO2 breakthrough uptake reaching 74.5, 55.3, and 394.0 mg/g, respectively. Post-breakthrough characterization confirmed the abundant M-OH groups with diverse binding configurations, alongside the unsaturated M (IV) centers on the surface of M(OH)4 provided extra adsorption sites for irreversible toxic chemical capture besides Van der Waals driven physisorption. The ability to achieve high-capacity adsorption and strong retention for multiple contaminants is of great significance for real-world filtration applications.
Collapse
Affiliation(s)
- Xinbo Wang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Li Li
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Kai Li
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Ruyue Su
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Yue Zhao
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Song Gao
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering and Institute of Clean Energy, Peking University, Beijing 100871, China
| | - Wenhan Guo
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering and Institute of Clean Energy, Peking University, Beijing 100871, China
| | - Zhiqiang Luan
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Guojie Liang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China.
| | - Hailing Xi
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China.
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering and Institute of Clean Energy, Peking University, Beijing 100871, China.
| |
Collapse
|
25
|
Liu J, Chen Z, Wang R, Alayoglu S, Islamoglu T, Lee SJ, Sheridan TR, Chen H, Snurr RQ, Farha OK, Hupp JT. Zirconium Metal-Organic Frameworks Integrating Chloride Ions for Ammonia Capture and/or Chemical Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22485-22494. [PMID: 33961384 DOI: 10.1021/acsami.1c03717] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ammonia capture by porous materials is relevant to protection of humans from chemical threats, while ammonia separation may be relevant to its isolation and use following generation by emerging electrochemical schemes. Our previous work described both reversible and irreversible interactions of ammonia with the metal-organic framework (MOF) material, NU-1000, following thermal treatment at either 120 or 300 °C. In the present work, we have examined NU-1000-Cl, a variant that features a modified node structure-at ambient temperature, Zr6(μ3-O)4(μ3-OH)4(H2O)812+ in place of Zr6(μ3-O)4(μ3-OH)4(OH)4(H2O)48+. Carboxylate termini from each of eight linkers balance the 8+ charge of the parent node, while four chloride ions, attached only by hydrogen bonding, complete the charge balance for the 12+ version. We find that both reversible and irreversible uptake of ammonia are enhanced for NU-1000-Cl, relative to the chloride-free version. Two irreversible interactions were observed via in situ diffuse-reflectance infrared Fourier-transform spectroscopy: coordination of NH3 at open Zr sites generated during thermal pretreatment and formation of NH4+ by proton transfer from node aqua ligands. The irreversibility of the latter appears to be facilitated by the presence chloride ions, as NH4+ formation occurs reversibly with chloride-free NU-1000. At room temperature, chemically reversible (and irreversible) interactions between ammonia and NU-1000-Cl result in separation of NH3 from N2 when gas mixtures are examined with breakthrough instrumentation, as evinced by a much longer breakthrough time (∼9 min) for NH3.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhijie Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rui Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Selim Alayoglu
- Reactor Engineering and Catalyst Testing Core, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Seung-Joon Lee
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Thomas R Sheridan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haoyuan Chen
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|