1
|
Chen Y, Ma S, Zhou M, Yao Y, Gao X, Fan X, Wu G. Advancements in the preparation technology of small molecule artificial antigens and their specific antibodies: a comprehensive review. Analyst 2024; 149:4583-4599. [PMID: 39140248 DOI: 10.1039/d4an00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Small molecules find extensive application in medicine, food safety, and environmental studies, particularly in biomedicine. Immunoassay technology, leveraging the specific recognition between antigens and antibodies, offers a superior alternative to traditional physical and chemical analysis methods. This approach allows for the rapid and accurate detection of small molecular compounds, owing to its high sensitivity, specificity, and swift analytical capabilities. However, small molecular compounds often struggle to effectively stimulate an immune response due to their low molecular weight, weak antigenicity, and limited antigenic epitopes. To overcome this, coupling small molecule compounds with macromolecular carriers to form complete antigens is typically required to induce specific antibodies in animals. Consequently, the preparation of small-molecule artificial antigens and the production of efficient specific antibodies are crucial for achieving precise immunoassays. This paper reviews recent advancements in small molecule antibody preparation technology, emphasizing the design and synthesis of haptens, the coupling of haptens with carriers, the purification and identification of artificial antigens, and the preparation of specific antibodies. Additionally, it evaluates the current technological shortcomings and limitations while projecting future trends in artificial antigen synthesis and antibody preparation technology.
Collapse
Affiliation(s)
- Yaya Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Meiling Zhou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Xiaobo Fan
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
2
|
Chai K, Yang X, Shen R, Chen J, Su W, Su A. A high activity mesoporous Pt@KIT-6 nanocomposite for selective hydrogenation of halogenated nitroarenes in a continuous-flow microreactor. NANOSCALE ADVANCES 2023; 5:5649-5660. [PMID: 37822898 PMCID: PMC10563833 DOI: 10.1039/d3na00437f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
In this study, we designed a Pt@KIT-6 nanocomposite prepared by impregnating platinum nanoparticles on the nanopores of the KIT-6 mesoporous material. This Pt@KIT-6 nanocomposite was used as a catalyst in a micro fixed bed reactor (MFBR) for the continuous-flow hydrogenation of halogenated nitroarenes, which demonstrates three advantages. First, the Pt@KIT-6 nanocomposite has a stable mesoporous nanostructure, which effectively enhances the active site and hydrogen adsorption capacity. The uniformly distributed pore structure and large specific surface area were confirmed by electron microscopy and N2 physisorption, respectively. In addition, the aggregation of the loaded metal was avoided, which facilitated the maintenance of high activity and selectivity. The conversion and selectivity reached 99% within 5.0 minutes at room temperature (20 °C). Furthermore, the continuous-flow microreactor allows precise control and timely transfer of the reaction system, reducing the impact of haloid acids. The activity and selectivity of the Pt@KIT-6 nanocomposite showed virtually no degradation after 24 hours of continuous operation of the entire continuous-flow system. Overall, the Pt@KIT-6 nanocomposite showed good catalysis for the hydrogenation of halogenated nitroarenes in the continuous-flow microreactor. This work provides insights into the rational design of a highly active and selective catalyst for selective hydrogenation systems.
Collapse
Affiliation(s)
- Kejie Chai
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xilin Yang
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Runqiu Shen
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Jianli Chen
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou 310014 P. R. China
- College of New Materials Engineering, Jiaxing Nanhu University Jiaxing 314000 P. R. China
| | - Weike Su
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - An Su
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
3
|
Rahmani A, Sultanov MA, Kamiru-White K, Shultz-Johnson LR, Butkus BE, Xie S, Liu F, Nguyen DTH, Wilson-Faubert N, Nazemi A, Banerjee P, Zhai L, Delferro M, Wen J, Jurca T. Ultrathin Atomic Layer Deposited Al 2O 3 Overcoat Stabilizes Al 2O 3-Pt/Ni-Foam Hydrogenation Catalysts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43756-43766. [PMID: 37695888 DOI: 10.1021/acsami.3c08545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Galvanic exchange seeds the growth of Pt nanostructures on the Ni foam monolith. Subsequent atomic layer deposition of ultrathin Al2O3 followed by annealing under air affords supported Pt catalysts with ultralow loading (0.020 ppm). In addition to the expected enhancement of the stability of the Pt particles on the surface, the ∼2 nm Al2O3 overcoat appears to also play a crucial role in the overall structural integrity of the NiOx nanoplates that grow on the Ni foam surface as a result of the preparative route. The resulting material is physically robust toward repeated handling and showcases retention of catalytic activity over 10 standard catalyst recycling trials, standing in marked contrast to the uncoated samples. Catalyst activity was tested via the hydrogenation of various functionalized styrenes at low temperatures and low hydrogen pressure in ethanol as a solvent, with a TOF as high as 9.5 × 106 h-1 for unfunctionalized styrene. Notably, the catalysts show excellent tolerance toward F, Cl, and Br substituents and no hydrogenation of the aromatic ring.
Collapse
Affiliation(s)
- Azina Rahmani
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Maksim A Sultanov
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Kemah Kamiru-White
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | | | - Brian E Butkus
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida 32826, United States
- Renewable Energy and Chemical Transformation Faculty Cluster (REACT), University of Central Florida, Orlando, Florida 32816, United States
| | - Diep T H Nguyen
- Department of Chemistry, NanoQAM, Quebec Centre for Advanced Materials, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Noémie Wilson-Faubert
- Department of Chemistry, NanoQAM, Quebec Centre for Advanced Materials, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Ali Nazemi
- Department of Chemistry, NanoQAM, Quebec Centre for Advanced Materials, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Parag Banerjee
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida 32826, United States
- Renewable Energy and Chemical Transformation Faculty Cluster (REACT), University of Central Florida, Orlando, Florida 32816, United States
| | - Lei Zhai
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida 32826, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida 32826, United States
- Renewable Energy and Chemical Transformation Faculty Cluster (REACT), University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
4
|
Zhang W, Wu W, Guo F, Dong X. Fe 3C nanoclusters integrated with Fe single-atom planted in nitrogen doped carbon derived from truncated hexahedron zeolitic imidazolate framework for the efficient transfer hydrogenation of halogenated nitrobenzenes. J Colloid Interface Sci 2023; 640:1068-1079. [PMID: 36924629 DOI: 10.1016/j.jcis.2023.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
The control of morphology, structure and composition of metal-organic frameworks derived metal-nitrogen doped porous carbon (M-N-C) with high precision and accuracy is essential for the catalytic performance. While single-atom or small-sized nanometer catalysts show notable effects in catalysis, one catalyst combining the advantages of single-atom and nanometer catalysts may cultivate more benefits. Herein, we designed and successfully fabricated a series of Fe-doped ZIF-x with different morphologies (cube→truncated hexahedron→truncated octahedron) in one pot by simply adjusting the adding amount of vitamin C. After high-temperature calcination, Fe3C integrated with Fe single-atom planted in N-doped carbon (FeSA/FeNC-N-C-x) with various morphology, structure and composition could be acquired. Among them, FeSA/FeNC-N-C-0.75 exhibited the best catalytic performance for the transfer hydrogenation of halogenated nitrobenzenes with N2H4·H2O under room temperature. Acid-leaching tests, poisoning experiments, and the density functional theory calculations showed that Fe3C integrated with Fe single-atom had a better catalytic effect than the separated Fe3C or Fe single-atom.
Collapse
Affiliation(s)
- Wei Zhang
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, Guizhou, PR China.
| | - Wei Wu
- School of Materials and Engineering, Guizhou Minzu University, Guiyang 550025, Guizhou, PR China
| | - Fei Guo
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, PR China
| | - Xinwei Dong
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, PR China
| |
Collapse
|
5
|
Lu Y, Wang J, Feng X, Li Y, Zhang W, Yamamoto Y, Bao M. Hydrogenation of nitriles to primary amines catalyzed by an unsupported nanoporous palladium catalyst: understanding the essential reason for the high activity and selectivity of the catalyst. NANOSCALE 2022; 14:9341-9348. [PMID: 35704927 DOI: 10.1039/d2nr01722a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An efficient and highly selective heterogeneous catalyst system for nitrile hydrogenation was developed using unsupported palladium nanopores (PdNPore). The PdNPore-catalyzed selective hydrogenation of nitriles proceeded smoothly, without any additives, under mild conditions (low H2 pressure and low temperature) to yield primary amines with satisfactory to excellent yields. Systematic studies demonstrated that the high activity and excellent selectivity of the PdNPore originated from its good Lewis acidity and porous structure. No palladium leached from the PdNPore during the hydrogenation reaction. Moreover, the catalyst was easily recovered and reused without any loss of catalytic activity. A deuterium-hydrogen exchange reaction clearly indicated that the present hydrogenation involves heterolytic H2 splitting on the surface of the PdNPore catalyst.
Collapse
Affiliation(s)
- Ye Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Jixiao Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| | - Yanhui Li
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023, China.
| | - Wei Zhang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023, China.
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8577, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
| |
Collapse
|
6
|
Nadizadeh Z, Mahdavi H, Heidari AA, Kahriz PK. Synthesis of palladium‐chelated poly(triazine imide) heterogeneous nanocatalysts for reduction of p‐nitrophenol to p‐aminophenol. J Appl Polym Sci 2022. [DOI: 10.1002/app.52489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zahra Nadizadeh
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | - Hossein Mahdavi
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | - Ali Akbar Heidari
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | | |
Collapse
|
7
|
Anand S, Pinheiro D, Sunaja Devi KR. Recent Advances in Hydrogenation Reactions Using Bimetallic Nanocatalysts: A Review. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Samika Anand
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 Karnataka India
| | - Dephan Pinheiro
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 Karnataka India
| | - K. R. Sunaja Devi
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 Karnataka India
| |
Collapse
|