1
|
Liu Z, Lv Y, Sun Y, Hong C, Fan Y, Ma X, Gao C, Lin J, Chen T, Chen J, Wu A. New insights of transition metal sulfide nanoparticles for tumor precision diagnosis and treatment. J Control Release 2025:113871. [PMID: 40418988 DOI: 10.1016/j.jconrel.2025.113871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/13/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025]
Abstract
Transition metal sulfide nanoparticles (TMSs), with their unique photothermal conversion effects, Fenton-like catalytic activity, engineerable structure, and good biocompatibility, are becoming a cutting-edge research focus in the field of tumor precision diagnosis and therapy. This review systematically explores the groundbreaking potential of TMSs (MxSy, M = Fe, Mn, Cu, Mo, Co, Ni, W, etc.) in tumor precision diagnosis, specific non-invasive treatment, and multimodal synergistic therapy from the perspective of "structural design-function regulation-integrated diagnosis and therapy." The exceptional magnetic properties, photothermal effects, and high X-ray absorption capabilities of TMSs have driven extensive research and widespread application in tumor imaging, including magnetic resonance imaging, photoacoustic imaging, and computed tomography. Furthermore, we delve into mechanistically integrated strategies for various clinical applications, such as phototherapy, chemodynamic therapy, sonodynamic therapy, gas therapy, and immunotherapy. These new approaches demonstrate high specificity, efficacy, and low toxicity compared with traditional clinical treatments, highlighting the significant application value of TMSs in revolutionizing cancer therapy. Finally, the review addresses the opportunities and challenges of employing transition TMSs as nano-formulations for cancer. This review aims to provide new insights into the prospects and hurdles that need to be addressed to fully exploit the potential of TMSs in precision tumor therapy and integrated diagnosis and treatment.
Collapse
Affiliation(s)
- Zhusheng Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Yagui Lv
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yanzi Sun
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Chengyuan Hong
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Xuehua Ma
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Changyong Gao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Lin
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tianxiang Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Junge Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China.
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
2
|
Shi J, Fan Y, Zhang Q, Huang Y, Yang M. Harnessing Photo-Energy Conversion in Nanomaterials for Precision Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501623. [PMID: 40376855 DOI: 10.1002/adma.202501623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/19/2025] [Indexed: 05/18/2025]
Abstract
The rapidly advancing field of theranostics aims to integrate therapeutic and diagnostic functionalities into a single platform for precision medicine, enabling the simultaneous treatment and monitoring of diseases. Photo-energy conversion-based nanomaterials have emerged as a versatile platform that utilizes the unique properties of light to activate theranostics with high spatial and temporal precision. This review provides a comprehensive overview of recent developments in photo-energy conversion using nanomaterials, highlighting their applications in disease theranostics. The discussion begins by exploring the fundamental principles of photo-energy conversion in nanomaterials, including the types of materials used and various light-triggered mechanisms, such as photoluminescence, photothermal, photoelectric, photoacoustic, photo-triggered SERS, and photodynamic processes. Following this, the review delves into the broad spectrum of applications of photo-energy conversion in nanomaterials, emphasizing their role in the diagnosis and treatment of major diseases, including cancer, neurodegenerative disorders, retinal degeneration, and osteoarthritis. Finally, the challenges and opportunities of photo-energy conversion-based technologies for precision theranostics are discussed, aiming to advance personalized medicine.
Collapse
Affiliation(s)
- Jingyu Shi
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Yadi Fan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
- Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Research Center for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
3
|
Jang J, Jo Y, Park CB. NIR Light-Triggered Structural Modulation of Self-Assembled Prion Protein Aggregates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405354. [PMID: 39757410 DOI: 10.1002/smll.202405354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/06/2024] [Indexed: 01/07/2025]
Abstract
The self-replication of misfolded prion protein (PrP) aggregates is the major pathological event of different prion diseases, affecting mammal brains by cross-species transmission. Here, the structural modulation of PrP aggregates are reported by activated carbon materials upon near-infrared (NIR) light irradiation. Activated carbon cobalt (ACC) nanosheets are synthesized using glycerol and metal salts to utilize the charge carriers released under NIR light exposure. According to the microscopy and spectroscopy analysis results, NIR light-excited ACC nanosheets successfully dissociate the β-sheet-rich and plaque-like PrP aggregates into denatured fragments by modifying their amino acid residues. The in vitro assay results demonstrate that ACC nanosheets possess biocompatibility to neuroblastoma cells and alleviating effect against the neurotoxicity of PrP aggregates. This work suggests the first potential photodynamic platform for the future treatment of prion diseases.
Collapse
Affiliation(s)
- Jinhyeong Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 34141, Republic of Korea
- Applied Science Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 34141, Republic of Korea
| | - Yonghan Jo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 34141, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 34141, Republic of Korea
| |
Collapse
|
4
|
Lin X, Dong X, Sun Y. Dual-Carbon Dots Composite: A Multifunctional Photo-Propelled Nanomotor Against Alzheimer's β-Amyloid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407154. [PMID: 39392092 DOI: 10.1002/smll.202407154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/16/2024] [Indexed: 10/12/2024]
Abstract
The abnormal accumulation of β-amyloid protein (Aβ) is considered as the main pathological hallmark of Alzheimer's disease (AD). The design of potent multifunctional theranostic agents targeting Aβ is one of the effective strategies for AD prevention and treatment. Nanomotors as intelligent, advanced, and multifunctional nanoplatforms can perform many complex tasks, but their application in AD theranostics is rare. Herein, sub-10nm multifunctional dual-carbon dots composites (ERCD) with photo-propelled nanomotor behavior are fabricated by conjugating near-infrared (NIR) carbon dots (RCD) of thermogenic and photodynamic capability with the previously reported epigallocatechin gallate-derived carbonized polymer dots (ECD). ERCD-1 (ECD:RCD = 1:2.5) showed potent inhibitory capability similar to ECD in the absence of NIR light, and exhibited photooxygenation activity and nanomotor behavior powered by "self-thermophoretic force" under NIR irradiation, significantly enhancing the inhibition, disaggregation, and photooxygenation capabilities. The nanomotor suppressed Aβ fibrillization and rapidly disaggregated mature Aβ fibrils at very low concentrations (0.5 µg mL-1). Moreover, the NIR-activated ERCD-1 imaged Aβ plaques in vivo and prolonged nematode lifespan by 6 d at 2 µg mL-1. As a proof-of-concept, this work opened a new avenue to the design of multifunctional sub-10nm nanomotors targeting Aβ for AD theranostics.
Collapse
Affiliation(s)
- Xiaoding Lin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
5
|
Abidi SMS, Sharma C, Randhawa S, Shukla AK, Acharya A. A review on nanotechnological perspective of "the amyloid cascade hypothesis" for neurodegenerative diseases. Int J Biol Macromol 2023; 253:126821. [PMID: 37690655 DOI: 10.1016/j.ijbiomac.2023.126821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive degeneration of neurons which deteriorates the brain functions. An early detection of the onset of NDs is utmost important, as it will provide the fast treatment strategies to prevent further progression of the disease. Conventionally, accurate diagnosis of the brain related disorders is difficult in their early phase. To solve this problem, nanotechnology based neurofunctional imaging and biomarker detection techniques have been developed which allows high specificity and sensitivity towards screening and diagnosis of NDs. Another challenge to treat the brain related disorders is to overcome the complex integrity of blood-brain-barrier (BBB) for the delivery of theranostic agents. Fortunately, utilization of nanomaterials has been pursued as promising strategy to address this challenge. Herein, we critically highlighted the recent improvements in the field of neurodiagnostic and therapeutic approaches involving innovative strategies for diagnosis, and inhibition of protein aggregates. We have provided particular emphasis on the use of nanotechnology which can push forward the blooming research growth in this field to win the battle against devastating NDs.
Collapse
Affiliation(s)
- Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chandni Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Liu L, Liu W, Sun Y, Dong X. Design of aggregation-induced emission-active fluorogen-based nanoparticles for imaging and scavenging Alzheimer's β-amyloid by photo-oxygenation. J Mater Chem B 2023; 11:8994-9004. [PMID: 37705421 DOI: 10.1039/d3tb01134h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Photo-oxygenation has emerged as an effective modality for scavenging Alzheimer's amyloid-β (Aβ) plaques. However, limitations of the current photo-oxidants, such as low Aβ-targeting and single functionality, hinder the scavenging of Aβ plaques via photo-oxygenation. Herein, based on an aggregation-induced emission (AIE)-active fluorogen (named TPMD), we designed AIE photo-oxidant nanoparticles (T-LD NPs) for Aβ imaging, inhibition, and disaggregation. The T-LD NPs were prepared by the assembly of hydrophobic TPMD with an Aβ-targeting peptide (LPPFD, L) conjugated amphiphilic polymer (DSPE-PEG). Such T-LD NPs could specifically label Aβ plaques for image-guided therapy. Under laser irradiation, T-LD NPs generated a plethora of reactive oxygen species (ROS), including 1O2, ˙OH, and O2˙-, to oxygenate Aβ species, leading to the potent inhibition of Aβ fibrillization, and significant alleviation of Aβ-mediated neurotoxicity (36% to 10% at 20 μg mL-1). Notably, T-LD NPs could rapidly disaggregate mature Aβ fibrils into fractured β-sheet rich aggregates via photo-oxygenation, resulting in alleviated cytotoxicity. In vivo studies revealed that the photo-activated T-LD NPs scavenged amyloid plaques in the transgenic C. elegans strain CL2006 and extended the lifespan by 4 days. Taken together, this multifunctional T-LD NP integrated Aβ-targeting, near-infrared fluorescence imaging, and photo-oxygenation, provides a new strategy for the development of multifunctional AIE photo-oxidants for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Luqi Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
7
|
Lin X, Zhang H, Liu W, Dong X, Sun Y. Methylene Blue-Doped Carbonized Polymer Dots: A Potent Photooxygenation Scavenger Targeting Alzheimer's β-Amyloid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44062-44074. [PMID: 37682558 DOI: 10.1021/acsami.3c06948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The abnormal aggregation of β-amyloid protein (Aβ) is one of the main pathological hallmarks of Alzheimer's disease (AD), and thus development of potent scavengers targeting Aβ is considered an effective strategy for AD treatment. Herein, photosensitizer-doped carbonized polymer dots (PS-CPDs) were synthesized by a one-step hydrothermal method using photosensitizer (PS) and o-phenylenediamine (oPD) as precursors, and furtherly applied to inhibit Aβ aggregation via photooxygenation. The inhibition efficiency of such PS-CPDs can be adjusted by varying the type of photosensitizer, and among them, methylene blue-doped carbonized polymer dots (MB-CPDs) showed the strongest photooxygenation inhibition capability. The results demonstrated that under 650 nm NIR light irradiation, MB-CPDs (2 μg/mL) produced reactive oxygen species (ROS) to efficiently inhibit Aβ fibrillization and disaggregate mature Aβ fibrils and increased the cultured cell viability from 50% to 83%. In vivo studies confirmed that MB-CPDs extended the lifespan of AD nematodes by 4 days. Notably, the inhibitory capability of MB-CPDs is much stronger than that of MB and previously reported carbonized polymer dots. This work indicated that potent photooxygenation carbon dots can be obtained by using a photosensitizer as one of the precursors, and the results have provided new insights into the design of potent photooxygenation carbon nanomaterials targeting Aβ in AD treatment.
Collapse
Affiliation(s)
- Xiaoding Lin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Hui Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
8
|
Cheong DY, Roh S, Park I, Lin Y, Lee YH, Lee T, Lee SW, Lee D, Jung HG, Kim H, Lee W, Yoon DS, Hong Y, Lee G. Proteolysis-driven proliferation and rigidification of pepsin-resistant amyloid fibrils. Int J Biol Macromol 2023; 227:601-607. [PMID: 36543295 DOI: 10.1016/j.ijbiomac.2022.12.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/20/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Proteolysis of amyloids is related to prevention and treatment of amyloidosis. What if the conditions for proteolysis were the same to those for amyloid formation? For example, pepsin, a gastric protease is activated in an acidic environment, which, interestingly, is also a condition that induces the amyloid formation. Here, we investigate the competition reactions between proteolysis and synthesis of amyloid under pepsin-activated conditions. The changes in the quantities and nanomechanical properties of amyloids after pepsin treatment were examined by fluorescence assay, circular dichroism and atomic force microscopy. We found that, in the case of pepsin-resistant amyloid, a secondary reaction can be accelerated, thereby proliferating amyloids. Moreover, after this reaction, the amyloid became 32.4 % thicker and 24.2 % stiffer than the original one. Our results suggest a new insight into the proteolysis-driven proliferation and rigidification of pepsin-resistant amyloids.
Collapse
Affiliation(s)
- Da Yeon Cheong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Seokbeom Roh
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Insu Park
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, South Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk 28119, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk 28119, South Korea; Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea; Research Headquarters, Korea Brain Research Institute, Daegu 41068, South Korea
| | - Taeha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Sang Won Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Hyo Gi Jung
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| | - Hyunji Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| | - Wonseok Lee
- Department of Electrical Engineering, Korea National University of Transportation, Chungju 27469, South Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea; ASTRION Inc., Seoul 02841, South Korea.
| | - Yoochan Hong
- Department of Medical Devices, Korea Institute of Machinery and Materials (KIMM), Daegu 42994, South Korea.
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea.
| |
Collapse
|
9
|
Jang J, Park CB. Linnaeite Mineral for NIR Light-Triggered Disruption of Alzheimer's Pore-Forming Aβ Oligomers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48-56. [PMID: 35926087 DOI: 10.1021/acsami.2c09601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Minerals in the Earth's crust have contributed to the natural functioning of ecosystems via biogeochemical interactions. Linnaeite is a cobalt sulfide mineral with a cubic spinel structure that promotes charge transfer reactions with its surroundings. Here we report the hidden feature of linnaeite mineral to dissociate Alzheimer's β-amyloid (Aβ) oligomers under near-infrared (NIR) light irradiation. Alzheimer's disease (AD) is a neurodegenerative disorder caused by the abnormal accumulation of self-assembled Aβ peptides in the elderly brain. The β-sheet structured pore-forming Aβ oligomer (βPFO) is the most neurotoxic species exacerbating the symptoms of AD. However, a therapeutic agent that is capable of inactivating βPFO has not yet been developed. Our microscopic and spectroscopic analysis results have revealed that NIR-excited linnaeite mineral can modulate the structure of βPFO by inducing oxidative modifications. We have verified that linnaeite mineral is biocompatible with and has a mitigating effect on the neurotoxicity of βPFO. This study suggests that minerals in nature have potential as drugs to reduce AD pathology.
Collapse
Affiliation(s)
- Jinhyeong Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Jang J, Jo Y, Park CB. Metal-Organic Framework-Derived Carbon as a Photoacoustic Modulator of Alzheimer's β-Amyloid Aggregate Structure. ACS NANO 2022; 16:18515-18525. [PMID: 36260563 DOI: 10.1021/acsnano.2c06759] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photoacoustic materials emit acoustic waves into the surrounding by absorbing photon energy. In an aqueous environment, light-induced acoustic waves form cavitation bubbles by altering the localized pressure to trigger the phase transition of liquid water into vapor. In this study, we report photoacoustic dissociation of beta-amyloid (Aβ) aggregates, a hallmark of Alzheimer's disease, by metal-organic framework-derived carbon (MOFC). MOFC exhibits a near-infrared (NIR) light-responsive photoacoustic characteristic that possesses defect-rich and entangled graphitic layers that generate intense cavitation bubbles by absorbing tissue-penetrable NIR light. According to our video analysis, the photoacoustic cavitation by MOFC occurs within milliseconds in the water, which was controllable by NIR light dose. The photoacoustic cavitation successfully transforms robust, β-sheet-dominant neurotoxic Aβ aggregates into nontoxic debris by changing the asymmetric distribution of water molecules around the Aβ's amino acid residues. This work unveils the therapeutic potential of NIR-triggered photoacoustic cavitation as a modulator of the Aβ aggregate structure.
Collapse
Affiliation(s)
- Jinhyeong Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| | - Yonghan Jo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Zhou Z, Li X, Hu T, Xue B, Chen H, Ma L, Liang R, Tan C. Molybdenum‐Based Nanomaterials for Photothermal Cancer Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Xiangqian Li
- School of Chemical and Environmental Engineering (Key Lab of Ecological Restoration in Hilly Areas) Pingdingshan University Pingdingshan 467000 P.R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P.R. China
| | - Baoli Xue
- Luoyang Key Laboratory of Organic Functional Molecules College of Food and Drug Luoyang Normal University Luoyang 471934 P.R. China
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang 443002 P.R. China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules College of Food and Drug Luoyang Normal University Luoyang 471934 P.R. China
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang 443002 P.R. China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P.R. China
| | - Chaoliang Tan
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Kowloon Hong Kong SAR 999077 P.R. China
- Department of Electrical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR 999077 P.R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P.R. China
| |
Collapse
|
12
|
Lee HE, Lee D, Lee TI, Jang J, Jang J, Lim YW, Shin JH, Kang SM, Choi GM, Joe DJ, Kim JH, Lee SH, Park SH, Park CB, Kim TS, Lee KJ, Bae BS. Siloxane Hybrid Material-Encapsulated Highly Robust Flexible μLEDs for Biocompatible Lighting Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28258-28269. [PMID: 35674729 DOI: 10.1021/acsami.2c03922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible micro-light-emitting diodes (f-μLEDs) have been regarded as an attractive light source for the next-generation human-machine interfaces, thanks to their noticeable optoelectronic performances. However, when it comes to their practical utilizations fulfilling industrial standards, there have been unsolved reliability and durability issues of the f-μLEDs, despite previous developments in the high-performance f-μLEDs for various applications. Herein, highly robust flexible μLEDs (f-HμLEDs) with 20 × 20 arrays, which are realized by a siloxane-based organic-inorganic hybrid material (SHM), are reported. The f-HμLEDs are created by combining the f-μLED fabrication process with SHM synthesis procedures (i.e., sol-gel reaction and successive photocuring). The outstanding mechanical, thermal, and environmental stabilities of our f-HμLEDs are confirmed by a host of experimental and theoretical examinations, including a bending fatigue test (105 bending/unbending cycles), a lifetime accelerated stress test (85 °C and 85% relative humidity), and finite element method simulations. Eventually, to demonstrate the potential of our f-HμLEDs for practical applications of flexible displays and/or biomedical devices, their white light emission due to quantum dot-based color conversion of blue light emitted by GaN-based f-HμLEDs is demonstrated, and the biocompatibility of our f-HμLEDs is confirmed via cytotoxicity and cell proliferation tests with muscle, bone, and neuron cell lines. As far as we can tell, this work is the first demonstration of the flexible μLED encapsulation platform based on the SHM, which proved its mechanical, thermal, and environmental stabilities and biocompatibility, enabling us to envisage biomedical and/or flexible display applications using our f-HμLEDs.
Collapse
Affiliation(s)
- Han Eol Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Division of Advanced Materials Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea
| | - Daewon Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Tae-Ik Lee
- Joining R&D Group, Root Industry Technology Center, Korea Institute of Industrial Technology (KITECH), 156 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinhyeong Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Junho Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Young-Woo Lim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jung Ho Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seung-Mo Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gwang-Mun Choi
- ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34141, Republic of Korea
| | - Daniel J Joe
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jeong Hyeon Kim
- Division of Advanced Materials Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea
| | - Seung Hyung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Taek-Soo Kim
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Byeong-Soo Bae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
Jang J, Park CB. Magnetoelectric dissociation of Alzheimer's β-amyloid aggregates. SCIENCE ADVANCES 2022; 8:eabn1675. [PMID: 35544560 PMCID: PMC9094672 DOI: 10.1126/sciadv.abn1675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
The abnormal self-assembly of β-amyloid (Aβ) peptides and their deposition in the brain is a major pathological feature of Alzheimer's disease (AD), the most prevalent chronic neurodegenerative disease affecting nearly 50 million people worldwide. Here, we report a newly discovered function of magnetoelectric nanomaterials for the dissociation of highly stable Aβ aggregates under low-frequency magnetic field. We synthesized magnetoelectric BiFeO3-coated CoFe2O4 (BCFO) nanoparticles, which emit excited charge carriers in response to low-frequency magnetic field without generating heat. We demonstrated that the magnetoelectric coupling effect of BCFO nanoparticles successfully dissociates Aβ aggregates via water and dissolved oxygen molecules. Our cytotoxicity evaluation confirmed the alleviating effect of magnetoelectrically excited BCFO nanoparticles on Aβ-associated toxicity. We found high efficacy of BCFO nanoparticles for the clearance of microsized Aβ plaques in ex vivo brain tissues of an AD mouse model. This study shows the potential of magnetoelectric materials for future AD treatment using magnetic field.
Collapse
|
14
|
Ning S, Jorfi M, Patel SR, Kim DY, Tanzi RE. Neurotechnological Approaches to the Diagnosis and Treatment of Alzheimer’s Disease. Front Neurosci 2022; 16:854992. [PMID: 35401082 PMCID: PMC8989850 DOI: 10.3389/fnins.2022.854992] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, clinically defined by progressive cognitive decline and pathologically, by brain atrophy, neuroinflammation, and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles. Neurotechnological approaches, including optogenetics and deep brain stimulation, have exploded as new tools for not only the study of the brain but also for application in the treatment of neurological diseases. Here, we review the current state of AD therapeutics and recent advancements in both invasive and non-invasive neurotechnologies that can be used to ameliorate AD pathology, including neurostimulation via optogenetics, photobiomodulation, electrical stimulation, ultrasound stimulation, and magnetic neurostimulation, as well as nanotechnologies employing nanovectors, magnetic nanoparticles, and quantum dots. We also discuss the current challenges in developing these neurotechnological tools and the prospects for implementing them in the treatment of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Shen Ning
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Graduate Program for Neuroscience, Boston University School of Medicine, Boston, MA, United States
| | - Mehdi Jorfi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Mehdi Jorfi,
| | - Shaun R. Patel
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Rudolph E. Tanzi,
| |
Collapse
|
15
|
Lee CH, Song SY, Chung YJ, Choi EK, Jang J, Lee DH, Kim HD, Kim DU, Park CB. Light-Stimulated Carbon Dot Hydrogel: Targeting and Clearing Infectious Bacteria In Vivo. ACS APPLIED BIO MATERIALS 2022; 5:761-770. [PMID: 35020368 DOI: 10.1021/acsabm.1c01157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infectious bacteria evolve fast into resistance to conventional antimicrobial agents, whereas treatments for drug resistance bacteria progress more slowly. Here, we report a universally applicable photoactivated antimicrobial modality through light-responsive carbon dot-embedding soft hyaluronic acid hydrogel (CDgel). Because of the innate nature of the infectious bacteria that produce hyaluronidase, applied hyaluronic acid-based CDgel breaks down via bacteria and releases carbon dots (CDs) into the infectious sites. The released CDs possess photodynamic capabilities under light irradiation, inducing 1O2 generation and growth inhibition of the infectious bacteria, S. aureus and E. coli (∼99% and ∼97%, respectively), in vitro. In particular, these photodynamic effects of CDs from CDgel have been shown to accelerate the healing of infected wounds in vivo, showing a higher wound regeneration rate as compared to that of untreated wounds. Our work demonstrates that the biocompatible and shape-controllable CDgel possesses therapeutic potential as a treatment modality for the light-driven control of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Chang Heon Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seuk Young Song
- Rare Disease Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - You Jung Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eun Kyoung Choi
- Rare Disease Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jinhyeong Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dai Heon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hae Dong Kim
- Rare Disease Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Dong-Uk Kim
- Rare Disease Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
He L, Guo L, Li H, Wang J, Wang Y, Li X. Cu2MoS4-based magnetic composites as effective adsorbent and photocatalyst for removal of organic contaminants in water. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|