1
|
Wu X, Wang D, Ren Y, Zhang H, Yin S, Yan M, Li Y, Wei S. CeO 2-Modified Ni 2P/Fe 2P as Efficient Bifunctional Electrocatalyst for Water Splitting. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2221. [PMID: 40428958 DOI: 10.3390/ma18102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/19/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025]
Abstract
Developing efficient bifunctional electrocatalysts with excellent stability at high current densities for overall water splitting is a challenging yet essential objective. However, transition metal phosphides encounter issues such as poor dispersibility, low specific surface area, and limited electronic conductivity, which hinder the achievement of satisfactory performance. Therefore, this study presents the highly efficient bifunctional electrocatalyst of CeO2-modified NiFe phosphide on nickel foam (CeO2/Ni2P/Fe2P/NF). Ni2P/Fe2P coupled with CeO2 was deposited on nickel foam through hydrothermal synthesis and sequential calcination processes. The electrocatalytic performance of the catalyst was evaluated in an alkaline solution, and it exhibited an HER overpotential of 87 mV at the current density of 10 mA cm-2 and an OER overpotential of 228 mV at the current density of 150 mA cm-2. Furthermore, the catalyst demonstrated good stability, with a retention rate of 91.2% for the HER and 97.3% for the OER after 160 h of stability tests. The excellent electrochemical performance can be attributed to the following factors: (1) The interface between Ni2P/Fe2P and CeO2 facilitates electron transfer and reactant adsorption, thereby improving catalytic activity. (2) The three-dimensional porous structure of nickel foam provides an ideal substrate for the uniform distribution of Ni2P, Fe2P, and CeO2 nanoparticles, while its high conductivity facilitates electron transport. (3) The incorporation of larger Ce3⁺ ions in place of smaller Fe3⁺ ions leads to lattice distortion and an increase in defects within the NiFe-layered double hydroxide structure, significantly enhancing its catalytic performance. This research finding offers an effective strategy for the design and synthesis of low-cost, high-potential catalysts for water electrolysis.
Collapse
Affiliation(s)
- Xinyang Wu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Key Laboratory of High-Temperature Metal Structural and Functional Materials, National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471000, China
| | - Dandan Wang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Key Laboratory of High-Temperature Metal Structural and Functional Materials, National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471000, China
| | - Yongpeng Ren
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Key Laboratory of High-Temperature Metal Structural and Functional Materials, National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471000, China
- Longmen Laboratory, Luoyang 471000, China
| | | | - Shengyu Yin
- Longbai Group Co., Ltd., Jiaozuo 454191, China
| | - Ming Yan
- Longbai Group Co., Ltd., Jiaozuo 454191, China
| | - Yaru Li
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Key Laboratory of High-Temperature Metal Structural and Functional Materials, National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471000, China
| | - Shizhong Wei
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Key Laboratory of High-Temperature Metal Structural and Functional Materials, National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471000, China
- Longmen Laboratory, Luoyang 471000, China
| |
Collapse
|
2
|
Sun F, Zang J, Hou Z, Tian X, Zhu R, Zheng Y, Wang Y, Dong L. Design and synthesis of autogenous growth NiFe bimetallic phosphide catalysts on a nickel iron foam-like substrate for efficient overall water splitting. J Colloid Interface Sci 2025; 684:355-366. [PMID: 39798431 DOI: 10.1016/j.jcis.2025.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The design of low-cost, highly active, and stable electrocatalysts is pivotal for advancing water electrolysis technologies. In this study, carbonyl iron powder (CIP) was anchored within the pores of nickel foam (NF) by electroplating nickel, creating nickel iron foam-like (NFF-L) substrates. Subsequently, nickel-iron hydroxide (NiFe-OH) was synthesized on the NFF-L substrate employing an autogenous growth strategy, followed by a phosphating treatment that produced a nanoflower-like NiFe bimetallic phosphide heterostructure catalyst (Fe2P-Ni2P@NFF-L). This novel method of substrate filling enhanced space utilization, while the presence of micropores and mesopores on the nanosheet surfaces facilitated electrolyte infiltration and ion diffusion, thereby significantly increasing the specific surface area. The formation of a two-phase heterointerface accelerated electron transmission and transfer, enhancing water dissociation and the adsorption of hydrogen adatoms (Had). In addition, under anodic oxidation conditions, the dynamic surface reconstruction facilitated a synergistic interaction between the highly active β-NiOOH and α-FeOOH phases, which significantly contributed to the catalyst's exceptional intrinsic activity for the oxygen evolution reaction (OER).
Collapse
Affiliation(s)
- Fanjia Sun
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Jianbing Zang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhiwei Hou
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Xueqing Tian
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Rui Zhu
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Youbin Zheng
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Yanhui Wang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Liang Dong
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| |
Collapse
|
3
|
Li Y, Gao J, Wang Z, Li H, Li L, Zhang X, Fan X, Lin L, Li Y, Li K, Zhang C, Li L, Wang R, Su Y, Tian D. Rice leaves microstructure-inspired high-efficiency electrodes for green hydrogen production. NANOSCALE 2025; 17:5812-5822. [PMID: 39931804 DOI: 10.1039/d4nr05151c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Hydrogen production via water electrolysis is deemed a prime candidate for large-scale commercial green hydrogen generation. However, during the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), bubble accumulation on the electrode surface substantially elevates the required voltage and diminishes electrolysis efficiency. In this work, we demonstrated a rice leaves-inspired anisotropic microstructured gas conduction electrode (Ni-conduction) that can rapidly detach bubbles from the anisotropic microstructure. The microstructured grooves on the electrode surface lower the interface energy and modify bubble detachment dynamics, enabling swift bubble release and directed bubble flow along the microstructured channels. As a result, the Ni-conduction achieves a reduction in HER/OER overpotential, reaching values of 92/123 mV at 10 mA cm-2. This performance significantly surpasses the performance of a flat nickel electrode (Ni-smooth), necessitating an overpotential of 183/176 mV under identical conditions. Furthermore, the assembled Ni-conduction||Ni-conduction overall water-splitting device only needs a cell voltage of 1.53 V to reach 10 mA cm-2. Our research emphasizes the significance of wettability design in electrode microstructure to enhance mass transfer and optimize water splitting efficiency, presenting novel strategies for the development of superior gas-evolution electrodes.
Collapse
Affiliation(s)
- Yuliang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Jinxin Gao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Zhaoyang Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Honghao Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Lu Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Xiaofang Zhang
- School of Mathematics and Physics, University of Science & Technology Beijing, Beijing 100083, P. R. China.
| | - Xiaoyang Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Longyun Lin
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Yan Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ke Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Chunyu Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Linyang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Ran Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Yunting Su
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Dongliang Tian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| |
Collapse
|
4
|
Kong Y, Guo Q, Xiong D, Chai N, Jiang Q, Chen T, Yi FY. Exploring P-(Fe,V)-Codoped Metastable-Phase β-NiMoO 4 for Improving the Performance of Overall Water Splitting. Inorg Chem 2025; 64:1642-1655. [PMID: 39847759 DOI: 10.1021/acs.inorgchem.4c02233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
It is especially essential to develop high-performance and low-cost nonprecious metal catalysts for large-scale hydrogen production. A large number of electrochemical catalysts composited by transition metal centers has been reported; however, it is still a great challenge to design and manipulate target electrocatalysts to realize high overall water-splitting activity at the atomic level. Herein, we develop totally new P-(Fe,V)-codoped metastable-phase β-NiMoO4. As an electrocatalyst, it can realize oxygen evolution at only 163 mV and hydrogen evolution at only 44 mV at 10 mA cm-2. It, as both an anode and a cathode, is fabricated into a cell for overall water splitting, which has an ultralow voltage value of 1.48 V to drive a current density of 10 mA cm-2 and can remain stable for at least 100 h. In the target electrode, the P element plays three important roles: (1) it can stabilize the metastable-phase structure of β-NiMoO4; (2) it can further optimize the electronic structure; and (3) it can provide more active sites. The synergistic effect for multimetal centers with different redox couples is key for the great improvement of catalytic activity. The related mechanism is discussed in detail.
Collapse
Affiliation(s)
- Yuxuan Kong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Qingqing Guo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Dengke Xiong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Ning Chai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Qiao Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Tianyu Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
5
|
Sharma PJ, Joshi KK, Siraj S, Sahatiya P, Sumesh CK, Pataniya PM. Vanadium-Doped Ni 3S 2: Morphological Evolution for Enhanced Industrial-Scale Water and Urea Electrolysis. CHEMSUSCHEM 2025; 18:e202401371. [PMID: 39215757 DOI: 10.1002/cssc.202401371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
The development of an earth abundant, cost-effective, facile and multifunctional 3D-porous catalytic network for green hydrogen production is a tremendous challenge. Herein, we report the V-Ni3S2 self-supported catalytic network with optimized morphology grown directly on nickel foam (NF) by the one-step hydrothermal technique for water and urea electrolysis at industrial scale hydrogen generation. The morphology of Ni3S2 was modulated by doping of different concentrations of vanadium from granules to cross-linked wires to hierarchal nanosheets arrays, which is beneficial in electrochemical charge and mass transport, and generates more exposed active sites. The V-Ni3S2 catalyst requires the overpotential of 147 mV for hydrogen evolution reaction (HER). The OER and UOR half-cell reaction on V-Ni3S2 catalyst requires potential 1.57 V and 1.39 V (vs RHE), respectively to generate current 100 mA/cm2. The water electrolysis cell developed by V-Ni3S2 as both anode and cathode generates 100 mA/cm2 at cell voltage of 1.88 V in laboratory condition (1 M KOH, 25 °C) and 1.61 V at industrial condition (5 M KOH, 80 °C) and also shows considerable stability for 82 hr at current 300 mA/cm2. The urea electrolysis cell with 1 M KOH and 0.33 M urea generates 100 mA/cm2 at a cell voltage of 1.73 V, which is 150 mV less than that required for water electrolysis and demonstrate stability for 85 hr at a current of 100 mA/cm2. The results provide an innovative plan for the considerate synthesis and design of bifunctional catalysts for energy storage and water splitting.
Collapse
Affiliation(s)
- Pooja J Sharma
- Department of Physical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Anand, Gujarat, 388421, India
| | - Kinjal K Joshi
- Department of Physical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Anand, Gujarat, 388421, India
| | - Sohel Siraj
- Department of Electrical and Electronics Engineering, BITS Pilani Hyderabad, Secunderabad, 500078, India
| | - Parikshit Sahatiya
- Department of Electrical and Electronics Engineering, BITS Pilani Hyderabad, Secunderabad, 500078, India
| | - C K Sumesh
- Department of Physical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Anand, Gujarat, 388421, India
| | - Pratik M Pataniya
- Department of Physical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Anand, Gujarat, 388421, India
| |
Collapse
|
6
|
Yu P, Zhuang R, Liu H, Wang Z, Zhang C, Wang Q, Sun H, Huang W. Recycling alkali lignin-derived biochar with adsorbed cadmium into cost-effective CdS/C photocatalyst for methylene blue removal. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2025; 43:75-85. [PMID: 38390711 DOI: 10.1177/0734242x241231394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Cadmium (Cd)-enriched adsorbents wastes possess great environmental risk due to their large-scale accumulation and toxicity in the natural environment. Recycling spent Cd-enriched adsorbents into efficient catalysts for advanced applications could address the environmental issues and attain the carbon neutral goal. Herein, a facile strategy is developed for the first time to reutilize the alkali lignin (AL)-derived biochar (ALB) absorbed with Cd into cadmium sulphide (CdS)/C composite for the efficient methylene blue (MB) removal. The ALB is initially treated with Cd-containing solution, then the recycling ALB samples with adsorbed Cd are converted to the final CdS/C composite using NaS2 as the sulphurizing reagent for vulcanization reaction. The optimal ALB400 demonstrates a high adsorption capacity of 576.0 mg g-1 for Cd removal. Then the converted CdS/C composite shows an efficient MB removal efficiency of 94%. The photodegradation mechanism is mainly attributed to carbon components in the CdS/C composite as electron acceptor promoting the separation of photoelectrons/holes and slowing down the abrasion of CdS particles. The enhanced charge transfer and contact between the carrier and the active site thus improves the removal performance and reusability. This work not only develops a method for removing Cd from wastewater effectively and achieving the waste resource utilization but also further offers a significant guidance to use other kinds of spent heavy metal removal adsorbents for the construction of low-cost and high value-added functional materials.
Collapse
Affiliation(s)
- Peng Yu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Ronghao Zhuang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Hui Liu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Zhiguo Wang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Chun Zhang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Qiongchao Wang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, P. R. China
| | - Wei Huang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan, P. R. China
| |
Collapse
|
7
|
Zhang J, Cui F, Ma Q, Cui T. Ni 3+-Rich Ni/NiO x@C Nanocapsules Below 4 nm Constructed by Low-Temperature Graphitization of Self-Assembled Few-Layer Coordination Polymers toward Efficient Alkaline Hydrogen Evolution Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311057. [PMID: 38385809 DOI: 10.1002/smll.202311057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Indexed: 02/23/2024]
Abstract
Low-cost and eco-friendly Ni/NiO heterojunctions have been theoretically proven to be the ideal candidate for stepwise electrocatalysis of alkaline hydrogen evolution reaction, attributed to the preferred OHad adsorption by incompletely filled d orbitals of NiO phase and favorable Had adsorption energy of Ni phase. Nevertheless, most Ni/NiO compounds reported so far fail to exhibit excellent catalytic activity, possibly due to the lack of efficient electron transport, limited interfacial active sites, and unregulated Nin+ ratios. To address the above bottlenecks, herein, the ultrasmall Ni/NiOx@C nanocapsules (<5 nm) are directly constructed by graphitization of four-layer Ni-based coordination polymers at record low temperatures of 400 °C. Ascribed to the accelerated electron and mass transfer by the carbon nano-onions coated around Ni/NiOx heterojunctions, the extreme rise in interfaces and Ni3+ defects with t6 2ge1 g electronic configuration owed to the ultrasmall size, the Ni/NiOx@C nanocapsules exhibit the highest catalytic activity and the lowest overpotential of η10 = 80 mV among various Ni/NiO materials (measured on the glassy carbon electrode). This work not only constructs an industrialized high-efficiency electrocatalyst toward alkaline HER, but also provides a novel strategy for the constant-scale preparation of multicomponent transition metals-based nanocrystals below 4 nm.
Collapse
Affiliation(s)
- Jiajia Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Fang Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Qinghai Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Tieyu Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
8
|
Ni Q, Zhu Z, Wang Y, Jiang C, Wang M, Zhang X. A pillar-layered Ni 2P-Ni 5P 4-CoP array derived from a metal-organic framework as a bifunctional catalyst for efficient overall water splitting. Dalton Trans 2024; 53:8732-8739. [PMID: 38712507 DOI: 10.1039/d4dt00839a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Interfacial engineering emerges as a potent strategy for regulating the catalytic reactivity of metal phosphides. Developing a facile and cost-effective method to construct bifunctional metal phosphides for highly efficient electrochemical overall water splitting remains an essential and challenging issue. Here, a multiphase transition metal phosphide is constructed through the direct phosphorization of a Ni-Co metal-organic framework grown on nickel foam (Ni-Co-MOF/NF), which is prepared by utilizing nickel foam as conductive substrate and nickel source. The resulting transition metal phosphide manifests a pillar-layered morphology, wherein CoP, Ni2P, and Ni5P4 nanoparticles are embedded within each carbon sheet and these carbon sheets assemble into a pillar-shaped structure on the nickel foam (Ni2P-Ni5P4-CoP-C/NF). The heterogeneous Ni2P-Ni5P4-CoP-C/NF with multiple interfaces serves as a highly efficient bifunctional electrocatalyst with overpotentials of -100 mV and 293 mV in the hydrogen evolution reaction and oxygen evolution reaction, respectively, at 50 mA cm-2 in alkaline media. This superior catalytic performance should mainly be ascribed to its enriched active centers and multiphase synergy. When directly applied for alkaline overall water splitting, the Ni2P-Ni5P4-CoP-C/NF couple demonstrates satisfactory activity (1.55 V @10 mA cm-2) along with sustained durability over 18 hours. This method brings fresh enlightenment to the economical and controllable preparation of multi-metal phosphides for energy conversion.
Collapse
Affiliation(s)
- Qihang Ni
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China.
| | - Zixian Zhu
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China.
| | - Yan Wang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China.
| | - Chengyu Jiang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China.
| | - Min Wang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China.
| | - Xiang Zhang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China.
| |
Collapse
|
9
|
Jo SG, Ramkumar R, Lee JW. Recent Advances in Laser-Induced Graphene-Based Materials for Energy Storage and Conversion. CHEMSUSCHEM 2024; 17:e202301146. [PMID: 38057133 DOI: 10.1002/cssc.202301146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Laser-induced graphene (LIG) is a porous carbon nanomaterial that can be produced by irradiation of CO2 laser directly on the polymer substrate under ambient conditions. LIG has many merits over conventional graphene, such as simple and fast synthesis, tunable structure and composition, high surface area and porosity, excellent electrical and thermal conductivity, and good flexibility and stability. These properties make LIG a promising material for energy applications, such as supercapacitors, batteries, fuel cells, and solar cells. In this review, we highlight the recent advances of LIG in energy materials, covering the fabrication methods, performance enhancement strategies, and device integration of LIG-based electrodes and devices in the area of hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, zinc-air batteries, and supercapacitors. This comprehensive review examines the potential of LIG for future sustainable and efficient energy material development, highlighting its versatility and multifunctionality in energy conversion.
Collapse
Affiliation(s)
- Seung Geun Jo
- Department of Materials Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Rahul Ramkumar
- Department of Materials Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Jung Woo Lee
- Department of Materials Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| |
Collapse
|
10
|
Hou ZQ, Hu WP, Yang GH, Zhang ZX, Cheng TY, Huang KJ. Improving the electrocatalytic hydrogen evolution reaction through a magnetic field and hydrogen peroxide production co-assisted Ni/Fe 3O 4@poly(3,4-ethylene-dioxythiophene)/Ni electrode. J Colloid Interface Sci 2024; 654:1303-1311. [PMID: 37913719 DOI: 10.1016/j.jcis.2023.10.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/06/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
The production of high-purity hydrogen using surplus electrical energy and abundant water resources has immense potential in mitigating the fossil energy crisis, as hydrogen fuel holds clean, pollution-free, and high-energy characteristics. However, the practical application of large-scale hydrogen production from water faces challenges such as high overpotentials, sluggish dynamics, and limited electrocatalytic lifetime associated with the hydrogen evolution reaction (HER). Here, we fabricated the sandwich structure of a Ni/Fe3O4@poly(3,4-ethylene-dioxythiophene)/Ni (Ni/Fe3O4@PEDOT/Ni) electrode and employed a strong magnet to obtain a magnetic electrode capable of achieving high-activity and durability for HER. Electrochemical analysis reveals that the activated magnetic electrode displays a significantly reduced overpotential and an extended electrocatalytic lifetime of 10 days. Notably, its stability is higher than that of non-magnetic Ni/Fe3O4/Ni and Ni/Fe3O4@PEDOT/Ni electrodes, primarily due to the support from magnetic force and the protective PEDOT layer. Moreover, the minute atomized droplets can form the H2O2 species in a moist environment, facilitating the formation of the NiO layer on the Ni surface, which plays a vital role in boosting catalytic activity. In conclusion, our magnetic electrode strategy, combined with the emergence of the NiO layer, offers valuable insights for the development of advanced HER electrodes.
Collapse
Affiliation(s)
- Zhi-Qiang Hou
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Wen-Ping Hu
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Guo-Hua Yang
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Zi-Xuan Zhang
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Tian-Yi Cheng
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
11
|
Wang Q, Ma H, Ren X, Sun X, Liu X, Wu D, Wei Q. Defect engineering and atomic doping of porous Co-Ni 2P nanosheet arrays for boosting electrocatalytic oxygen evolution. NANOSCALE ADVANCES 2023; 5:3691-3696. [PMID: 37441246 PMCID: PMC10334378 DOI: 10.1039/d3na00217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023]
Abstract
Electrochemical hydrogen production by splitting water is mainly limited to the oxygen evolution reaction (OER), which requires high energy consumption. The design of an efficient and stable electrochemical catalyst is the key to solving this problem. Here, a three-dimensional porous Co-doped Ni2P nanosheet (Co-Ni2P/NF-corr) was synthesized by simple hydrothermal, acid leaching and phosphating processes successively. Excitingly, the current density of Co-Ni2P-corr in 1 M KOH solution can reach 50 mA cm-2 with only 267 mV overpotential. Moreover, the Tafel slope is very small, only 64 mV dec-1. In addition, the stability test shows that it can work stably at 50 mA cm-2 current density for at least 48 h.
Collapse
Affiliation(s)
- Qiangqiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P. R. China
| | - Hongmin Ma
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P. R. China
| | - Xiang Ren
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P. R. China
| | - Xu Sun
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P. R. China
| | - Xuejing Liu
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P. R. China
| | - Dan Wu
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P. R. China
| | - Qin Wei
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P. R. China
- Department of Chemistry, Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
12
|
Chang J, Hu Z, Wu D, Xu F, Chen C, Jiang K, Gao Z. Prussian blue analog-derived nickel iron phosphide-reduced graphene oxide hybrid as an efficient catalyst for overall water electrolysis. J Colloid Interface Sci 2023; 638:801-812. [PMID: 36791478 DOI: 10.1016/j.jcis.2023.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Efficient and bifunctional nonprecious catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are essential for the production of green hydrogen via water electrolysis. Transition metal (Ni, Co, Fe, etc.) phosphides are frequently documented HER catalysts, whereas their bimetallic oxides are efficient OER catalysts, thus enabling bifunctional catalysis for water electrolysis via proper operation. Herein, phosphide-reduced graphene oxide (rGO) hybrids were prepared from graphene oxide (GO)-incorporated bimetal Prussian blue analog (PBA) precursors. The hybrids could experience partial surface oxidation to create oxide layers with OER activities, and the hybrids also possessed considerable HER properties, therefore enabling bifunctional catalytic features for water electrolysis. The typical NiFeP-rGO hybrid demonstrated an overpotential of 250 mV at 10 mA cm-2 and good durability for OER, as well as moderate HER catalytic features (overpotential of 165 mV at -10 mA cm-2 and acceptable catalytic stability). Due to the bifunctional catalytic features, the NiFeP-rGO-based symmetric water electrolyzer demonstrated a moderate input voltage and high faradaic efficiency (FE) for O2 and H2 production. The current work provides a feasible way to prepare OER and HER bifunctional catalysts by facile phosphorization of PBA-associated precursors and spontaneous surface oxidation. Given the oxidation/reduction bifunctional catalytic behaviors, phosphide-rGO hybrid catalysts have great potential for widespread application in fields beyond water electrolysis, such as electrochemical pollution abatement, sensors, energy devices and organic syntheses.
Collapse
Affiliation(s)
- Jiuli Chang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Zhanqiang Hu
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Dapeng Wu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Fang Xu
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Chen Chen
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Zhiyong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
13
|
Kim Y, Jun SE, Lee G, Nam S, Jang HW, Park SH, Kwon KC. Recent Advances in Water-Splitting Electrocatalysts Based on Electrodeposition. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3044. [PMID: 37109879 PMCID: PMC10147088 DOI: 10.3390/ma16083044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Green hydrogen is being considered as a next-generation sustainable energy source. It is created electrochemically by water splitting with renewable electricity such as wind, geothermal, solar, and hydropower. The development of electrocatalysts is crucial for the practical production of green hydrogen in order to achieve highly efficient water-splitting systems. Due to its advantages of being environmentally friendly, economically advantageous, and scalable for practical application, electrodeposition is widely used to prepare electrocatalysts. There are still some restrictions on the ability to create highly effective electrocatalysts using electrodeposition owing to the extremely complicated variables required to deposit uniform and large numbers of catalytic active sites. In this review article, we focus on recent advancements in the field of electrodeposition for water splitting, as well as a number of strategies to address current issues. The highly catalytic electrodeposited catalyst systems, including nanostructured layered double hydroxides (LDHs), single-atom catalysts (SACs), high-entropy alloys (HEAs), and core-shell structures, are intensively discussed. Lastly, we offer solutions to current problems and the potential of electrodeposition in upcoming water-splitting electrocatalysts.
Collapse
Affiliation(s)
- Yujin Kim
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
- Department of Materials Science and Engineering, Andong National University, Andong 36729, Republic of Korea
| | - Sang Eon Jun
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Goeun Lee
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - Seunghoon Nam
- Department of Materials Science and Engineering, Andong National University, Andong 36729, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Hwa Park
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - Ki Chang Kwon
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| |
Collapse
|
14
|
Yang N, Tian S, Feng Y, Hu Z, Liu H, Tian X, Xu L, Hu C, Yang J. Introducing High-Valence Iridium Single Atoms into Bimetal Phosphides toward High-Efficiency Oxygen Evolution and Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207253. [PMID: 36610048 DOI: 10.1002/smll.202207253] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Single atoms are superior electrocatalysts having high atomic utilization and amazing activity for water oxidation and splitting. Herein, this work reports a thermal reduction method to introduce high-valence iridium (Ir) single atoms into bimetal phosphide (FeNiP) nanoparticles toward high-efficiency oxygen evolution reaction (OER) and overall water splitting. The presence of high-valence single Ir atoms (Ir4+ ) and their synergistic interaction with Ni3+ species as well as the disproportionation of Ni3+ assisted by Fe collectively contribute to the exceptional OER performance. In specific, at appropriate Ir/Ni and Fe/Ni ratios, the as-prepared Ir-doped FeNiP (Ir25 -Fe16 Ni100 P64 ) nanoparticles at a mass loading of only 35 µg cm-2 show the overpotential as low as 232 mV at 10 mA cm-2 and activity as high as 1.86 A mg-1 at 1.5 V versus RHE for OER in 1.0 m KOH. Computational simulations confirm the vital role of high-valence Ir to weaken the adsorption of OER intermediates, favorable for accelerating OER kinetics. Impressively, a Pt/C||Ir25 -Fe16 Ni100 P64 two-electrode alkaline electrolyzer affords a current density of 10 mA cm-2 at a low cell voltage of 1.42 V, along with satisfied stability. An AA battery with a nominal voltage of 1.5 V can drive overall water splitting with obvious bubbles released.
Collapse
Affiliation(s)
- Niuwa Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaonan Tian
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, College of Chemistry, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China
| | - Zhenya Hu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Liu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Lin Xu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Chaoquan Hu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, Jiangsu, 211100, China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, Jiangsu, 211100, China
| |
Collapse
|
15
|
P-induced bottom-up growth of Fe-doped Ni 12P 5 nanorod arrays for urea oxidation reaction. J Colloid Interface Sci 2023; 633:746-753. [PMID: 36493740 DOI: 10.1016/j.jcis.2022.11.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Synthesis of regular morphology catalysts with self-growing substrates is one of the effective methods to solve the problem of easy shedding of heterogeneous catalysts. In this study, Fe-doped Ni12P5 nanorods were prepared by depositing 1,1' -bis (diphenylphosphine) ferrocene (DPPF) on N-doped C/NF. The bottom-up growth of the nanorod is ascribed to the preferential adsorption of DPPF with a P site to NF that is surface-doped with the solid-solving C, and the length of nanorods can reach tens of microns and has good robustness. The N-doped carbon-constrained rod-shaped Fe-doped Ni12P5 catalyst (Fe-Ni12P5/NdC/NF-800) that grows on NF has excellent catalytic performance for the urea oxidation reaction. In addition, the current density can be maintained as high as 100 mA cm-2 and the current attenuation is weak for 12 h, and the rod shape remains good. This work provides a new idea for synthesizing self-growing catalysts with regular morphology to improve the performance of heterogeneous catalysts.
Collapse
|
16
|
Mi H, Li L, Zeng C, Jin Y, Zhang Q, Zhou K, Liu J, Wang H. Cuboid-like phosphorus-doped metal-organic framework-derived CoSe 2 on carbon cloth as an advanced bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. J Colloid Interface Sci 2023; 633:424-431. [PMID: 36462265 DOI: 10.1016/j.jcis.2022.11.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Zinc-air batteries (ZABs) are regarded as attractive devices for electrochemical energy storage and conversion due to their outstanding electrochemical performance, low price, and high safety. However, it remains a challenge to design a stable and efficient bifunctional oxygen catalyst that can accelerate the reaction kinetics and improve the performance of ZABs. Herein, a phosphorus-doped transition metal selenide/carbon composite catalyst derived from metal-organic frameworks (P-CoSe2/C@CC) is constructed by a self-supporting carbon cloth structure through a simple solvothermal process with subsequent selenization and phosphatization. The P-CoSe2/C@CC exhibits a low overpotential of 303.1 mV at 10 mA cm-2 toward the oxygen evolution reaction and an obvious reduction peak for the oxygen reduction reaction. The abovementioned electrochemical performances for the P-CoSe2/C@CC are attributed to the specific architecture, the super-hydrophilic surface, and the P-doping effect. Remarkably, the homemade zinc-air battery based on our P-CoSe2/C@CC catalyst shows an expected peak power density of 124.4 mW cm-2 along with excellent cycling stability, confirming its great potential application in ZABs for advanced bifunctional electrocatalysis.
Collapse
Affiliation(s)
- Hongtian Mi
- Key Laboratory for New Functional Materials of Ministry of Education, Institution of Advanced Energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Leyuan Li
- Key Laboratory for New Functional Materials of Ministry of Education, Institution of Advanced Energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Chuitao Zeng
- Key Laboratory for New Functional Materials of Ministry of Education, Institution of Advanced Energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yuhong Jin
- Key Laboratory for New Functional Materials of Ministry of Education, Institution of Advanced Energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; Beijing Guyue New Materials Research Institute, Beijing University of Technology, Beijing 100124, China.
| | - Qianqian Zhang
- Key Laboratory for New Functional Materials of Ministry of Education, Institution of Advanced Energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Kailing Zhou
- Key Laboratory for New Functional Materials of Ministry of Education, Institution of Advanced Energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Jingbing Liu
- Key Laboratory for New Functional Materials of Ministry of Education, Institution of Advanced Energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Hao Wang
- Key Laboratory for New Functional Materials of Ministry of Education, Institution of Advanced Energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
17
|
Silva JO, Cartagena S, Calderón JA. NOVEL ELECTRODEPOSITED NiFeP/Zn BIFUNCTIONAL CATALYTIC COATING FOR ALKALINE WATER SPLITTING. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
18
|
Han L, Li H, Yang L, Liu Y, Liu S. Rational Design of NiZn x@CuO Nanoarray Architectures for Electrocatalytic Oxidation of Methanol. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9392-9400. [PMID: 36752630 DOI: 10.1021/acsami.2c21054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Methanol oxidation reaction (MOR) in anodes is one of the significant aspects of direct methanol fuel cells (DMFCs), which also plays a critical role in achieving a carbon-neutral economy. Designing and developing efficient, cost-effective, and durable non-Pt group metal-based methanol oxidation catalysts are highly desired, but a gap still remains. Herein, we report well-defined hierarchical NiZnx@CuO nanoarray architectures as active electrocatalysts for MOR, synthesized by combining thermal oxidation treatment and magnetron sputtering deposition through a brass mesh precursor. After systematically evaluating the electrocatalytic performance of NiZnx@CuO nanoarray catalysts with different preparation conditions, we found that the NiZn1000@CuO (thermally oxidized at 500 °C for 2 h, nominal thickness of the NiZn alloy film is 1000 nm) electrode delivers a high current density of 449.3 mA cm-2 at 0.8 V for MOR in alkaline media as well as excellent operation stability (92% retention after 12 h). These outstanding MOR performances can be attributed to the hierarchical well-defined structure that can not only render abundant active sites and a synergistic effect to enhance the electrocatalytic activity but also can effectively facilitate mass and electron transport. More importantly, we found that partial Zn atoms could leach from the NiZn alloy, resulting in rough surface nanorods, which would further increase the specific surface area. These results indicate that the NiZn1000@CuO nanoarray architecture could be a promising Pt group metal alternative as an efficient, cost-effective, and durable anode catalyst for DMFCs.
Collapse
Affiliation(s)
- Lingyi Han
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Hanyu Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Lan Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Yalan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Shantang Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|
19
|
Liu T, Liu W, Ma M, Guo L, Cui R, Cheng D, Cao D. Constructing nickel vanadium phosphide nanoarrays with highly active heterointerfaces for water oxidation in alkali media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Kim D, Oh LS, Park JH, Kim HJ, Lee S, Lim E. Perovskite-based electrocatalysts for oxygen evolution reaction in alkaline media: A mini review. Front Chem 2022; 10:1024865. [PMID: 36277352 PMCID: PMC9585187 DOI: 10.3389/fchem.2022.1024865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022] Open
Abstract
Water electrolysis is one of the attractive technologies for producing clean and sustainable hydrogen fuels with high purity. Among the various kinds of water electrolysis systems, anion exchange membrane water electrolysis has received much attention by combining the advantages of alkaline water electrolysis and proton exchange membrane water electrolysis. However, the sluggish kinetics of the oxygen evolution reaction, which is based on multiple and complex reaction mechanisms, is regarded as a major obstacle for the development of high-efficiency water electrolysis. Therefore, the development of high-performance oxygen evolution reaction electrocatalysts is a prerequisite for the commercialization and wide application of water electrolysis systems. This mini review highlights the current progress of representative oxygen evolution reaction electrocatalysts that are based on a perovskite structure in alkaline media. We first summarize the research status of various kinds of perovskite-based oxygen evolution reaction electrocatalysts, reaction mechanisms and activity descriptors. Finally, the challenges facing the development of perovskite-based oxygen evolution reaction electrocatalysts and a perspective on their future are discussed.
Collapse
Affiliation(s)
- Dongkyu Kim
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, South Korea
| | - Lee Seul Oh
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, South Korea
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, South Korea
| | - Hyung Ju Kim
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, South Korea
| | - Seonggyu Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology (KIT), Gumi, South Korea
- Department of Energy Engineering Convergence, Kumoh National Institute of Technology (KIT), Gumi, South Korea
| | - Eunho Lim
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| |
Collapse
|
21
|
Li Q, Chen Q, Lei S, Zhai M, Lv G, Cheng M, Xu L, Xu H, Deng Y, Bao J. Crystalline Ni-Fe phosphide/amorphous P doped Fe-(oxy)hydroxide heterostructure as a multifunctional electrocatalyst for solar cell-driven hydrogen production. J Colloid Interface Sci 2022; 631:56-65. [DOI: 10.1016/j.jcis.2022.10.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
22
|
Li M, Li Y, Wang J, Zhong Q. Bifunctional petal-like carbon-nitrogen covered NiFeOx/ Nickel foam nanohybrid electrocatalyst for efficient overall water splitting. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Fe-doped CoFe–P phosphides nanosheets dispersed on nickel foam derived from Prussian blue analogues as efficient electrocatalysts for the oxygen evolution reaction. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Luo L, Xu S, Yu X, Wang Z, Li W, Du Y, Ruan M, Wu Q. Vertically growing nanowall-like N-doped NiP/NF electrocatalysts for the oxygen evolution reaction. Dalton Trans 2022; 51:10160-10168. [PMID: 35735099 DOI: 10.1039/d2dt01494g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing low-cost, high-performance and corrosion-resistant catalysts for water splitting is anticipated, but it will also be a big challenge. In this study, nanowall-like N-Ni5P4/Ni2P/NF (N-NiP/NF) was synthesized by a simple two-step method involving hydrothermal treatment and phosphorylation. The catalyst has good catalytic activity for the OER, and only 160 mV is required to achieve a current density of 10 mA cm-2 in 1 M KOH, which is even better than RuO2, with good corrosion resistance. In addition, N-Co2P/Ni2P/NF (N-CoP/NF) was synthesized by the same method with good electrocatalytic properties and good conductivity towards the HER. N-NiP/NF was used as the anode and N-CoP/NF was used as the cathode to form the N-NiP//N-CoP double electrode system, which showed excellent electrolytic performance for water splitting, requiring only 1.48 V to reach 10 mA cm-2. This is mainly due to the strong electronegativity of N that makes the N doping induce the electron transfer process, which results in a high catalytic activity of the adjacent transition metal atoms and thus promotes the electrolysis of water, as well as the unique vertical nanowall-like structure, which gives the material a large surface area and accessibility to active sites, facilitating the adsorption of water molecules and catalytic reactions. In addition, the unique structure favors the diffusion of water molecules and the release of gaseous products, ensuring close contact between the catalyst and the electroactive material. This simple non-metallic N doping strategy provides a new way to produce efficient non-precious metal catalysts.
Collapse
Affiliation(s)
- Li Luo
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China. .,Hubei Engineering Research Center for Collaborative Technology of Advanced Material Manufacturing and Solid Waste Recycling and Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Siran Xu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Xin Yu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Zhe Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Wenjing Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Yeshuang Du
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Min Ruan
- Hubei Engineering Research Center for Collaborative Technology of Advanced Material Manufacturing and Solid Waste Recycling and Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Qi Wu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
25
|
Wang B, Ai Y, Yao Y, Jiang M, Yan L, Xu S, Sun W. Electrochemical synergy between FeNi nanoalloy@tungsten carbide on N-doped graphitized carbon layers as an excellent electrocatalyst for oxygen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Xu X, He Y, Huang W, Cao A, Kang L, Liu J. Heterostructure of Semiconductors on Self-Supported Cuprous Phosphide Nanowires for Enhanced Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17520-17530. [PMID: 35394747 DOI: 10.1021/acsami.2c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rational design, controllable synthesis, and an in-depth mechanism study of Cu-based bifunctional semiconductor heterostructures toward overall water splitting (OWS) are imperative but still face challenges. Herein, n-type iron oxide and p-type nickel phosphide and cobalt phosphide are respectively coupled with p-type cuprous phosphide nanowires on Cu foams via a general growth-phosphorization strategy. These self-supported semiconductor heterojunctions with different built-in potentials (EBI) are used as binder-free electrodes for OWS and exhibit significantly improved electrocatalytic activities compared to their counterparts. Among them, the heterostructure with the largest EBI of 1.57 V attains the smallest overpotential of 97 mV at 10 mA cm-2 for the hydrogen evolution reaction and 243 mV at 50 mA cm-2 for the oxygen evolution reaction in 1 M KOH. The corresponding two-electrode electrolyzer requires a cell voltage of 1.685 V at 50 mA cm-2 and shows admirable long-term stability at 100 mA cm-2 with a Faraday efficiency of around 98%. These promoted electrocatalytic performances originate from the enhanced active site, accelerated charge transfer, enlarged electrochemical active surface area, and synergy between different components at the heterointerface. This work represents a promising avenue to construct cost-efficient semiconductor heterostructures as bifunctional electrocatalysts applied to the sustainable energy industry.
Collapse
Affiliation(s)
- Xiao Xu
- Fujian Provincial Key Laboratory of Nanomaterials and Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Ying He
- Fujian Provincial Key Laboratory of Nanomaterials and Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Weifeng Huang
- Fujian Provincial Key Laboratory of Nanomaterials and Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Aihui Cao
- Fujian Provincial Key Laboratory of Nanomaterials and Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Longtian Kang
- Fujian Provincial Key Laboratory of Nanomaterials and Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jingjing Liu
- Fujian Provincial Key Laboratory of Nanomaterials and Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Polytechnic Normal University, Fuzhou 350300, P. R. China
| |
Collapse
|
27
|
Zhang M, Zhou L, Du X, Huang X, Liu H, Wang Q, Guo L, Wang H. Rapid In-Situ Growth of Oxygen-defects Rich Fe(OH)3@Co(OH)2@NF Nanoarray as Efficient OER Electrocatalyst. CHEM LETT 2022. [DOI: 10.1246/cl.210814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mengyuan Zhang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Lina Zhou
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Xuena Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Xianmin Huang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Hui Liu
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Qingbo Wang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Long Guo
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Hai Wang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| |
Collapse
|
28
|
Jin J, Ge J, Zhao X, Wang Y, Zhang F, Lei X. Amorphous NiCuFeP@Cu3P nanoarray for an efficient hydrogen evolution reaction. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01537k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal phosphides are considered as ideal alternatives for noble metal catalysts for hydrogen evolution reactions. In this study, amorphous NiCuFeP nanosheets are uniformly coated on self-supporting Cu3P nanowire array...
Collapse
|
29
|
Tang J, Yao L, Ren X, Shao Z, Cai M, Gao L, Wu X. Regulating oxygen vacancies in Co 3O 4by combining solution reduction and Ni 2+ impregnation for oxygen evolution reaction. NANOTECHNOLOGY 2021; 33:095701. [PMID: 34808610 DOI: 10.1088/1361-6528/ac3beb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Oxygen vacancies are considered to be an important factor to influence the electronic structure and charge transport of electrocatalysts in the field of energy chemistry. Various strategies focused on oxygen vacancy engineering are proved to be efficient for further improving the electrocatalytic performance of Co3O4. Herein, an optimal Co3O4with rich oxygen vacancies have been synthesized via a two-step process combining solution reduction and Ni2+impregnation. The as-prepared electrocatalyst exhibits an enhanced oxygen evolution performance with the overpotential of 330 mV at the current density of 10 mA cm-2in alkaline condition, which is 84 mV lower than that of pristine one. With the increasing of oxygen vacancies, the charge transfer efficiency and surface active area are relatively enhanced reflected by the Tafel slope and double-layer capacitance measurement. These results indicate that combination of solution reduction and heteroatom doping can be a valid way for efficient metal oxides-based electrocatalyst development by constructing higher concentration of oxygen vacancy.
Collapse
Affiliation(s)
- Jinyu Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, People's Republic of China
| | - Lu Yao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, People's Republic of China
| | - Xiaoru Ren
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, People's Republic of China
| | - Zhiyu Shao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, People's Republic of China
| | - Minmin Cai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, People's Republic of China
| | - Lu Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, People's Republic of China
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, People's Republic of China
| |
Collapse
|