1
|
Xiahou Y, Wang B, Li H, Shen Z, Jiang Y, Li H, Kerman S, Wu F, Fu Y, Wang T, Cheng J, Chen C. On-Chip Array Fluorescent Sensor for High-Sensitivity Multi-Gas Detection. ACS Sens 2025; 10:3647-3657. [PMID: 40280872 DOI: 10.1021/acssensors.5c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Fluorescence array sensors provide an effective strategy to mitigate the cross-reactivity of single fluorescence materials by exploiting their high dimensionality and exceptional sensitivity. However, conventional fluorescent sensing arrays are often hindered by complex and bulky designs, resulting in low cost-effectiveness and severely restricting their potential for integration into compact sensing devices. Benefiting from its high integration advantage, photonic integration technology offers a promising solution for developing low-cost and miniaturized fluorescent gas sensor arrays. In this article, we present a novel fluorescence array sensor based on a silicon nitride photonic integration platform. This innovative device enables lab-on-chip functionality by integrating a microfluidic channel for efficient gas detection in a few square centimeters. The sensor demonstrates exceptional performance, accurately identifying six types of volatile organic compounds and achieving a remarkably low detection limit of 2.8 ppb for N-methylphenethylamine (MPEA). Notably, it exhibits high precision in detecting MPEA even within complex, high-concentration perfume mixtures. Moreover, this technology enables the expansion of the fluorescence array without increasing the sensor's volume, offering a practical solution for integrated fluorescence sensor array detection.
Collapse
Affiliation(s)
- Yaorong Xiahou
- School of Microelectronics, Shanghai University, Shangda Road 99, Shanghai 200444, China
- Shanghai Photonic View Technology Co. Ltd, Shanlian Road 377, Shanghai 200444, China
- Shanghai Industrial μTechnology Research Institute (SITRI), Chengbei Road 235, Shanghai 201800, China
| | - Bo Wang
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - He Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Zhijie Shen
- Mixosense Co. Ltd, East Ningbo Road, Suzhou 215400, China
| | - Yejing Jiang
- Mixosense Co. Ltd, East Ningbo Road, Suzhou 215400, China
| | - Huizi Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Sarp Kerman
- Shanghai Photonic View Technology Co. Ltd, Shanlian Road 377, Shanghai 200444, China
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shuangdan Road 559, Shanghai 201800, China
| | - Fan Wu
- Shanghai Photonic View Technology Co. Ltd, Shanlian Road 377, Shanghai 200444, China
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shuangdan Road 559, Shanghai 201800, China
| | - Yanyan Fu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Teng Wang
- Mixosense Co. Ltd, East Ningbo Road, Suzhou 215400, China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Chang Chen
- School of Microelectronics, Shanghai University, Shangda Road 99, Shanghai 200444, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Shanghai Photonic View Technology Co. Ltd, Shanlian Road 377, Shanghai 200444, China
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shuangdan Road 559, Shanghai 201800, China
| |
Collapse
|
2
|
Jain N, Kaur N. Construction of highly emissive Schiff base containing TX- 100 nanomicelles for monitoring the levels of devil in disguise Allura red and picric acid in real samples. Mikrochim Acta 2025; 192:312. [PMID: 40259147 DOI: 10.1007/s00604-025-07166-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
A sulfonamide derivative synthesized from 1,8-naphthalimide-based amine and 4-methoxy-benzenesulfonyl chloride has been enwrapped into the micelles of a neutral surfactant TX-100 to form highly emissive nanomicelles MXL@TX- 100. The proposed sensor offered highly sensitive turn-off detection of Allura red (linear range = 0.66-224 µM) with the limit of detection (LOD) of 0.2 µM (R2 = 0.999) due to fluorescence resonance energy transfer from MXL@TX- 100 to Allura red. To the best of our knowledge, no organic compound-based sensor has been reported for the determination of Allura red so far. Additionally, nanomicelles MXL@TX- 100 were utilized for the sensing of picric acid (LOD = 0.92 µM, R2 = 0.998) in the linear range 3.03-928 µM. The binding constant between MXL@TX- 100-Allura red and MXL@TX- 100-picric were calculated to be 1.45 × 105 M-1 and 1.97 × 104 M-1, respectively. Moreover, nanomicelles MXL@TX- 100 conveniently detected Allura red in real samples, viz. candy, soft drink, gulkand, and pharmaceutical syrup.
Collapse
Affiliation(s)
- Nisha Jain
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
3
|
Lin X, Yin C, Hu L, Zhao L, Chen M, Hua X, Liu Z, Li P. Tracing the geographical origin of Chinese green tea based on fluorescent sensor array combined with multi-way chemometrics analyses. Food Res Int 2025; 203:115838. [PMID: 40022362 DOI: 10.1016/j.foodres.2025.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
Fluorescent sensor arrays are becoming a hot topic in many fields because they can simultaneously detect multiple targets in complex research systems. However, most researches have only collected two-dimensional fluorescence spectral data from fluorescent sensor array interacting with target analytes. In contrast, three-dimensional fluorescence spectra can provide richer information than two-dimensional fluorescence spectra. Based on the hypothesis that collecting three-dimensional fluorescence spectra can obtain more abundant information of green tea samples from different regions, which can improve the accuracy and reliability of origin identification. This study aimed to explore the feasibility of using three-dimensional fluorescent sensor array combined with multi-way pattern recognition methods for the origin discrimination of green tea based on the differences in the contents and types of metal ions in green tea. To investigate this, we first designed a fluorescent sensor array based on amino acid-derived carbon dots and examined its ability to recognize common metal ions in green tea. Excitation-emission matrix spectra of green tea extracts from different geographical origins after interaction with the fluorescent sensor array were collected. Several multi-way pattern recognition methods were used to analyze the three-dimensional fluorescent array data of 100 green tea samples from five origins. The overall classification results of green tea from the five geographical origins were satisfactory, with the best prediction accuracy reaching 96.88%. In comparison, multilinear partial least squares discriminant analysis could make full use of the information of three-dimensional fluorescence data. And its correct identification results for green tea were superior to those of unfold partial least squares discriminant analysis. These results sufficiently demonstrated that the fluorescent sensor array integrated with multi-way pattern recognition, has promising potential for tracing the origin of Chinese green tea.
Collapse
Affiliation(s)
- Xinyao Lin
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chunling Yin
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Leqian Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Liuchuang Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mengyao Chen
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xia Hua
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhimin Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Peng Li
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Zhang R, Yan Z, Xue Z, Xu W, Qiao M, Ding L, Fang Y. PBI derivatives/surfactant-based fluorescent ensembles: Sensing of multiple aminoglycoside antibiotics and interaction mechanism studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124735. [PMID: 38955066 DOI: 10.1016/j.saa.2024.124735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Fluorescent aggregates and ensembles have been widely applied in fabrication of fluorescent sensors due to their capacity of encapsulating fluorophores and modulating their photophysical properties. In the present work, fluorescent ensembles based on anionic surfactant SDS assemblies and perylene derivatives (PBIs) were particularly constructed. Three newly synthesized neutral PBI derivatives with different structures, PO, PC1 and PC2, were used for the purpose to evaluate probe structure influence on constructing fluorescent ensembles. The one with hydrophilic side chains, PO, experienced distinct photophysical modulation effect by SDS assemblies. The ensemble based on PO@SDS assemblies displayed effective fluorescence variation to antibiotic aminoglycosides (AGs). To improve cross-reactivity and discrimination capability of ensembles, a second probe, coumarin, was introduced into PO@SDS assemblies. The resultant ternary sensor, CM-PO@SDS, exhibited good qualitative and quantitative detection capabilities, and achieved differentiation of eight AGs and mixed AG samples both in aqueous solution and actual biological fluid, like human serum. Sensing mechanism studies revealed that hydrogen bonding, electrostatic and hydrophobic interactions are involved in the sensing process. This surfactant-based fluorescent ensemble provides a simple and feasible method for assessing AGs levels. Meanwhile, this work may provide some insights to design reasonable probes for constructing effective single-system based discriminative fluorescent amphiphilic sensors.
Collapse
Affiliation(s)
- Rongrong Zhang
- Key Laboratory of Applied Surfaces and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Zhen Yan
- Key Laboratory of Applied Surfaces and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Zhaodan Xue
- Key Laboratory of Applied Surfaces and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Wan Xu
- Key Laboratory of Applied Surfaces and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Min Qiao
- Key Laboratory of Applied Surfaces and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Liping Ding
- Key Laboratory of Applied Surfaces and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| | - Yu Fang
- Key Laboratory of Applied Surfaces and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| |
Collapse
|
5
|
Yan Z, Zhang R, Qiao M, Ma M, Liu T, Ding L, Fang Y. Single-Probe-Based Sensor Array for Fingerprint Recognition of Trivalent Metal Ions and Application in Water Identification. Anal Chem 2024. [PMID: 39152896 DOI: 10.1021/acs.analchem.4c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Abnormal concentration levels of trivalent metal ions (M3+) might hinder their natural biological activities in physiological processes and cause severe health hazards. Herein, a dual-chromophore probe (RhB-TPE) composed of rhodamine and tetraphenylethene (TPE) units was synthesized and explored for discriminating M3+ ions. It exhibited special aggregation and AIE properties in aqueous media. Its ensemble with anionic surfactant SDBS assemblies (RhB-TPE/SDBS) could be utilized as fluorescent sensors for selective and sensitive detection of M3+ ions such as Fe3+, Al3+, and Cr3+ by illustrating quenched TPE emission and switched-on rhodamine emission. Moreover, the use of SDBS assemblies at two concentrations could provide a single-probe-based sensor array and realize four-signal pattern recognition of different concentrations of the three M3+ ions and identify M3+ mixtures or unknown samples. The cross-reactive fluorescence variation was attributed to the M3+ influence on the FRET process from TPE to open-ring form rhodamine in the two ensemble sensors. With the coexistence of Al3+, the optimized RhB-TPE/SDBS ensemble sensor array was successfully applied to differentiate commercially available brand mineral water and purified water, as well as tap water. The present work provides a novel strategy to generate a single-probe-based sensor array and realizes fingerprint recognition of three trivalent metal ions and efficient discrimination of different types of water. The modulation FRET process of a dual chromophore in different surfactant ensembles inspires the future construction of novel and effective sensing platforms.
Collapse
Affiliation(s)
- Zhen Yan
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Rongrong Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Min Qiao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Miao Ma
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
6
|
Yuan C, Guo Z, Tian S, Song N, Liang M. Glutathione ligand self-assembly enables luminescence from Au 15 nanoclusters for highly sensitive and selective monitoring of blood Pb(II) ions. Talanta 2024; 273:125905. [PMID: 38513473 DOI: 10.1016/j.talanta.2024.125905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Lead Pb(II) ions is a cumulative toxicant that impacts several biological systems and poses severe harm to young children. Accurate Pb(II) ions monitoring is thus of paramount importance. Here, we present the synthesis and application of glutathione-capped Au15 nanoclusters (Au15(SG)13) as a luminescence probe for the accurate and selective monitoring of blood Pb(II). The introduction of Pb(II) ions triggers orderly self-assembly of Au15 nanoclusters, resulting in the formation of rigid shell around Au nuclei. This limits the localized vibration of the glutathione ligands and their interaction with water molecules, greatly reducing non-radiative energy loss, and thereby enhancing the photoluminescence signal. Consequently, Au15(SG)13 nanoclusters exhibit high sensitivity for Pb(II) detection. The detection signal displays a linear relationship with Pb(II) over a wide detection range (0-800 μg/L), demonstrating a substantial sensitivity of 35.29 μg/L. Moreover, the developed nanoclusters show superior selectivity for Pb(II) ions, distinguishing them from other prevalent heavy metals. This work pave the way for the development of advanced Pb(II) sensors with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Chang Yuan
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Zhanjun Guo
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Shubo Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ningning Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
7
|
Fan J, Zhu R, Han W, Han H, Ding L. A multi-wavelength cross-reactive fluorescent sensor ensemble for fingerprinting flavonoids in serum and urine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123893. [PMID: 38290284 DOI: 10.1016/j.saa.2024.123893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 02/01/2024]
Abstract
Flavonoids are a kind of natural polyphenols which are closely related to human health, and the identification of flavonoids with similar structures is an important but difficult issue. We herein easily constructed a powerful fluorescent sensor ensemble by using surfactant cetyltrimethylammoniumbromide (CTAB) encapsulating two commercially available fluorescent probes (F1 and F2) with multi-wavelength emission. Fluorescence measurements illustrate the present sensor ensemble exhibits turn-off responses to flavones and flavonols but ratiometric responses to isoflavones, owing to different FRET processes. The heat map and linear discriminant analysis (LDA) results show that this single sensor can effectively distinguish 6 flavonoids belong to three subgroups by collecting the fluorescence variation at four typical wavelengths. Moreover, it can be applied to identify different flavonoids even in biofluids like serum and urine, providing potential practical application.
Collapse
Affiliation(s)
- Junmei Fan
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, PR China.
| | - Ruitao Zhu
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Wei Han
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Hongfei Han
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, PR China.
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| |
Collapse
|
8
|
Sharma A, Singh G, Kaur N, Singh N. Core-Labeled Reverse Micelle-Based Supramolecular Solvents for Assisted Quick and Sensitive Determination of Amitriptyline in Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38319126 DOI: 10.1021/acs.langmuir.3c03691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In recent years, the issue of pharmaceutical contaminants in water bodies has emerged as a significant environmental concern owing to the potential negative impacts on both aquatic ecosystems and human health. Consequently, the development of efficient and eco-friendly methods for their determination and removal is of paramount importance. In this context, the development of a surfactant ensemble sensor has been explored for hard-to-sense amphiphilic drug, i.e., amitriptyline. Herein, a pyrene-based amphiphile chemoreceptor was synthesized and characterized through various spectroscopic techniques such as 1H, 13C NMR, single-crystal XRD, FTIR, and ES-mass spectrometry. Then, dodecanoic acid (DA) and a pyrene-based receptor in a THF/water solvent system were used to generate reverse micelle-based self-aggregates of SUPRAS (SUPRAmolecular Solvent). The structural aspects, such as morphology and size, along with the stability of the SUPRAS aggregates were unfolded through spectroscopic and microscopic insights. The present investigation describes a synergistic approach that combines the unique properties of premicellar concentration of supramolecular solvent with the promising potential of pyrene-based receptor for enhanced amitriptyline extraction with simultaneous determination from water (LOD = 12 nM). To evaluate the effectiveness of the developed aggregates in real-world scenarios, experiments were conducted to determine the sensing efficiency among various pharmaceutical pollutants commonly found in water sources. The results reveal that the synergistic nanoensemble exhibits remarkable sensing ability, toward the amitriptyline (AMT) drug outperforming conventional methods.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Gagandeep Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
9
|
Peng H, Ding L, Fang Y. Recent Advances in Construction Strategies for Fluorescence Sensing Films. J Phys Chem Lett 2024; 15:849-862. [PMID: 38236759 DOI: 10.1021/acs.jpclett.3c03130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A year ago, film-based fluorescent sensors (FFSs) were recognized in the "IUPAC Top Ten Emerging Technologies in Chemistry 2022" due to their extensive application in detecting hidden explosives, illicit drugs, and volatile organic compounds. These sensors offer high sensitivity, specificity, immunity to light scattering, and noninvasiveness. The core of FFSs is the construction of high-performance fluorescent sensing films, which are dependent on the processes of "energy transfer" and "mass transfer" in the active layer and involve complex interactions between sensing molecules and analytes. This Perspective focuses on the latest strategies in constructing these films, emphasizing the design of sensing molecules with various innovative features and structures that enhance the mass transfer efficiency. Additionally, it discusses the ongoing challenges and potential advancements in the field of FFSs.
Collapse
Affiliation(s)
- Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
10
|
Lin Z, Li H, Zhang J, Pei X, Chen Z, Cui Z, Song B. Toroidal micelles formed in viscoelastic aqueous solutions of a double-tailed surfactant with two quaternary ammonium head groups. SOFT MATTER 2024; 20:804-812. [PMID: 38168697 DOI: 10.1039/d3sm01132a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Innovation in surfactant structures is an effective way to prepare new soft materials with novel applications. In this study, we synthesized a double-tailed surfactant containing two quaternary ammonium head groups (Di-C12-N2). The Di-C12-N2 solution behavior was investigated by surface tension, fluorescence, rheology, and cryo-TEM methods. Although Di-C12-N2 contained a large double-tailed hydrophobic group, the solubility of Di-C12-N2 was ∼90 mmol L-1 at 25 °C with a Krafft temperature of ∼1 °C. The increase in Di-C12-N2 concentration in the solutions led to the formation of various aggregates, including spherical micelles, worm-like micelles, multi-layered vesicles, and a rare type of small toroidal micelles. The two quaternary ammonium head groups in Di-C12-N2 led to strong electrostatic interactions between molecules, which was critical for the formation of toroidal micelles. Moreover, with an added NaCl concentration of 40 mmol L-1, the viscosity of the 5 mmol L-1Di-C12-N2 solution increased by ∼1000 times compared to the pure 5 mmol L-1Di-C12-N2 solution, revealing the high sensitivity of the unique head groups to ionic strength. This study enriches the research on the self-assembly principles of surfactants and brings new potential applications for new soft materials.
Collapse
Affiliation(s)
- Zhengrong Lin
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Hongye Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Jinpeng Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Xiaomei Pei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Zhao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Binglei Song
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| |
Collapse
|
11
|
Wang Z, Cao W, Yuan R, Wang H. High AIECL performance of tetraphenylethene derivatives originated from the linear increasing of benzene ring and solvent regulation for sensitive measurement of melatonin. Biosens Bioelectron 2023; 237:115544. [PMID: 37536226 DOI: 10.1016/j.bios.2023.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
The efficiency of aggregation-induced electrochemiluminescence (AIECL) in tetraphenylethene (TPE) derivatives were significantly enhanced by combining the regulation of molecular structure and solvent. Firstly, the linear increase of the benzene ring resulted in enhanced molecular aggregation and promoted the electrochemical reaction of the anode, due to increased molecular conjugation and higher lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO). The ECL efficiency of 4,4,4,4-(Ethene-1,1,2,2-tetrayl) tetrakis (([1,1,4,1-terphenyl]-4-carbaldehyde)) (T3) nanoparticles (NPs) with more benzene rings were 5558 times that of 4,4,4,4-(ethene-1,1,2,2-tetrayl) tetrabenzaldehyde (T1) NPs, and its relative ECL efficiency of T3 NPs reached 55.58% compared to the [Ru (bpy)3]2+/tripropylamine (TPrA) system. Furthermore, solvents with different polarities played a crucial role in modulating the degree of molecular aggregation, which also effectively facilitated the AIE process and reduced the aggregation-caused quenching (ACQ) effect caused by excessively dense aggregation. This aspect had often been overlooked in previous AIECL studies. T3 NPs demonstrated optimal ECL performance at fw = 70% (fw was the H2O content in tetrahydrofuran (THF)/H2O), and its ECL efficiency was 232 times greater than fw = 100% and 1853 times greater than fw = 0%. Additionally, it was found that melatonin (MT), one of the hormones widely used to treat insomnia, exhibited antioxidant and free radical scavenging properties, which exerted a significant quenching effect on the ECL of the T3 NPs/TPrA system. Consequently, a sensitive sensing platform was developed for MT with a low detection limit of 8.78 × 10-10 mol L-1, which promoted the application of AIECL in efficient ultra-sensitive biosensing.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Weiwei Cao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Haijun Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
12
|
Yuan B, Long S, Wang H, Luo Q, Zeng K, Gao S, Lin Y. Surfactant-regulated acetylpyrene assemblies as fluorescent probes for identifying heme proteins in an aqueous solution. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2022.107802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
13
|
Li T, Zhu X, Hai X, Bi S, Zhang X. Recent Progress in Sensor Arrays: From Construction Principles of Sensing Elements to Applications. ACS Sens 2023; 8:994-1016. [PMID: 36848439 DOI: 10.1021/acssensors.2c02596] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The traditional sensors are designed based on the "lock-and-key" strategy with high selectivity and specificity for detecting specific analytes, which however are not suitable for detecting multiple analytes simultaneously. With the help of pattern recognition technologies, the sensor arrays excel in distinguishing subtle changes caused by multitarget analytes with similar structures in a complex system. To construct a sensor array, the multiple sensing elements are undoubtedly indispensable units that will selectively interact with targets to generate the unique "fingerprints" based on the distinct responses, enabling the identification among various analytes through pattern recognition methods. This comprehensive review mainly focuses on the construction strategies and principles of sensing elements, as well as the applications of sensor array for identification and detection of target analytes in a wide range of fields. Furthermore, the present challenges and further perspectives of sensor arrays are discussed in detail.
Collapse
Affiliation(s)
- Tian Li
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Xueying Zhu
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Xin Hai
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
14
|
Che H, Yan S, Xiong M, Nie Y, Tian X, Li Y. Ultra-trace detection and efficient adsorption removal of multiple water-soluble volatile organic compounds by fluorescent sensor array. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130182. [PMID: 36279650 DOI: 10.1016/j.jhazmat.2022.130182] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/24/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Due to the extremely low concentration, complex composition and easy to be converted into each other in water and air of water-soluble volatile organic compounds (VOCs), it is a great challenge to the traditional detection technology, pollution control and traceability, etc. Therefore, developing a convenient, swift and on-site detection method for simultaneous quantification of multiple VOCs is highly anticipated. In this paper, a multifunctional sensor array with adsorption and sensing of VOCs has been constructed by four fluorescence channels of small-sized Eu@Uio-66 and Tb@Uio-66. Due to the obvious cross-reactive characteristics between 4 fluorescence channels and VOCs, the sensor array could detect 8 VOCs simultaneously with all detection limits as low as ppb level. In addition, the detection results of sensor array for actual water samples coexisting with multiple VOCs confirmed that it has strong anti-interference performance and could be used for simultaneous detection of multiple VOCs in real water. The construction of sensor array with VOC adsorption function not only helps to reduce the detection limit of VOCs benefiting from the pre-concentration of materials, but also has significant value to reduce the harmfulness of pollutants. Predictably, this work is of great significance for VOC traceability, analysis of ecotoxicological effects and monitoring of pollution distribution characteristics.
Collapse
Affiliation(s)
- Huachao Che
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Shulin Yan
- Wuxi Little Swan Electric Co., Ltd., National High-tech Development Zone, No. 18 South Changjiang RD, Wuxi, PR China
| | - Ming Xiong
- Wuxi Little Swan Electric Co., Ltd., National High-tech Development Zone, No. 18 South Changjiang RD, Wuxi, PR China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Yong Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
15
|
A Multichannel Fluorescent Tongue for Amyloid- β Aggregates Detection. Int J Mol Sci 2022; 23:ijms232314562. [PMID: 36498895 PMCID: PMC9739152 DOI: 10.3390/ijms232314562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Attention has been paid to the early diagnosis of Alzheimer's disease, due to the maximum benefit acquired from the early-stage intervention and treatment. However, the sensing techniques primarily depended upon for neuroimaging and immunological assays for the detection of AD biomarkers are expensive, time-consuming and instrument dependent. Here, we developed a multichannel fluorescent tongue consisting of four fluorescent dyes and GO through electrostatic and π-π interaction. The array distinguished multiple aggregation states of 1 µM Aβ40/Aβ42 with 100% prediction accuracy via 10-channel signal outputs, illustrating the rationality of the array design. Screening vital sensor elements for the simplified sensor array and the optimization of sensing system was achieved by machine learning algorithms. Moreover, our sensing tongue was able to detect the aggregation states of Aβ40/Aβ42 in serum, demonstrating the great potential of multichannel array in diagnosing the Alzheimer's diseases.
Collapse
|
16
|
Yuan J, Dong S, Hao J. Fluorescent assemblies: Synergistic of amphiphilic molecules and fluorescent elements. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Duan L, Zheng Q, Tu T. Instantaneous High-Resolution Visual Imaging of Latent Fingerprints in Water Using Color-Tunable AIE Pincer Complexes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202540. [PMID: 35771543 DOI: 10.1002/adma.202202540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Instant visualization of latent fingerprints is developed by using a series of water-soluble terpyridine zinc complexes as aggregation-induced emission probes in pure water, under UV light or ambient sunlight. By simply soaking, or spraying with an aqueous solution of the probe, bright yellow fluorescence images with high contrast and resolution are readily developed on various surfaces including tinfoil, glass, paper, steel, leather, and ceramic tile. Remarkably, latent fingerprints can be visualized within seconds including details of whorl and sweat pores. The color of emission can be tuned from blue to orange by modifying the pincer ligands, allowing direct imaging under sunlight. These inexpensive, water-resistant, and color-tunable probes provide a practical approach for latent fingerprints recording and analysis, security protection, as well as criminal investigation in different scenarios.
Collapse
Affiliation(s)
- Lixin Duan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 100 Kexue avenue, Zhengzhou, 450001, P. R. China
| |
Collapse
|
18
|
Water-Soluble Single-Benzene Chromophores: Excited State Dynamics and Fluorescence Detection. Molecules 2022; 27:molecules27175522. [PMID: 36080287 PMCID: PMC9457774 DOI: 10.3390/molecules27175522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Two water-soluble single-benzene-based chromophores, 2,5-di(azetidine-1-yl)-tereph- thalic acid (DAPA) and its disodium carboxylate (DAP-Na), were conveniently obtained. Both chromophores preserved moderate quantum yields in a wide range of polar and protonic solvents. Spectroscopic studies demonstrated that DAPA exhibited red luminescence as well as large Stokes shift (>200 nm) in aqueous solutions. Femtosecond transient absorption spectra illustrated quadrupolar DAPA usually involved the formation of an intramolecular charge transfer state. Its Frank−Condon state could be rapidly relaxed to a slight symmetry-breaking state upon light excitation following the solvent relaxation, then the slight charge separation may occur and the charge localization became partially asymmetrical in polar environments. Density functional theory (DFT) calculation results were supported well with the experimental measurements. Unique pH-dependent fluorescent properties endows the two chromophores with rapid, highly selective, and sensitive responses to the amino acids in aqueous media. In detail, DAPA served as a fluorescence turn-on probe with a detection limit (DL) of 0.50 μM for Arg and with that of 0.41 μM for Lys. In contrast, DAP-Na featured bright green luminescence and showed fluorescence turn-off responses to Asp and Glu with the DLs of 0.12 μM and 0.16 μM, respectively. Meanwhile, these two simple-structure probes exhibited strong anti-interference ability towards other natural amino acids and realized visual identification of specific analytes. The present work helps to understand the photophysic−structure relationship of these kinds of compounds and render their fluorescent detection applications.
Collapse
|
19
|
Qiao M, Zhang R, Liu S, Liu J, Ding L, Fang Y. Imidazolium-Modified Bispyrene-Based Fluorescent Aggregates for Discrimination of Multiple Anions in Aqueous Solution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32706-32718. [PMID: 35817757 DOI: 10.1021/acsami.2c07047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A great number of anions exist in biological systems and natural environment, and are highly relevant to human health and environment quality. It is necessary to develop simple and effective sensors to differentiate and identify those similar or different anions. Here, an imidazolium-modified bispyrene-based fluorescent amphiphilic probe DPyDIM was synthesized and its aggregates were applied to detect and discriminate various anions. The fluorescent aggregates exhibit ratiometric responses to different types of anions. Moreover, the ratiometric responses to different types of anions are featured with multiple-wavelength cross-reactivity. The collection of fluorescence variation at four typical wavelengths can generate distinct recognition patterns to specific anions. The heat map and principal component analysis results verify that this single fluorescent sensor system can effectively and sensitively identify 16 kinds of anions that belong to phosphorus-containing, sulfur-containing anions, and anionic surfactants. The cross-reactive sensing of the amphiphilic fluorescent aggregates was attributed to the different influences on the aggregation behaviors of the probes by different anions. The present work provides a promising strategy for effective detection and discrimination of multiple anions by employing dynamic fluorescent aggregates as a sensing platform.
Collapse
Affiliation(s)
- Min Qiao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Ruowen Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Shanshan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| |
Collapse
|
20
|
Wang H, Zhou L, Qin J, Chen J, Stewart C, Sun Y, Huang H, Xu L, Li L, Han J, Li F. One-Component Multichannel Sensor Array for Rapid Identification of Bacteria. Anal Chem 2022; 94:10291-10298. [PMID: 35802909 DOI: 10.1021/acs.analchem.2c02236] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial infections routinely cause serious problems to public health. To mitigate the impact of bacterial infections, sensing systems are urgently required for the detection and subsequent epidemiological control of pathogenic organisms. Most conventional approaches are time-consuming and highly instrument- and professional operator-dependent. Here, we developed a novel one-component multichannel array constructed with complex systems made from three modified polyethyleneimine as well as negatively charged graphene oxide, which provided an information-rich multimode response to successfully identify 10 bacteria within minutes via electrostatic interactions and hydrophobic interactions. Furthermore, the concentration of bacteria (from OD600 = 0.025 to 1) and the ratio of mixed bacteria were successfully achieved with our smart sensing system. Our designed sensor array also exhibited huge potential in biological samples, such as in urine (OD600 = 0.125, 94% accuracy). The way to construct a sensor array with minimal sensor element with abundant signal outputs tremendously saves cost and time, providing a powerful tool for the diagnosis and assessment of bacterial infections in the clinic.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Lingjia Zhou
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Jiaojiao Qin
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Jiahao Chen
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Callum Stewart
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Yimin Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211109, China
| | - Hui Huang
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Lian Xu
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Linxian Li
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Jinsong Han
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Fei Li
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| |
Collapse
|
21
|
Xu L, Wang H, Xu Y, Cui W, Ni W, Chen M, Huang H, Stewart C, Li L, Li F, Han J. Machine Learning-Assisted Sensor Array Based on Poly(amidoamine) (PAMAM) Dendrimers for Diagnosing Alzheimer's Disease. ACS Sens 2022; 7:1315-1322. [PMID: 35584464 DOI: 10.1021/acssensors.2c00132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, and the early diagnosis of AD remains challenging. Here we have developed a fluorescent sensor array composed of three modified polyamidoamine dendrimers. Proteins of various properties were differentiated via this array with 100% accuracy, proving the rationality of the array's design. The mechanism of the fluorescence response was discussed. Furthermore, the robust three-element array enables parallel detection of multiple Aβ40/Aβ42 aggregates (0.5 μM) in diverse interferents, serum media, and cerebrospinal fluid (CSF) with high accuracy, through machine learning algorithms, demonstrating the tremendous potential of the sensor array in Alzheimer's disease diagnosis.
Collapse
Affiliation(s)
- Lian Xu
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Hao Wang
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Yu Xu
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Wenyu Cui
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Weiwei Ni
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Mingqi Chen
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Hui Huang
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Callum Stewart
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Linxian Li
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Fei Li
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| |
Collapse
|
22
|
Ma X. Machine learning-assisted improving gas sensor array recognition ability. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Diana R, Caruso U, Di Costanzo L, Concilio S, Piotto S, Sessa L, Panunzi B. A Water Soluble 2-Phenyl-5-(pyridin-3-yl)-1,3,4-oxadiazole Based Probe: Antimicrobial Activity and Colorimetric/Fluorescence pH Response. Molecules 2022; 27:1824. [PMID: 35335188 PMCID: PMC8952330 DOI: 10.3390/molecules27061824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022] Open
Abstract
The growing demand of responsive tools for biological and biomedical applications pushes towards new low-cost probes easy to synthesize and versatile. Current optical probes are theranostic tools simultaneously responsive to biological parameters/analyte and therapeutically operating. Among the optical methods for pH monitoring, simple small organic molecules including multifunctional probes for simultaneous biological activity being highly desired by scientists and technicians. Here, we present a novel pH-responsive probe with a three-ring heteroaromatic pattern and a flexible cationic chain. The novel molecule shows real-time naked-eye colorimetric and fluorescence response in the slightly acidic pH range besides its excellent solubility both in the organic phase and in water. In addition, the small probe shows significant antibacterial activity, particularly against Escherichia coli. Single-crystal X-ray study and density functional theory (DFT) calculations rationalize the molecule spectroscopic response. Finally, molecular dynamics (MD) elucidate the interactions between the probe and a model cell membrane.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agriculture, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy; (R.D.); (L.D.C.); (B.P.)
| | - Ugo Caruso
- Department of Chemical Sciences, University of Naples Federico II, Strada Comunale Cinthia, 26, 80126 Napoli, Italy
| | - Luigi Di Costanzo
- Department of Agriculture, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy; (R.D.); (L.D.C.); (B.P.)
| | - Simona Concilio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (S.C.); (S.P.); (L.S.)
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (S.C.); (S.P.); (L.S.)
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (S.C.); (S.P.); (L.S.)
| | - Barbara Panunzi
- Department of Agriculture, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy; (R.D.); (L.D.C.); (B.P.)
| |
Collapse
|
24
|
Wang H, Chen M, Sun Y, Xu L, Li F, Han J. Machine Learning-Assisted Pattern Recognition of Amyloid Beta Aggregates with Fluorescent Conjugated Polymers and Graphite Oxide Electrostatic Complexes. Anal Chem 2022; 94:2757-2763. [PMID: 35084168 DOI: 10.1021/acs.analchem.1c03623] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Five fluorescent positively charged poly(para-aryleneethynylene) (P1-P5) were designed to construct electrostatic complexes C1-C5 with negatively charged graphene oxide (GO). The fluorescence of conjugated polymers was quenched by the quencher GO. Three electrostatic complexes were enough to distinguish between 12 proteins with 100% accuracy. Furthermore, using these sensor arrays, we could identify the levels of Aβ40 and Aβ42 aggregates (monomers, oligomers, and fibrils) via employing machine learning algorithms, making it an attractive strategy for early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Mingqi Chen
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Yimin Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211109, China
| | - Lian Xu
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Fei Li
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| |
Collapse
|
25
|
Mitchell M, Liyana Gunawardana VW, Ramakrishna G, Mezei G. Pyrene-Functionalized Fluorescent Nanojars: Synthesis, Mass Spectrometric, and Photophysical Studies. ACS OMEGA 2021; 6:33180-33191. [PMID: 34901669 PMCID: PMC8656208 DOI: 10.1021/acsomega.1c05619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Nanojars are a class of supramolecular coordination complexes based on pyrazolate, Cu2+, and OH- ions that self-assemble around highly hydrophilic anions and serve as efficient anion binding and extraction agents. In this work, the synthesis, characterization, and photophysical properties of pyrene-functionalized fluorescent nanojars are presented. Three pyrene derivatives, 4-(pyren-1-yl)pyrazole (HL1), 4-(5-(pyren-1-yl)pent-4-yn-1-yl)pyrazole (HL2), and 4-(3-(pyrazol-4-yl)propyl)-1-(pyren-1-yl)-1,2,3-triazole (HL3), and the corresponding nanojars were synthesized and characterized using nuclear magnetic resonance spectroscopy and mass spectrometry. Electronic absorption, steady-state, and time-resolved fluorescence measurements were carried out to understand the interaction between the pyrene fluorophore and copper nanojars. Optical absorption measurements have shown minor ground state interaction between the fluorophore and nanojars. The fluorescence of pyrene is significantly quenched when attached to nanojars, suggesting strong contribution from the paramagnetic Cu2+ ions. Significant static quenching is observed in the case of L1, when pyrene is directly bound to the nanojar, whereas in the case of L2 and L3, when pyrene is attached to the nanojars using flexible tethers, both static and dynamic quenching are observed.
Collapse
Affiliation(s)
- Melanie
M. Mitchell
- Department of Chemistry, Western
Michigan University, Kalamazoo, Michigan 49008, USA
| | | | - Guda Ramakrishna
- Department of Chemistry, Western
Michigan University, Kalamazoo, Michigan 49008, USA
| | - Gellert Mezei
- Department of Chemistry, Western
Michigan University, Kalamazoo, Michigan 49008, USA
| |
Collapse
|
26
|
Chen B, Yang Z, Qu X, Zheng S, Yin D, Fu H. Screening and Discrimination of Perfluoroalkyl Substances in Aqueous Solution Using a Luminescent Metal-Organic Framework Sensor Array. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47706-47716. [PMID: 34605622 DOI: 10.1021/acsami.1c15528] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The extensive production and large-scale use of perfluoroalkyl substances (PFASs) have raised their presence in aquatic environments worldwide. Thus, the facile and reliable screening of PFASs in aqueous systems is of great significance. Herein, we designed a novel fluorescent sensor array for the rapid screening and discrimination of multiple PFASs in water. The sensor array comprised three highly stable zirconium porphyrinic luminescent metal-organic frameworks (i.e., PCNs) with different topological structures. The sensing mechanism was based on the static fluorescence quenching of PCNs by PFASs upon their adsorptive interactions. The fluorescence response patterns were characteristic for each PFAS because of their different adsorption affinities toward different PCNs. Through the interpretation of response patterns by statistical methods, the proposed PCN array successfully discriminated six different kinds of PFASs, each PFAS at different concentrations and PFAS mixtures at different molar ratios. The practicability of this array was further verified by effectively discriminating PFASs in two real water samples. Remarkably, the PCN sensors exhibited a very short response time toward PFASs (within 10 s) due to the ordered pore structure allowing fast PFAS diffusion. This study not only provides a facile method for rapid PFAS screening in waters but also broadens the application of luminescent metal-organic frameworks and array techniques in sensing fields.
Collapse
Affiliation(s)
- Beining Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Zhengshuang Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| |
Collapse
|