1
|
Dai Y, Li Y, Xuan S, Dai Y, Xu T, Yu H. Triboelectric Nanogenerator-Based Flexible Acoustic Sensor for Speech Recognition. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11117-11125. [PMID: 39912319 DOI: 10.1021/acsami.4c21563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The way people interact with machines through flexible acoustic sensors is revolutionizing the way we live. However, developing a human-machine interaction acoustic sensor that simultaneously offers low cost, high stability, high fidelity, and high sensitivity remains a significant challenge. In this study, a sensor based on a sound-driven triboelectric nanogenerator was proposed. A poly(vinylidene fluoride) (PVDF)/graphene oxide (GO) composite nanofiber film was obtained as the dielectric layer through electrospinning, and copper-nickel alloy conductive fabric was used as the electrode. An imitation embroidery shed structure was designed in the shape of a ring to secure the upper and lower electrodes and the dielectric layer as a whole. Due to the porosity of the electrode, the large contact area of the dielectric layer, and the high stability of the imitation embroidery shed structure, the sensor achieves a sensitivity of 4.76 V·Pa-1 and a frequency response range of 20-2000 Hz. A multilayer attention convolutional network (MLACN) was designed for speech recognition. The designed speech recognition system achieved a 99.5% accuracy rate in recognizing common word pronunciations. The integration of sound-driven triboelectric nanogenerator-based flexible acoustic sensors with deep learning techniques holds great promise in the field of human-machine interaction.
Collapse
Affiliation(s)
- Yang Dai
- School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Yunlong Li
- School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Shixian Xuan
- School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Yuheng Dai
- School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Tao Xu
- School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Hu Yu
- Wuhan Institute of Marine Electric Propulsion, Wuhan 430064, China
| |
Collapse
|
2
|
Tian Y, Wang J, Chen H, Lin H, Wu S, Zhang Y, Tian M, Meng J, Saeed W, Liu W, Chen X. Electrospun multifunctional nanofibers for advanced wearable sensors. Talanta 2025; 283:127085. [PMID: 39490308 DOI: 10.1016/j.talanta.2024.127085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The multifunctional extension of fiber-based wearable sensors determines their integration and sustainable development, with electrospinning technology providing reliable, efficient, and scalable support for fabricating these sensors. Despite numerous studies on electrospun fiber-based wearable sensors, further attention is needed to leverage composite structural engineering for functionalizing electrospun fibers. This paper systematically reviews the research progress on fiber-based multifunctional wearable sensors in terms of design concept, device fabrication, mechanism exploration, and application potential. Firstly, the basics of electrospinning are briefly introduced, including its development, principles, parameters, and material selection. Tactile sensors, as crucial components of wearable sensors, are discussed in detail, encompassing their performance parameters, transduction mechanisms, and preparation strategies for pressure, strain, temperature, humidity, and bioelectrical signal sensors. The main focus of the article is on the latest research progress in multifunctional sensing design concepts, multimodal decoupling mechanisms, sensing mechanisms, and functional extensions. These extensions include multimodal sensing, self-healing, energy harvesting, personal thermal management, EMI shielding, antimicrobial properties, and other capabilities. Furthermore, the review assesses existing challenges and outlines future developments for multifunctional wearable sensors, highlighting the need for continued research and innovation.
Collapse
Affiliation(s)
- Ye Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China; The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Junhao Wang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Haojie Chen
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Haibin Lin
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Shulei Wu
- Key Laboratory of Polymer Materials and Products, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, People's Republic of China
| | - Yifan Zhang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Meng Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Jiaqi Meng
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Waqas Saeed
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Wei Liu
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Xing Chen
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
3
|
Deng S, Akram W, Ye X, Zhang L, Yang Y, Cheng S, Fang J. Comprehensive Insights on MXene-Based TENGs: from Structures, Functions to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404872. [PMID: 39358944 DOI: 10.1002/smll.202404872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/16/2024] [Indexed: 10/04/2024]
Abstract
The rapid advancement of triboelectric nanogenerators (TENGs) has introduced a transformative approach to energy harvesting and self-powered sensing in recent years. Nonetheless, the untapped potential of TENGs in practical scenarios necessitates multiple strategies like material selections and structure designs to enhance their output performance. Given the various superior properties, MXenes, a kind of novel 2D materials, have demonstrated great promise in enhancing TENG functionality. Here, this review comprehensively delineates the advantages of incorporating MXenes into TENGs, majoring in six pivotal aspects. First, an overview of TENGs is provided, stating their theoretical foundations, working modes, material considerations, and prevailing challenges. Additionally, the structural characteristics, fabrication methodologies, and family of MXenes, charting their developmental trajectory are highlighted. The selection of MXenes as various functional layers (negative and positive triboelectric layer, electrode layer) while designing TENGs is briefed. Furthermore, the distinctive advantages of MXene-based TENGs and their applications are emphasized. Last, the existing challenges are highlighted, and the future developing directions of MXene-based TENGs are forecasted.
Collapse
Affiliation(s)
- Shengwu Deng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Wasim Akram
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Xiaorui Ye
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Lizi Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Yang Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Si Cheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| |
Collapse
|
4
|
Han X, Lin X, Sun Y, Huang L, Huo F, Xie R. Advancements in Flexible Electronics Fabrication: Film Formation, Patterning, and Interface Optimization for Cutting-Edge Healthcare Monitoring Devices. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356954 DOI: 10.1021/acsami.4c11976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Flexible electronics can seamlessly adhere to human skin or internal tissues, enabling the collection of physiological data and real-time vital sign monitoring in home settings, which give it the potential to revolutionize chronic disease management and mitigate mortality rates associated with sudden illnesses, thereby transforming current medical practices. However, the development of flexible electronic devices still faces several challenges, including issues pertaining to material selection, limited functionality, and performance instability. Among these challenges, the choice of appropriate materials, as well as their methods for film formation and patterning, lays the groundwork for versatile device development. Establishing stable interfaces, both internally within the device and in human-machine interactions, is essential for ensuring efficient, accurate, and long-term monitoring in health electronics. This review aims to provide an overview of critical fabrication steps and interface optimization strategies in the realm of flexible health electronics. Specifically, we discuss common thin film processing methods, patterning techniques for functional layers, interface challenges, and potential adjustment strategies. The objective is to synthesize recent advancements and serve as a reference for the development of innovative flexible health monitoring devices.
Collapse
Affiliation(s)
- Xu Han
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Xinjing Lin
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Yifei Sun
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Lingling Huang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, 10 Zhenhai Road, Xiamen 361102, Fujian, P. R. China
| | - Fengwei Huo
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ruijie Xie
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| |
Collapse
|
5
|
Zhao G, Sui C, Zhao C, Zhao Y, Cheng G, Li J, Wen L, Hao W, Sang Y, Zhou Y, He X, Wang C. Supertough MXene/Sodium Alginate Composite Fiber Felts Integrated with Outstanding Electromagnetic Interference Shielding and Heating Properties. NANO LETTERS 2024; 24:8098-8106. [PMID: 38913786 DOI: 10.1021/acs.nanolett.4c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The development of multifunctional MXene-based fabrics for smart textiles and portable devices has garnered significant attention. However, very limited studies have focused on their structure design and associated mechanical properties. Here, the supertough MXene fiber felts composed of MXene/sodium alginate (SA) fibers were fabricated. The fracture strength and bending stiffness of felts can be up to 97.8 MPa and 1.04 N mm2, respectively. Besides, the fracture toughness of felts was evaluated using the classic Griffith theory, yielding to a critical stress intensity factor of 1.79 M P a m . In addition, this kind of felt presents outstanding electrothermal conversion performance (up to 119 °C at a voltage of 2.5 V), high cryogenic and high-temperature tolerance of photothermal conversion performance (-196 to 160 °C), and excellent electromagnetic interference (EMI) shielding effectiveness (54.4 dB in the X-band). This work provides new structural design concepts for high-performance MXene-based textiles, broadening their future applications.
Collapse
Affiliation(s)
- Guoxin Zhao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Chao Sui
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Chenxi Zhao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Yushun Zhao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Gong Cheng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Junjiao Li
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Lei Wen
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Weizhe Hao
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Yuna Sang
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Yingchun Zhou
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Chao Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
6
|
Zhi C, Shi S, Wu H, Si Y, Zhang S, Lei L, Hu J. Emerging Trends of Nanofibrous Piezoelectric and Triboelectric Applications: Mechanisms, Electroactive Materials, and Designed Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401264. [PMID: 38545963 DOI: 10.1002/adma.202401264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Over the past few decades, significant progress in piezo-/triboelectric nanogenerators (PTEGs) has led to the development of cutting-edge wearable technologies. Nanofibers with good designability, controllable morphologies, large specific areas, and unique physicochemical properties provide a promising platform for PTEGs for various advanced applications. However, the further development of nanofiber-based PTEGs is limited by technical difficulties, ranging from materials design to device integration. Herein, the current developments in PTEGs based on electrospun nanofibers are systematically reviewed. This review begins with the mechanisms of PTEGs and the advantages of nanofibers and nanodevices, including high breathability, waterproofness, scalability, and thermal-moisture comfort. In terms of materials and structural design, novel electroactive nanofibers and structure assemblies based on 1D micro/nanostructures, 2D bionic structures, and 3D multilayered structures are discussed. Subsequently, nanofibrous PTEGs in applications such as energy harvesters, personalized medicine, personal protective equipment, and human-machine interactions are summarized. Nanofiber-based PTEGs still face many challenges such as energy efficiency, material durability, device stability, and device integration. Finally, the research gap between research and practical applications of PTEGs is discussed, and emerging trends are proposed, providing some ideas for the development of intelligent wearables.
Collapse
Affiliation(s)
- Chuanwei Zhi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Hanbai Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Shuai Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Leqi Lei
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
7
|
Zhu C, Zheng J, Fu J. Electrospinning Nanofibers as Stretchable Sensors for Wearable Devices. Macromol Biosci 2024; 24:e2300274. [PMID: 37653597 DOI: 10.1002/mabi.202300274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Wearable devices attract great attention in intelligent medicine, electronic skin, artificial intelligence robots, and so on. However, boundedness of traditional sensors based on rigid materials unconstrained self-multilayer structure assembly and dense substrate in stretchability and permeability limits their applications. The network structure of the elastomeric nanofibers gives them excellent air permeability and stretchability. By introducing metal nanofillers, intrinsic conductive polymers, carbon materials, and other methods to construct conductive paths, stretchable conductors can be effectively prepared by elastomeric nanofibers, showing great potential in the field of flexible sensors. This perspective briefly introduces the representative preparations of conductive thermoplastic polyurethane, nylon, and hydrogel nanofibers by electrospinning and the application of integrated electronic devices in biological signal detection. The main challenge is to unify the stretchability and conductivity of the fiber structure.
Collapse
Affiliation(s)
- Canjie Zhu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jingxia Zheng
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jun Fu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| |
Collapse
|
8
|
Dinuwan
Gunawardhana KRS, Simorangkir RBVB, McGuinness GB, Rasel MS, Magre Colorado LA, Baberwal SS, Ward TE, O’Flynn B, Coyle SM. The Potential of Electrospinning to Enable the Realization of Energy-Autonomous Wearable Sensing Systems. ACS NANO 2024; 18:2649-2684. [PMID: 38230863 PMCID: PMC10832067 DOI: 10.1021/acsnano.3c09077] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
The market for wearable electronic devices is experiencing significant growth and increasing potential for the future. Researchers worldwide are actively working to improve these devices, particularly in developing wearable electronics with balanced functionality and wearability for commercialization. Electrospinning, a technology that creates nano/microfiber-based membranes with high surface area, porosity, and favorable mechanical properties for human in vitro and in vivo applications using a broad range of materials, is proving to be a promising approach. Wearable electronic devices can use mechanical, thermal, evaporative and solar energy harvesting technologies to generate power for future energy needs, providing more options than traditional sources. This review offers a comprehensive analysis of how electrospinning technology can be used in energy-autonomous wearable wireless sensing systems. It provides an overview of the electrospinning technology, fundamental mechanisms, and applications in energy scavenging, human physiological signal sensing, energy storage, and antenna for data transmission. The review discusses combining wearable electronic technology and textile engineering to create superior wearable devices and increase future collaboration opportunities. Additionally, the challenges related to conducting appropriate testing for market-ready products using these devices are also discussed.
Collapse
Affiliation(s)
- K. R. Sanjaya Dinuwan
Gunawardhana
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| | | | | | - M. Salauddin Rasel
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| | - Luz A. Magre Colorado
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Sonal S. Baberwal
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Tomás E. Ward
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
- School
of Computing, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Brendan O’Flynn
- Tyndall
National Institute, Lee Maltings Complex
Dyke Parade, T12R5CP Cork, Ireland
| | - Shirley M. Coyle
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| |
Collapse
|
9
|
Huang A, Zhu Y, Peng S, Tan B, Peng X. Improved Energy Harvesting Ability of Single-Layer Binary Fiber Nanocomposite Membrane for Multifunctional Wearable Hybrid Piezoelectric and Triboelectric Nanogenerator and Self-Powered Sensors. ACS NANO 2024; 18:691-702. [PMID: 38147828 DOI: 10.1021/acsnano.3c09043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
While wearable self-powered electronic devices have shown promising improvements, substantial challenges persist in enhancing their electrical output and structural performance. In this work, a working mechanism involving simultaneous piezoelectric and triboelectric conversion within a monolayer-structured membrane is proposed. Single-layer binary fiber nanocomposite membranes (SBFNMs) (PVDF/CNTX@PAN/CNTX, DPCPCX) with two distinct interpenetrating nanocomposite fibers were created through co-electrospinning, incorporating multiwalled carbon nanotubes (CNTs) into polyvinylidene fluoride (PVDF) and polyacrylonitrile (PAN), respectively. The resulting membrane demonstrated an exceptional synergistic effect of piezoelectricity and triboelectricity along with a high machine-to-electric conversion capability. The addition of CNTs increased the PVDF β-phase and the PAN planar zigzag conformation. As a result, the DPCPC0.5-SBFNMs-based piezoelectric nanogenerator exhibited excellent electrical output (187 V, 8.0 μA, and 1.52 W m-2), maintaining an exceptionally high level of output voltage compared with other piezoelectric nanogenerators. It successfully illuminated 50 commercial light-emitting diodes simultaneously. The output voltage of DPCPC0.5-SBFNMs was 5.1 and 4.6 times higher than that of PAN or PVDF single-fiber membranes, respectively. Furthermore, the peak voltage of DPCPC0.5-SBFNMs exceeded that of co-electrospinning PVDF/CNT1.0@PAN (DPCP1.0) and PVDF@PAN/CNT1.0 (DPPC1.0) by 20 and 10 V, respectively. The piezoelectric sensor made of DPCPC0.5-SBFNMs accurately sensed human movement, ranging from tiny to large, and demonstrated utility as an alarm in medical treatment, fire fighting, and monitoring. Endogenous triboelectricity is proposed in SBFNM piezoelectric materials, enhancing electromechanical conversion and electrical output capacity, thereby promising a wide application potential in self-powered wearable electronic devices.
Collapse
Affiliation(s)
- An Huang
- Key Laboratory of Polymer Materials and Products, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, People's Republic of China
| | - Yiwei Zhu
- Key Laboratory of Polymer Materials and Products, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, People's Republic of China
| | - Shuqiang Peng
- Key Laboratory of Polymer Materials and Products, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Bin Tan
- Key Laboratory of Polymer Materials and Products, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, People's Republic of China
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiangfang Peng
- Key Laboratory of Polymer Materials and Products, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, People's Republic of China
| |
Collapse
|
10
|
Mi Y, Zhao Z, Wu H, Lu Y, Wang N. Porous Polymer Materials in Triboelectric Nanogenerators: A Review. Polymers (Basel) 2023; 15:4383. [PMID: 38006107 PMCID: PMC10675394 DOI: 10.3390/polym15224383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Since the invention of the triboelectric nanogenerator (TENG), porous polymer materials (PPMs), with different geometries and topologies, have been utilized to enhance the output performance and expand the functionality of TENGs. In this review, the basic characteristics and preparation methods of various PPMs are introduced, along with their applications in TENGs on the basis of their roles as electrodes, triboelectric surfaces, and structural materials. According to the pore size and dimensionality, various types of TENGs that are built with hydrogels, aerogels, foams, and fibrous media are classified and their advantages and disadvantages are analyzed. To deepen the understanding of the future development trend, their intelligent and multifunctional applications in human-machine interfaces, smart wearable devices, and self-powering sensors are introduced. Finally, the future directions and challenges of PPMs in TENGs are explored to provide possible guidance on PPMs in various TENG-based intelligent devices and systems.
Collapse
Affiliation(s)
- Yajun Mi
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| | - Zequan Zhao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| | - Han Wu
- National Electronic Computer Quality Inspection and Testing Center, Beijing 100083, China;
| | - Yin Lu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
- National Electronic Computer Quality Inspection and Testing Center, Beijing 100083, China;
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| |
Collapse
|
11
|
Yang Z, Zhang X, Deng T, Xiang G. Mechanically Robust and Electrically Stable High-Performance Triboelectric Nanogenerator Based on Fluffy-Free EC/Nylon-11 and PTFE/PVDF Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37906719 DOI: 10.1021/acsami.3c13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Electrospun nanofiber (NF)-based triboelectric nanogenerators (TENGs) have attracted significant attention in recent years due to their high specific surface area, flexibility, and facile fabrication. However, these TENGs' triboelectric (TE) layers composed of electrospun NFs fail easily due to the poor mechanical properties and fluffy characteristics of the NFs. Herein, electropositive and electronegative TE layers based on ethylcellulose-coated nylon-11 (EC/nylon-11) NFs and polytetrafluoroethylene-coated poly(vinylidene fluoride) (PTFE/PVDF) NFs are prepared via electrospinning and postcoating processes. The obtained EC/nylon-11 and PTFE/PVDF NFs are fluffy-free and exhibit 12.26 and 20.33-fold enhancements of Young's modulus compared with those of pure nylon-11 and PVDF NFs, respectively. The optimized TENG exhibits not only superior performance, including an open-circuit voltage (VOC) of 212 V, a short-circuit current (ISC) of 18.5 μA, and a maximum power density of 1.76 W/m2 but also excellent electrical durability for over 100,000 cycles. The TENG's capability is further demonstrated by continuously driving electronics for over 5 min and by being integrated into a self-powered sensor array of electric skin to detect different in vitro stimuli. This work provides an effective approach to obtaining mechanically robust and electrically stable NF-based high-performance TENGs, which may have potential applications in durable, wearable, and self-powered nanoelectronics.
Collapse
Affiliation(s)
- Zhuanqing Yang
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Xi Zhang
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Tianjie Deng
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Gang Xiang
- College of Physics, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Meena JS, Khanh TD, Jung SB, Kim JW. Self-Repairing and Energy-Harvesting Triboelectric Sensor for Tracking Limb Motion and Identifying Breathing Patterns. ACS APPLIED MATERIALS & INTERFACES 2023; 15:29486-29498. [PMID: 37296075 DOI: 10.1021/acsami.3c06060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The increasing prevalence of health problems stemming from sedentary lifestyles and evolving workplace cultures has placed a substantial burden on healthcare systems. Consequently, remote health wearable monitoring systems have emerged as essential tools to track individuals' health and well-being. Self-powered triboelectric nanogenerators (TENGs) have exhibited significant potential for use as emerging detection devices capable of recognizing body movements and monitoring breathing patterns. However, several challenges remain to be addressed in order to fulfill the requirements for self-healing ability, air permeability, energy harvesting, and suitable sensing materials. These materials must possess high flexibility, be lightweight, and have excellent triboelectric charging effects in both electropositive and electronegative layers. In this work, we investigated self-healable electrospun polybutadiene-based urethane (PBU) as a positive triboelectric layer and titanium carbide (Ti3C2Tx) MXene as a negative triboelectric layer for the fabrication of an energy-harvesting TENG device. PBU consists of maleimide and furfuryl components as well as hydrogen bonds that trigger the Diels-Alder reaction, contributing to its self-healing properties. Moreover, this urethane incorporates a multitude of carbonyl and amine groups, which create dipole moments in both the stiff and the flexible segments of the polymer. This characteristic positively influences the triboelectric qualities of PBU by facilitating electron transfer between contacting materials, ultimately resulting in high output performance. We employed this device for sensing applications to monitor human motion and breathing pattern recognition. The soft and fibrous-structured TENG generates a high and stable open-circuit voltage of up to 30 V and a short-circuit current of 4 μA at an operation frequency of 4.0 Hz, demonstrating remarkable cyclic stability. A significant feature of our TENG is its self-healing ability, which allows for the restoration of its functionality and performance after sustaining damage. This characteristic has been achieved through the utilization of the self-healable PBU fibers, which can be repaired via a simple vapor solvent method. This innovative approach enables the TENG device to maintain optimal performance and continue functioning effectively even after multiple uses. After integration with a rectifier, the TENG can charge various capacitors and power 120 LEDs. Moreover, we employed the TENG as a self-powered active motion sensor, attaching it to the human body to monitor various body movements for energy-harvesting and sensing purposes. Additionally, the device demonstrates the capability to recognize breathing patterns in real time, offering valuable insights into an individual's respiratory health.
Collapse
Affiliation(s)
- Jagan Singh Meena
- Research Center for Advanced Materials Technology, Core Research Institute, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do ,Republic of Korea
| | - Tran Duc Khanh
- Department of Smart Fab Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Seung-Boo Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Jong-Woong Kim
- Department of Smart Fab Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| |
Collapse
|
13
|
Meng X, Cai C, Luo B, Liu T, Shao Y, Wang S, Nie S. Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics. NANO-MICRO LETTERS 2023; 15:124. [PMID: 37166487 PMCID: PMC10175533 DOI: 10.1007/s40820-023-01094-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
With the rapid development of the Internet of Things and flexible electronic technologies, there is a growing demand for wireless, sustainable, multifunctional, and independently operating self-powered wearable devices. Nevertheless, structural flexibility, long operating time, and wearing comfort have become key requirements for the widespread adoption of wearable electronics. Triboelectric nanogenerators as a distributed energy harvesting technology have great potential for application development in wearable sensing. Compared with rigid electronics, cellulosic self-powered wearable electronics have significant advantages in terms of flexibility, breathability, and functionality. In this paper, the research progress of advanced cellulosic triboelectric materials for self-powered wearable electronics is reviewed. The interfacial characteristics of cellulose are introduced from the top-down, bottom-up, and interfacial characteristics of the composite material preparation process. Meanwhile, the modulation strategies of triboelectric properties of cellulosic triboelectric materials are presented. Furthermore, the design strategies of triboelectric materials such as surface functionalization, interfacial structure design, and vacuum-assisted self-assembly are systematically discussed. In particular, cellulosic self-powered wearable electronics in the fields of human energy harvesting, tactile sensing, health monitoring, human-machine interaction, and intelligent fire warning are outlined in detail. Finally, the current challenges and future development directions of cellulosic triboelectric materials for self-powered wearable electronics are discussed.
Collapse
Affiliation(s)
- Xiangjiang Meng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Bin Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Yuzheng Shao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
14
|
Du G, Wang J, Liu Y, Yuan J, Liu T, Cai C, Luo B, Zhu S, Wei Z, Wang S, Nie S. Fabrication of Advanced Cellulosic Triboelectric Materials via Dielectric Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206243. [PMID: 36967572 PMCID: PMC10214270 DOI: 10.1002/advs.202206243] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/19/2023] [Indexed: 05/27/2023]
Abstract
The rapid rise of triboelectric nanogenerators (TENGs), which are emerging energy conversion devices in advanced electronics and wearable sensing systems, has elevated the interest in high-performance and multifunctional triboelectric materials. Among them, cellulosic materials, affording high efficiency, biodegradability, and customizability, are becoming a new front-runner. The inherently low dielectric constant limits the increase in the surface charge density. However, owing to its unique structure and excellent processability, cellulose shows great potential for dielectric modulation, providing a strong impetus for its advanced applications in the era of Internet of Things and artificial intelligence. This review aims to provide comprehensive insights into the fabrication of dielectric-enhanced cellulosic triboelectric materials via dielectric modulation. The exceptional advantages and research progress in cellulosic materials are highlighted. The effects of the dielectric constant, polarization, and percolation threshold on the charge density are systematically investigated, providing a theoretical basis for cellulose dielectric modulation. Typical dielectric characterization methods are introduced, and their technical characteristics are analyzed. Furthermore, the performance enhancements of cellulosic triboelectric materials endowed by dielectric modulation, including more efficient energy harvesting, high-performance wearable electronics, and impedance matching via material strategies, are introduced. Finally, the challenges and future opportunities for cellulose dielectric modulation are summarized.
Collapse
Affiliation(s)
- Guoli Du
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Jinlong Wang
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Yanhua Liu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Jinxia Yuan
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Tao Liu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Chenchen Cai
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Bin Luo
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Siqiyuan Zhu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Zhiting Wei
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Shuangfei Wang
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Shuangxi Nie
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
15
|
Yang J, Zhang Z, Zhou P, Zhang Y, Liu Y, Xu Y, Gu Y, Qin S, Haick H, Wang Y. Toward a new generation of permeable skin electronics. NANOSCALE 2023; 15:3051-3078. [PMID: 36723108 DOI: 10.1039/d2nr06236d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Skin-mountable electronics are considered to be the future of the next generation of portable electronics, due to their softness and seamless integration with human skin. However, impermeable materials limit device comfort and reliability for long-term, continuous usage. The recent emergence of permeable skin-mountable electronics has attracted tremendous attention in the soft electronics field. Herein, we provide a comprehensive and systematic review of permeable skin-mountable electronics. Typical porous materials and structures are first highlighted, followed by discussion of important device properties. Then, we review the latest representative applications of breathable skin-mountable electronics, such as bioelectrical sensors, temperature sensors, humidity and hydration sensors, strain and pressure sensors, and energy harvesting and storage devices. Finally, a conclusion and future directions for permeable skin electronics are provided.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yumiao Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yuheng Gu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Shenglin Qin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| |
Collapse
|
16
|
Zhang M, Liu C, Li B, Shen Y, Wang H, Ji K, Mao X, Wei L, Sun R, Zhou F. Electrospun PVDF-based piezoelectric nanofibers: materials, structures, and applications. NANOSCALE ADVANCES 2023; 5:1043-1059. [PMID: 36798499 PMCID: PMC9926905 DOI: 10.1039/d2na00773h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/17/2023] [Indexed: 05/14/2023]
Abstract
Polyvinylidene fluoride (PVDF) has been considered as a promising piezoelectric material for advanced sensing and energy storage systems because of its high dielectric constant and good electroactive response. Electrospinning is a straightforward, low cost, and scalable technology that can be used to create PVDF-based nanofibers with outstanding piezoelectric characteristics. Herein, we summarize the state-of-the-art progress on the use of filler doping and structural design to enhance the output performance of electrospun PVDF-based piezoelectric fiber films. We divide the fillers into single filler and double fillers and make comments on the effects of various dopant materials on the performance and the underlying mechanism of the PVDF-based piezoelectric fiber film. The effects of highly oriented structures, core-shell structures, and multilayer composite structures on the output properties of PVDF-based piezoelectric nanofibers are discussed in detail. Furthermore, the perspectives and opportunities for PVDF piezoelectric nanofibers in the fields of health care, environmental monitoring, and energy collection are also discussed.
Collapse
Affiliation(s)
- Mengdi Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Chengkun Liu
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Boyu Li
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Yutong Shen
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Hao Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Keyu Ji
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Xue Mao
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Liang Wei
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Runjun Sun
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Fenglei Zhou
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London London WC1E 6BT UK
| |
Collapse
|
17
|
Li C, Mu J, Song Y, Chen S, Xu F. Highly Aligned Cellulose/Polypyrrole Composite Nanofibers via Electrospinning and In Situ Polymerization for Anisotropic Flexible Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9820-9829. [PMID: 36757852 DOI: 10.1021/acsami.2c20464] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flexible strain sensors have recently attracted great attention due to their promising applications in human motion detection, healthcare monitoring, human-machine interfaces, and so forth. However, traditional uniaxial strain sensors can only detect strain in a single direction. Herein, an anisotropic flexible strain sensor is fabricated based on conductive and highly aligned cellulose composite nanofibers, via facile electrospinning cellulose acetate, deacetylation, and in situ polymerization of pyrrole, to detect complex multidimensional strains. Benefiting from the unique well-ordered structure of conductive composite nanofibers, the obtained strain sensor shows extraordinary anisotropic sensing performance with a sensitivity of 0.73 and 0.01 for the tensile applied perpendicular and parallel to the nanofiber alignment, respectively. The sensor also exhibits outstanding durability (2000 cycles) due to the strong hydrogen bonding between cellulose nanofibers and polypyrrole. Moreover, the flexible strain sensors exhibit promising potentials for application in motion detection, as demonstrated by the detection of various joint movements in the human body.
Collapse
Affiliation(s)
- Cuihuan Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jiahui Mu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Yijia Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- MoE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- MoE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
18
|
Lu D, Liu T, Meng X, Luo B, Yuan J, Liu Y, Zhang S, Cai C, Gao C, Wang J, Wang S, Nie S. Wearable Triboelectric Visual Sensors for Tactile Perception. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209117. [PMID: 36427265 DOI: 10.1002/adma.202209117] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Tactile sensors with visible light feedback functions, such as wearable displays and electronic skin and biomedical devices, are becoming increasingly important in various fields. However, existing methods cannot meet the application requirements for the tactile perception of intensity feedback and extended intersection due to their limited light-mapping performance and insufficient portability. Herein, a freely constructible self-powered visual tactile sensor is proposed, which consists of a high-output triboelectric nanogenerator (TENG) and a visual light source. The transferred charge of the TENG is enhanced to 746 nC by the structural design of the triboelectric material and device, which can easily drive the light source to generate a light signal with a brightness of 9.8 cd m-2 . Notably, the application of the TENG enables to realization visual sensing of the palm-grasp state and strength feedback without an external power supply. This visual feedback and power-free tactile sensors are expected to have potential application in the field of artificial intelligence as a new interactive medium for smart protective clothing and robotics.
Collapse
Affiliation(s)
- Dengjun Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xiangjiang Meng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Bin Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Jinxia Yuan
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Yanhua Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Song Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Cong Gao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Jinlong Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China
| |
Collapse
|
19
|
Duan Q, Peng W, He J, Zhang Z, Wu Z, Zhang Y, Wang S, Nie S. Rational Design of Advanced Triboelectric Materials for Energy Harvesting and Emerging Applications. SMALL METHODS 2023; 7:e2201251. [PMID: 36563114 DOI: 10.1002/smtd.202201251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 06/17/2023]
Abstract
The properties of materials play a significant role in triboelectric nanogenerators (TENGs). Advanced triboelectric materials for TENGs have attracted tremendous attention because of their superior advantages (e.g., high specific surface area, high porosity, and customizable macrostructure). These advanced materials can be extensively applied in numerous fields, including energy harvester, wearable electronics, filtration, and self-powered sensors. Hence, designing triboelectric materials as advanced functional materials is important for the development of TENGs. Herein, the structural modification methods based on electrospinning to improve the triboelectric properties and the latest research progress in this kind of TENGs are systematically summarized. Preparation methods and design trends of nanofibers, microspheres, hierarchical structures, and doping nanomaterials are highlighted. The factors influencing the formation and properties of triboelectric materials are considered. Furthermore, the latest progress on the applications of TENGs is systematically elaborated. Finally, the challenges in the development of triboelectric materials are discussed, thereby guiding researchers in the large-scale application of TENGs.
Collapse
Affiliation(s)
- Qingshan Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Weiqing Peng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Juanxia He
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhijun Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Zecheng Wu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Ye Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
20
|
Chen J, Tang N, Cheng L, Zheng Y. Toward Large-Scale Energy Harvesting by a UV-Curable Organic-Coating-Based Triboelectric Nanogenerator. SENSORS (BASEL, SWITZERLAND) 2023; 23:579. [PMID: 36679373 PMCID: PMC9866600 DOI: 10.3390/s23020579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Triboelectric nanogenerators (TENGs) stand out as an attractive form of technology for the efficient harvest of mechanical energy and the powering of wearable devices due to their light weight, simplicity, high power density, and efficient vibration energy scavenging capabilities. However, the requirement for micro/nanostructures and/or complex and expensive instruments hinders their cheap mass production, thus limiting their practical applications. By using a simple, cost-effective, fast spray-coating process, we develop high-performance UV-curable triboelectric coatings for large-scale energy harvesting. The effect of different formulations and coating compositions on the triboelectric output is investigated to design triboelectric coatings with high output performance. The TENG based on a hybrid coating exhibits high output performance of 54.5 μA current, 1228.9 V voltage, 163.6 nC transferred charge and 3.51 mW output power. Moreover, the hybrid coatings show good long-term output stability. All the results indicate that the designed triboelectric coatings show great potential for large-scale energy harvesting with the advantages of cost-effectiveness, fast fabrication, easy mass production and long-term stability.
Collapse
Affiliation(s)
- Jian Chen
- Yangjiang Nuclear Power Company Ltd., Yangjiang 529941, China
| | - Ning Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Cheng
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
21
|
Yin J, Reddy VS, Chinnappan A, Ramakrishna S, Xu L. Electrospun Micro/Nanofiber with Various Structures and Functions for Wearable Physical Sensors. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2158467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jing Yin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Vundrala Sumedha Reddy
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Amutha Chinnappan
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- Jiangsu Engineering Research Center of Textile, Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, China
| |
Collapse
|
22
|
Xu H, Tao J, Liu Y, Mo Y, Bao R, Pan C. Fully Fibrous Large-Area Tailorable Triboelectric Nanogenerator Based on Solution Blow Spinning Technology for Energy Harvesting and Self-Powered Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202477. [PMID: 35948484 DOI: 10.1002/smll.202202477] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
An all-fibrous large-area (20 × 50 cm2 ) tailorable triboelectric nanogenerator (LT-TENG) is prepared using a one-step solution blow spinning technology, which has the advantages of easy operation, scale-up in the area, and high production efficiency. The prepared LT-TENG is composed of polyvinylidene fluoride (PVDF)/MXene (Ti3 C2 Tx ) nanofibers (NFs) and conductive textile. Benefiting from the fibrous materials and large-area properties, the LT-TENG possesses the merits of good tailorability, breathability, hydrophobicity, and washability. When optimized by mixing the MXene into PVDF NFs, the LT-TENG has a preferable output and sensing property, with a detection range over 16 kPa and a relatively high sensitivity of 12.33 V KPa-1 . At maximum applied pressure, the voltage, current, and charge are 108 V, 38 µA, and 35 nC, respectively. This LT-TENG can serve as a biomechanical energy harvester when used as wearable devices with an output power density of 12.6 mW m-2 at an external load resistance of 500 MΩ, and it also has the ability of self-powered tactile sensing for pressure mapping and slide sensing. Thus, this LT-TENG exhibits great potential prospects in wearable devices, intelligent robots, and human-machine interaction.
Collapse
Affiliation(s)
- Huayu Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Juan Tao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yue Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Yepei Mo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Rongrong Bao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
23
|
Das R, Zeng W, Asci C, Del-Rio-Ruiz R, Sonkusale S. Recent progress in electrospun nanomaterials for wearables. APL Bioeng 2022; 6:021505. [PMID: 35783456 PMCID: PMC9249212 DOI: 10.1063/5.0088136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Wearables have garnered significant attention in recent years not only as consumer electronics for entertainment, communications, and commerce but also for real-time continuous health monitoring. This has been spurred by advances in flexible sensors, transistors, energy storage, and harvesting devices to replace the traditional, bulky, and rigid electronic devices. However, engineering smart wearables that can seamlessly integrate with the human body is a daunting task. Some of the key material attributes that are challenging to meet are skin conformability, breathability, and biocompatibility while providing tunability of its mechanical, electrical, and chemical properties. Electrospinning has emerged as a versatile platform that can potentially address these challenges by fabricating nanofibers with tunable properties from a polymer base. In this article, we review advances in wearable electronic devices and systems that are developed using electrospinning. We cover various applications in multiple fields including healthcare, biomedicine, and energy. We review the ability to tune the electrical, physiochemical, and mechanical properties of the nanofibers underlying these applications and illustrate strategies that enable integration of these nanofibers with human skin.
Collapse
Affiliation(s)
- Riddha Das
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Wenxin Zeng
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Cihan Asci
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Ruben Del-Rio-Ruiz
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Sameer Sonkusale
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| |
Collapse
|
24
|
Review of recent progress in electrospinning-derived freestanding and binder-free electrodes for supercapacitors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Enhanced output performance of tetraethyl orthosilicate and graphene nanoplates-decorated nanofiber-based triboelectric nanogenerators. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Reddy VS, Tian Y, Zhang C, Ye Z, Roy K, Chinnappan A, Ramakrishna S, Liu W, Ghosh R. A Review on Electrospun Nanofibers Based Advanced Applications: From Health Care to Energy Devices. Polymers (Basel) 2021; 13:3746. [PMID: 34771302 PMCID: PMC8587893 DOI: 10.3390/polym13213746] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/29/2023] Open
Abstract
Electrospun nanofibers have been exploited in multidisciplinary fields with numerous applications for decades. Owing to their interconnected ultrafine fibrous structure, high surface-to-volume ratio, tortuosity, permeability, and miniaturization ability along with the benefits of their lightweight, porous nanofibrous structure, they have been extensively utilized in various research fields for decades. Electrospun nanofiber technologies have paved unprecedented advancements with new innovations and discoveries in several fields of application including energy devices and biomedical and environmental appliances. This review article focused on providing a comprehensive overview related to the recent advancements in health care and energy devices while emphasizing on the importance and uniqueness of utilizing nanofibers. A brief description regarding the effect of electrospinning techniques, setup modifications, and parameters optimization on the nanofiber morphology was also provided. The article is concluded with a short discussion on current research challenges and future perspectives.
Collapse
Affiliation(s)
- Vundrala Sumedha Reddy
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Yilong Tian
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
- Key Laboratory for Information Photonic Technology of Shaanxi Province, School of Information and Electronics Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chuanqi Zhang
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Zhen Ye
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Kallol Roy
- Centre for Advanced 2D Materials, National University of Singapore, Singapore 117546, Singapore;
| | - Amutha Chinnappan
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Seeram Ramakrishna
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Wei Liu
- School of Instrument Science and Engineering, Southeast University, Nanjing 211189, China
| | - Rituparna Ghosh
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| |
Collapse
|
27
|
Electrospun Composite Proton-Exchange and Anion-Exchange Membranes for Fuel Cells. ENERGIES 2021. [DOI: 10.3390/en14206709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A fuel cell is an electrochemical device that converts the chemical energy of a fuel and oxidant into electricity. Cation-exchange and anion-exchange membranes play an important role in hydrogen fed proton-exchange membrane (PEM) and anion-exchange membrane (AEM) fuel cells, respectively. Over the past 10 years, there has been growing interest in using nanofiber electrospinning to fabricate fuel cell PEMs and AEMs with improved properties, e.g., a high ion conductivity with low in-plane water swelling and good mechanical strength under wet and dry conditions. Electrospinning is used to create either reinforcing scaffolds that can be pore-filled with an ionomer or precursor mats of interwoven ionomer and reinforcing polymers, which after suitable processing (densification) form a functional membrane. In this review paper, methods of nanofiber composite PEMs and AEMs fabrication are reviewed and the properties of these membranes are discussed and contrasted with the properties of fuel cell membranes prepared using conventional methods. The information and discussions contained herein are intended to provide inspiration for the design of high-performance next-generation fuel cell ion-exchange membranes.
Collapse
|
28
|
Bao Y, Lyu J, Liu Z, Ding Y, Zhang X. Bending Stiffness-Directed Fabricating of Kevlar Aerogel-Confined Organic Phase-Change Fibers. ACS NANO 2021; 15:15180-15190. [PMID: 34423639 DOI: 10.1021/acsnano.1c05693] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Smart and functional fibers have demonstrated great potentials in a wide range of applications including wearable devices and other high-tech fields, but design and fabrication of smart fibers with manageable structures as well as versatile functions are still a great challenge. Herein, an ingenious bending-stiffness-directed strategy is developed to fabricate smart phase-change fibers with different bending stiffnesses for diverse applications. Specifically, the hydrophobic Kevlar aerogel-confined paraffin wax fibers (PW@H-KAF) are fabricated by employing hydrophobic Kevlar aerogel fibers (H-KAFs) as the porous host and paraffin as the functional guest, where the H-KAF is obtained by applying a two-step process to functionalize Kevlar nanofibers (KNFs) with a special coagulation bath containing a mixture of ethanol and n-bromobutane. The prepared PW@H-KAFs exhibit high latent heat (135.1-172 J/g), outstanding thermal cyclic stability and satisfactory mechanical properties (30 MPa in tensile strength and 30% in tensile strain). In addition, the PW@H-KAFs with bending stiffness was lower than the critical one (1.22 × 10-9 N·m2) even in a solid state of paraffin wax exhibits high flexibility, washable performance, and high thermal management capability, showing great potential for smart temperature-regulating fabrics. PW@H-KAFs with a bending stiffness higher than the critical one at a solid state of paraffin wax can be utilized as shape memory materials, attributed to the transition between rigidity and flexibility caused by the phase transition. As a proof of concept, a dynamic gripper is designed based on the PW@H-KAF (400 μm in diameter) for transporting items by gripping in the rigid state and releasing in the flexible state. This work realizes versatile applications with the PW@H-KAFs through the bending stiffness-directed method, providing ideas for the application of phase-change composites.
Collapse
Affiliation(s)
- Yaqian Bao
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jing Lyu
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zengwei Liu
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yi Ding
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xuetong Zhang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
29
|
Dolez PI. Energy Harvesting Materials and Structures for Smart Textile Applications: Recent Progress and Path Forward. SENSORS (BASEL, SWITZERLAND) 2021; 21:6297. [PMID: 34577509 PMCID: PMC8470160 DOI: 10.3390/s21186297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/04/2022]
Abstract
A major challenge with current wearable electronics and e-textiles, including sensors, is power supply. As an alternative to batteries, energy can be harvested from various sources using garments or other textile products as a substrate. Four different energy-harvesting mechanisms relevant to smart textiles are described in this review. Photovoltaic energy harvesting technologies relevant to textile applications include the use of high efficiency flexible inorganic films, printable organic films, dye-sensitized solar cells, and photovoltaic fibers and filaments. In terms of piezoelectric systems, this article covers polymers, composites/nanocomposites, and piezoelectric nanogenerators. The latest developments for textile triboelectric energy harvesting comprise films/coatings, fibers/textiles, and triboelectric nanogenerators. Finally, thermoelectric energy harvesting applied to textiles can rely on inorganic and organic thermoelectric modules. The article ends with perspectives on the current challenges and possible strategies for further progress.
Collapse
Affiliation(s)
- Patricia I Dolez
- Department of Human Ecology, University of Alberta, Edmonton, AB T6G 2N1, Canada
| |
Collapse
|
30
|
He S, Sun X, Zhang H, Yuan C, Wei Y, Li J. Preparation Strategies and Applications of MXene-Polymer Composites: A Review. Macromol Rapid Commun 2021; 42:e2100324. [PMID: 34254708 DOI: 10.1002/marc.202100324] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Indexed: 01/07/2023]
Abstract
As a new member of the 2D material family, MXene integrates high metallic conductivity and hydrophilic property simultaneously. It shows tremendous potential in fields of energy storage, sensing, electromagnetic shielding, and so forth. Due to the abundant surface functional groups, the physical and chemical properties of MXene can be tuned by the formation of MXene-polymer composites. The introduction of polymers can expand the interlayer spacing, reduce the distance of ion/electron transport, improve the surface hydrophilicity, and thus guide the assembly of MXene-polymer structures. Herein, the preparation strategies of MXene-polymer composites including physical mixing, surface modification, such as anchoring through TiN and Ti-O-C bonds, bonding through esterification, grafting functional groups through TiOSi/TiOP bonds, photograft reaction, as well as in situ polymerization are highlighted. In addition, the possible mechanisms for each strategy are explained. Furthermore, the applications of MXene-polymer composites obtained by different preparation strategies are summarized. Finally, perspectives and challenges are presented for the designs of MXene-polymer composites.
Collapse
Affiliation(s)
- Shaoshuai He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xia Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Caideng Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yuping Wei
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China.,Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|