1
|
Wu X, Ehrmann K, Gan CT, Leuschel B, Pashley‐Johnson F, Barner‐Kowollik C. Two Material Properties from One Wavelength-Orthogonal Photoresin Enabled by a Monochromatic Laser Integrated Stereolithographic Apparatus (Mono LISA). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419639. [PMID: 39962842 PMCID: PMC11962704 DOI: 10.1002/adma.202419639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/05/2025] [Indexed: 04/03/2025]
Abstract
Multi-material printing has experienced critical advances in recent years, yet material property differentiation capabilities remain limited both with regard to the accessible properties - typically hard versus soft - and the achievable magnitude of differentiation. To enhance multi-material printing capabilities, precise photochemical control during 3D printing is essential. Wavelength-differentiation is a particularly intriguing concept yet challenging to implement. Notably, dual-wavelength printing to fabricate hard and soft sections within one object has emerged, where one curing process is insensitive to visible light, while UV irradiation inevitably activates the entire resin, limiting true spatio-temporal control of the material properties. Until now, pathway-independent wavelength-orthogonal printing has not been realized, where each wavelength exclusively triggers only one of two possible reactions, independent of the order in which the wavelengths are applied. Herein, a multi-wavelength printing technique is introduced employing a tunable laser to monochromatically deliver light to the printing platform loaded with a fully wavelength-orthogonal resin. Guided by photochemical action plots, two distinct wavelengths - each highly selective toward a specific photocycloaddtion reaction - are utilized to generate distinct networks within the photoresin. Ultimately, together with the printing technique, this orthogonally addressable photoresin allows fabricating multi-material objects with degradable and non-degradable properties, in a single fabrication step.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Katharina Ehrmann
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- Institute for Applied Synthetic ChemistryTechnische Universität WienGetreidemarkt 9/163Vienna1060Austria
| | - Ching Thye Gan
- Faculty of EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
| | - Benjamin Leuschel
- Institut de Science des Matériaux de Mulhouse (IS2M)CNRS – UMR 7361Université de Haute‐Alsace15 rue Jean StarckyMulhouse68057France
| | - Fred Pashley‐Johnson
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryFaculty of SciencesGhent UniversityKrijgslaan 281‐S4Ghent9000Belgium
| | - Christopher Barner‐Kowollik
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| |
Collapse
|
2
|
Mayer F, Laa D, Koch T, Stampfl J, Liska R, Ehrmann K. Rapid 3D printing of unlayered, tough epoxy-alcohol resins with late gel points via dual-color curing technology. MATERIALS HORIZONS 2025; 12:1494-1503. [PMID: 39665675 DOI: 10.1039/d4mh01261e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Additive manufacturing technologies and, in particular, vat photopolymerization promise complex structures that can be made in a fast and easy fashion for highly individualized products. While the technology has upheld this promise many times already, some polymers are still out of reach or at least problematic to print reliably. High-performance epoxide-based resins, which are regulated by chain transfer via multifunctional alcohols, are a typical example of resins with late gel points, which require long irradiation times and high light intensities to print. Therefore, we have developed a dual-colour printing approach where rapid radical curing of a soft, wide-meshed polymer network facilitates fast and easy 3D structuring of the subsequently slow curing step-growth formulation at an orthogonal initiation-wavelength regime. Thereby the methacrylate system acts as a scaffold for an uncured epoxide alcohol system during the printing process, which is then cured with UV light post-printing. This way tough alcohol-regulated epoxy-systems become accessible to vat photopolymerization achieving outstanding high-resolution 3D printed parts without significant layering effects. The demonstrated wide-meshed matrix-assisted printing approach has the potential to make a multitude of slowly curing resins accessible to vat photopolymerization techniques, at low irradiation intensities and high curing speeds.
Collapse
Affiliation(s)
- Florian Mayer
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Vienna, Austria.
| | - Dominik Laa
- Institute of Materials Science and Technology, Technische Universität Wien, Vienna, Austria
| | - Thomas Koch
- Institute of Materials Science and Technology, Technische Universität Wien, Vienna, Austria
| | - Jürgen Stampfl
- Institute of Materials Science and Technology, Technische Universität Wien, Vienna, Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Vienna, Austria.
| | - Katharina Ehrmann
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Vienna, Austria.
| |
Collapse
|
3
|
Ma Y, Dreiling RJ, Recker EA, Kim JW, Shankel SL, Hu J, Easley AD, Page ZA, Lambert TH, Fors BP. Multimaterial Thermoset Synthesis: Switching Polymerization Mechanism with Light Dosage. ACS CENTRAL SCIENCE 2024; 10:2125-2131. [PMID: 39634213 PMCID: PMC11613345 DOI: 10.1021/acscentsci.4c01507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
The synthesis of polymeric thermoset materials with spatially controlled physical properties using readily available resins is a grand challenge. To address this challenge, we developed a photoinitiated polymerization method that enables the spatial switching of radical and cationic polymerizations by controlling the dosage of monochromatic light. This method, which we call Switching Polymerizations by Light Titration (SPLiT), leverages the use of substoichiometric amounts of a photobuffer in combination with traditional photoacid generators. Upon exposure to a low dose of light, the photobuffer inhibits the cationic polymerization, while radical polymerization is initiated. With an increased light dosage, the buffer system saturates, leading to the formation of a strong acid that initiates a cationic polymerization of the dormant monomer. Applying this strategy, patterning is achieved by spatially varying light dosage via irradiation time or intensity allowing for simple construction of multimaterial thermosets. Importantly, by the addition of an inexpensive photobuffer, such as tetrabutylammonium chloride, commercially available resins can be implemented in grayscale vat photopolymerization 3D printing to prepare sophisticated multimodulus constructs.
Collapse
Affiliation(s)
- Yuting Ma
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Reagan J. Dreiling
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Elizabeth A. Recker
- Department
of Chemical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - Ji-Won Kim
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United States
| | - Shelby L. Shankel
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Jenny Hu
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Alexandra D. Easley
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Zachariah A. Page
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United States
| | - Tristan H. Lambert
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Brett P. Fors
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Nam J, Kim M. Advances in materials and technologies for digital light processing 3D printing. NANO CONVERGENCE 2024; 11:45. [PMID: 39497012 PMCID: PMC11534933 DOI: 10.1186/s40580-024-00452-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Digital light processing (DLP) is a projection-based vat photopolymerization 3D printing technique that attracts increasing attention due to its high resolution and accuracy. The projection-based layer-by-layer deposition in DLP uses precise light control to cure photopolymer resin quickly, providing a smooth surface finish due to the uniform layer curing process. Additionally, the extensive material selection in DLP 3D printing, notably including existing photopolymerizable materials, presents a significant advantage compared with other 3D printing techniques with limited material choices. Studies in DLP can be categorized into two main domains: material-level and system-level innovation. Regarding material-level innovations, the development of photocurable resins with tailored rheological, photocuring, mechanical, and functional properties is crucial for expanding the application prospects of DLP technology. In this review, we comprehensively review the state-of-the-art advancements in DLP 3D printing, focusing on material innovations centered on functional materials, particularly various smart materials for 4D printing, in addition to piezoelectric ceramics and their composites with their applications in DLP. Additionally, we discuss the development of recyclable DLP resins to promote sustainable manufacturing practices. The state-of-the-art system-level innovations are also delineated, including recent progress in multi-materials DLP, grayscale DLP, AI-assisted DLP, and other related developments. We also highlight the current challenges and propose potential directions for future development. Exciting areas such as the creation of photocurable materials with stimuli-responsive functionality, ceramic DLP, recyclable DLP, and AI-enhanced DLP are still in their nascent stages. By exploring concepts like AI-assisted DLP recycling technology, the integration of these aspects can unlock significant opportunities for applications driven by DLP technology. Through this review, we aim to stimulate further interest and encourage active collaborations in advancing DLP resin materials and systems, fostering innovations in this dynamic field.
Collapse
Affiliation(s)
- Jisoo Nam
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Miso Kim
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| |
Collapse
|
5
|
Dominguez‐Alfaro A, Mitoudi‐Vagourdi E, Dimov I, Picchio ML, Lopez‐Larrea N, de Lacalle JL, Tao X, Serrano RR, Gallastegui A, Vassardanis N, Mecerreyes D, Malliaras GG. Light-Based 3D Multi-Material Printing of Micro-Structured Bio-Shaped, Conducting and Dry Adhesive Electrodes for Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306424. [PMID: 38251224 PMCID: PMC11251555 DOI: 10.1002/advs.202306424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Indexed: 01/23/2024]
Abstract
In this work, a new method of multi-material printing in one-go using a commercially available 3D printer is presented. The approach is simple and versatile, allowing the manufacturing of multi-material layered or multi-material printing in the same layer. To the best of the knowledge, it is the first time that 3D printed Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) micro-patterns combining different materials are reported, overcoming mechanical stability issues. Moreover, the conducting ink is engineered to obtain stable in-time materials while retaining sub-100 µm resolution. Micro-structured bio-shaped protuberances are designed and 3D printed as electrodes for electrophysiology. Moreover, these microstructures are combined with polymerizable deep eutectic solvents (polyDES) as functional additives, gaining adhesion and ionic conductivity. As a result of the novel electrodes, low skin impedance values showed suitable performance for electromyography recording on the forearm. Finally, this concluded that the use of polyDES conferred stability over time, allowing the usability of the electrode 90 days after fabrication without losing its performance. All in all, this demonstrated a very easy-to-make procedure that allows printing PEDOT:PSS on soft, hard, and/or flexible functional substrates, opening up a new paradigm in the manufacturing of conducting multi-functional materials for the field of bioelectronics and wearables.
Collapse
Affiliation(s)
- Antonio Dominguez‐Alfaro
- Electrical Engineering DivisionDepartment of EngineeringUniversity of Cambridge9 JJ Thomson AveCambridgeCB3 0FAUK
- POLYMATUniversity of the Basque Country UPV/EHUAvenida Tolosa 72Donostia‐San SebastiánGipuzkoa20018Spain
| | - Eleni Mitoudi‐Vagourdi
- Electrical Engineering DivisionDepartment of EngineeringUniversity of Cambridge9 JJ Thomson AveCambridgeCB3 0FAUK
| | - Ivan Dimov
- Electrical Engineering DivisionDepartment of EngineeringUniversity of Cambridge9 JJ Thomson AveCambridgeCB3 0FAUK
| | - Matias L. Picchio
- POLYMATUniversity of the Basque Country UPV/EHUAvenida Tolosa 72Donostia‐San SebastiánGipuzkoa20018Spain
| | - Naroa Lopez‐Larrea
- POLYMATUniversity of the Basque Country UPV/EHUAvenida Tolosa 72Donostia‐San SebastiánGipuzkoa20018Spain
| | - Jon Lopez de Lacalle
- POLYMATUniversity of the Basque Country UPV/EHUAvenida Tolosa 72Donostia‐San SebastiánGipuzkoa20018Spain
| | - Xudong Tao
- Electrical Engineering DivisionDepartment of EngineeringUniversity of Cambridge9 JJ Thomson AveCambridgeCB3 0FAUK
| | - Ruben Ruiz‐Mateos Serrano
- Electrical Engineering DivisionDepartment of EngineeringUniversity of Cambridge9 JJ Thomson AveCambridgeCB3 0FAUK
| | - Antonela Gallastegui
- POLYMATUniversity of the Basque Country UPV/EHUAvenida Tolosa 72Donostia‐San SebastiánGipuzkoa20018Spain
| | | | - David Mecerreyes
- POLYMATUniversity of the Basque Country UPV/EHUAvenida Tolosa 72Donostia‐San SebastiánGipuzkoa20018Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - George G. Malliaras
- Electrical Engineering DivisionDepartment of EngineeringUniversity of Cambridge9 JJ Thomson AveCambridgeCB3 0FAUK
| |
Collapse
|
6
|
Boynton NR, Dennis JM, Dolinski ND, Lindberg CA, Kotula AP, Grocke GL, Vivod SL, Lenhart JL, Patel SN, Rowan SJ. Accessing pluripotent materials through tempering of dynamic covalent polymer networks. Science 2024; 383:545-551. [PMID: 38300995 DOI: 10.1126/science.adi5009] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Pluripotency, which is defined as a system not fixed as to its developmental potentialities, is typically associated with biology and stem cells. Inspired by this concept, we report synthetic polymers that act as a single "pluripotent" feedstock and can be differentiated into a range of materials that exhibit different mechanical properties, from hard and brittle to soft and extensible. To achieve this, we have exploited dynamic covalent networks that contain labile, dynamic thia-Michael bonds, whose extent of bonding can be thermally modulated and retained through tempering, akin to the process used in metallurgy. In addition, we show that the shape memory behavior of these materials can be tailored through tempering and that these materials can be patterned to spatially control mechanical properties.
Collapse
Affiliation(s)
- Nicholas R Boynton
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Joseph M Dennis
- Sciences of Extreme Materials Division, Polymers Branch, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Neil D Dolinski
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Charlie A Lindberg
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Anthony P Kotula
- Materials Science and Engineering Division, National Institutes of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Garrett L Grocke
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Joseph L Lenhart
- Sciences of Extreme Materials Division, Polymers Branch, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Shrayesh N Patel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Ehrmann K, Barner-Kowollik C. Colorful 3D Printing: A Critical Feasibility Analysis of Multi-Wavelength Additive Manufacturing. J Am Chem Soc 2023. [PMID: 37922417 DOI: 10.1021/jacs.3c09567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Employing two colors of light to 3D print objects holds potential for accessing advanced printing modes, such as the generation of multi-material objects from a single print. Thus, dual-wavelength-driven photoreactive systems (reactions that require or utilize two wavelengths) and their exploitation as chemo-technological solutions for additive manufacturing technologies have experienced considerable development over the last few years. Such systems saw an increase in printing speeds, a decrease in resolution thresholds, and─perhaps most importantly─the actual generation of multi-material objects. However, the pace at which such reactive systems are developed is moderate and varies significantly depending on the fashion in which the two colors of light are employed. Herein, we address for the first time the varying logic conjugations of light-activated chemical compounds in dual-wavelength photochemical processes in a systematic manner and consider their implications from a photochemical point of view. To date, four dual-wavelength reaction types have been reported, termed synergistic (λ1 AND λ2), antagonistic (reversed λ1 AND λ2), orthogonal (λ1 OR λ2), and─most recently─cooperative (λ1 AND λ2 or λ1 OR λ2). The progress of their implementation in additive manufacturing is assessed individually, and their concurrent and individual chemical challenges are identified. These challenges need to be addressed for future dual-wavelength photochemical systems to progress multi-wavelength additive manufacturing technologies beyond their current limitations.
Collapse
Affiliation(s)
- Katharina Ehrmann
- Institute for Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Eren TN, Feist F, Ehrmann K, Barner-Kowollik C. Cooperative Network Formation via Two-Colour Light-Activated λ-Orthogonal Chromophores. Angew Chem Int Ed Engl 2023; 62:e202307535. [PMID: 37358799 DOI: 10.1002/anie.202307535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Independently addressing photoreactive sites within one molecule with two colours of light is a formidable challenge. Here, we combine two sequence independent λ-orthogonal chromophores in one heterotelechelic dilinker molecule, to exploit their disparate reactivity utilizing the same reaction partner, a maleimide-containing polymer. We demonstrate that polymer network formation only proceeds if two colours of light are employed. Upon single colour irradiation, linker-decorated post-functionalized polymers are generated at either wavelength and in either sequence. Network formation, however, is only achieved by sequential or simultaneous two colour irradiation. The herein introduced photoreactive system demonstrates the power of wavelength orthogonal chemistry in macromolecular synthesis.
Collapse
Affiliation(s)
- Tugce Nur Eren
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Florian Feist
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Katharina Ehrmann
- Queensland University of Technology (QUT), School of Chemistry and Physics, 2 George Street, Brisbane, QLD, 4000, Australia
- Queensland University of Technology (QUT), Centre for Materials Science, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Christopher Barner-Kowollik
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Queensland University of Technology (QUT), School of Chemistry and Physics, 2 George Street, Brisbane, QLD, 4000, Australia
- Queensland University of Technology (QUT), Centre for Materials Science, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
9
|
Wong J, Wei S, Meir R, Sadaba N, Ballinger NA, Harmon EK, Gao X, Altin-Yavuzarslan G, Pozzo LD, Campos LM, Nelson A. Triplet Fusion Upconversion for Photocuring 3D-Printed Particle-Reinforced Composite Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207673. [PMID: 36594431 DOI: 10.1002/adma.202207673] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/17/2022] [Indexed: 06/17/2023]
Abstract
High energy photons (λ < 400 nm) are frequently used to initiate free radical polymerizations to form polymer networks, but are only effective for transparent objects. This phenomenon poses a major challenge to additive manufacturing of particle-reinforced composite networks since deep light penetration of short-wavelength photons limits the homogeneous modification of physicochemical and mechanical properties. Herein, the unconventional, yet versatile, multiexciton process of triplet-triplet annihilation upconversion (TTA-UC) is employed for curing opaque hydrogel composites created by direct-ink-write (DIW) 3D printing. TTA-UC converts low energy red light (λmax = 660 nm) for deep penetration into higher-energy blue light to initiate free radical polymerizations within opaque objects. As proof-of-principle, hydrogels containing up to 15 wt.% TiO2 filler particles and doped with TTA-UC chromophores are readily cured with red light, while composites without the chromophores and TiO2 loadings as little as 1-2 wt.% remain uncured. Importantly, this method has wide potential to modify the chemical and mechanical properties of complex DIW 3D-printed composite polymer networks.
Collapse
Affiliation(s)
- Jitkanya Wong
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Shixuan Wei
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Rinat Meir
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Naroa Sadaba
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Nathan A Ballinger
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth K Harmon
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Xin Gao
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | | | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
10
|
Rossegger E, Strasser J, Höller R, Fleisch M, Berer M, Schlögl S. Wavelength Selective Multi-Material 3D Printing of Soft Active Devices Using Orthogonal Photoreactions. Macromol Rapid Commun 2023; 44:e2200586. [PMID: 36107158 DOI: 10.1002/marc.202200586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Indexed: 01/26/2023]
Abstract
Orthogonal photoreactions provide a unique way to locally and independently control (thermo)mechanical properties and functionality of polymer networks simply by choice of the wavelength. Herein, a library of acrylate functional coumarin monomers is synthesized, which are cured by sequence-dependent wavelength orthogonality. In the presence of a long wavelength absorbing photoinitiator, the monomers undergo rapid curing by visible light induced radical chain growth polymerization. Subsequent irradiation with light in the UV-A region selectively initiates the [2+2] photocycloaddition of the coumarin chromophores, which is confirmed by FTIR and UV-vis experiments. Through a well-targeted design, acrylate-based and thiol-acrylate resin formulations are prepared, whose fast curing rate, low viscosity, and prolonged storage stability enable the one-step fabrication of multi-material structures by digital light processing (DLP) 3D printing. By using a dual-wavelength printer, which operates at two different wavelengths (405 and 365 nm), objects comprising soft (ε = 22%, σ = 7.5 MPa) and stiff (ε = 2%, σ = 8.3 MPa) domains are printed with a single resin vat. Along with tensile properties, the wavelength selective change in the network structure features a local control of the glass transition temperature (ΔTg = 17 °C) in the 3D-printed objects. Soft active devices are fabricated by dual-wavelength DLP 3D printing, with distinct domains having a higher Tg and the local programming of multi shapes is demonstrated.
Collapse
Affiliation(s)
- Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH, Roseggerstraße 12, Leoben, 8700, Austria
| | - Jakob Strasser
- Polymer Competence Center Leoben GmbH, Roseggerstraße 12, Leoben, 8700, Austria
| | - Rita Höller
- Polymer Competence Center Leoben GmbH, Roseggerstraße 12, Leoben, 8700, Austria
| | - Mathias Fleisch
- Polymer Competence Center Leoben GmbH, Roseggerstraße 12, Leoben, 8700, Austria
| | - Michael Berer
- Polymer Competence Center Leoben GmbH, Roseggerstraße 12, Leoben, 8700, Austria
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Roseggerstraße 12, Leoben, 8700, Austria
| |
Collapse
|
11
|
Bao Y. Recent Trends in Advanced Photoinitiators for Vat Photopolymerization 3D Printing. Macromol Rapid Commun 2022; 43:e2200202. [PMID: 35579565 DOI: 10.1002/marc.202200202] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Indexed: 11/11/2022]
Abstract
3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization-based 3D printing techniques such as stereolithography (SLA) and digital light processing (DLP) attracted considerable attention owing to their superior print resolution, relatively high speed, low cost and flexibility in resin material design. As one key element of the SLA/DLP resin, photoinitiators or photoinitiating systems have experienced significant development in recent years, in parallel with the exploration of 3D printing (macro)monomers. The design of new photoinitiating systems can not only offer faster 3D printing speed and enable low-energy visible light fabrication, but also can bring new functions to the 3D printed products and even generate new printing methods in combination with advanced optics. This review evaluates recent trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing, with a wide range of small molecules, polymers and nanoassemblies involved. Personal perspectives on the current limitations and future directions are eventually provided. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yinyin Bao
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, 8093, Switzerland
| |
Collapse
|
12
|
Truong VX, Ehrmann K, Seifermann M, Levkin PA, Barner-Kowollik C. Wavelength Orthogonal Photodynamic Networks. Chemistry 2022; 28:e202104466. [PMID: 35213069 PMCID: PMC9310740 DOI: 10.1002/chem.202104466] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/17/2022]
Abstract
The ability of light to remotely control the properties of soft matter materials in a dynamic fashion has fascinated material scientists and photochemists for decades. However, only recently has our ability to map photochemical reactivity in a finely wavelength resolved fashion allowed for different colors of light to independently control the material properties of polymer networks with high precision, driven by monochromatic irradiation enabling orthogonal reaction control. The current concept article highlights the progress in visible light‐induced photochemistry and explores how it has enabled the design of polymer networks with dynamically adjustable properties. We will explore current applications ranging from dynamic hydrogel design to the light‐driven adaptation of 3D printed structures on the macro‐ and micro‐scale. While the alternation of mechanical properties via remote control is largely reality for soft matter materials, we herein propose the next frontiers for adaptive properties, including remote switching between conductive and non‐conductive properties, hydrophobic and hydrophilic surfaces, fluorescent or non‐fluorescent, and cell adhesive vs. cell repellent properties.
Collapse
Affiliation(s)
- Vinh X Truong
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Katharina Ehrmann
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Maximilian Seifermann
- Institute of Biological and Chemical Systems, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Pl. 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Pl. 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| |
Collapse
|
13
|
Wu C, Corrigan N, Lim CH, Liu W, Miyake G, Boyer C. Rational Design of Photocatalysts for Controlled Polymerization: Effect of Structures on Photocatalytic Activities. Chem Rev 2022; 122:5476-5518. [PMID: 34982536 PMCID: PMC9815102 DOI: 10.1021/acs.chemrev.1c00409] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past decade, the use of photocatalysts (PCs) in controlled polymerization has brought new opportunities in sophisticated macromolecular synthesis. However, the selection of PCs in these systems has been typically based on laborious trial-and-error strategies. To tackle this limitation, computer-guided rational design of PCs based on knowledge of structure-property-performance relationships has emerged. These rational strategies provide rapid and economic methodologies for tuning the performance and functionality of a polymerization system, thus providing further opportunities for polymer science. This review provides an overview of PCs employed in photocontrolled polymerization systems and summarizes their progression from early systems to the current state-of-the-art. Background theories on electronic transitions are also introduced to establish the structure-property-performance relationships from a perspective of quantum chemistry. Typical examples for each type of structure-property relationships are then presented to enlighten future design of PCs for photocontrolled polymerization.
Collapse
Affiliation(s)
- Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | | | - Chern-Hooi Lim
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- New Iridium Incorporated, Boulder, Colorado 80303, United States
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Garret Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | |
Collapse
|
14
|
Wang B, Engay E, Stubbe PR, Moghaddam SZ, Thormann E, Almdal K, Islam A, Yang Y. Stiffness control in dual color tomographic volumetric 3D printing. Nat Commun 2022; 13:367. [PMID: 35042893 PMCID: PMC8766567 DOI: 10.1038/s41467-022-28013-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Tomographic volumetric printing (TVP) physically reverses tomography to offer fast and auxiliary-free 3D printing. Here we show that wavelength-sensitive photoresins can be cured using visible ([Formula: see text] nm) and UV ([Formula: see text] nm) sources simultaneously in a TVP setup to generate internal mechanical property gradients with high precision. We develop solutions of mixed acrylate and epoxy monomers and utilize the orthogonal chemistry between free radical and cationic polymerization to realize fully 3D stiffness control. The radial resolution of stiffness control is 300 µm or better and an average modulus gradient of 5 MPa/µm is achieved. We further show that the reactive transport of radical inhibitors defines a workpiece's shape and limits the achievable stiffness contrast to a range from 127 MPa to 201 MPa according to standard tensile tests after post-processing. Our result presents a strategy for controlling the stiffness of material spatially in light-based volumetric additive manufacturing.
Collapse
Affiliation(s)
- Bin Wang
- Department of Mechanical Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Einstom Engay
- National Center for Nano Fabrication and Characterization, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Peter R Stubbe
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Saeed Z Moghaddam
- Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Kristoffer Almdal
- Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Aminul Islam
- Department of Mechanical Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Yi Yang
- Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
- Center for Energy Resources Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
15
|
Murphy RD, Garcia RV, Heise A, Hawker CJ. Peptides as 3D printable feedstocks: Design strategies and emerging applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101487] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
16
|
Ma Y, Kottisch V, McLoughlin EA, Rouse ZW, Supej MJ, Baker SP, Fors BP. Photoswitching Cationic and Radical Polymerizations: Spatiotemporal Control of Thermoset Properties. J Am Chem Soc 2021; 143:21200-21205. [PMID: 34878283 DOI: 10.1021/jacs.1c09523] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to fabricate polymeric materials with spatially controlled physical properties has been a challenge in thermoset manufacturing. To address this challenge, this work takes advantage of a photoswitchable polymerization that selectively incorporates different monomers at a growing chain by converting from cationic to radical polymerizations through modulation of the wavelength of irradiation. By regulating the dosage and wavelength of light applied to the system, the mechanical properties of the crosslinked material can be temporally and spatially tuned. Furthermore, photopatterning can be achieved both on the macroscale and the microscale, enabling precise spatial control of crosslink density that results in high-resolution control over mechanical properties.
Collapse
Affiliation(s)
- Yuting Ma
- Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Veronika Kottisch
- Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | | | - Zachary W Rouse
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Michael J Supej
- Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Shefford P Baker
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Brett P Fors
- Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
Robinson LL, Self JL, Fusi AD, Bates MW, Read de Alaniz J, Hawker CJ, Bates CM, Sample CS. Chemical and Mechanical Tunability of 3D-Printed Dynamic Covalent Networks Based on Boronate Esters. ACS Macro Lett 2021; 10:857-863. [PMID: 35549203 DOI: 10.1021/acsmacrolett.1c00257] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As the scope of additive manufacturing broadens, interest has developed in 3D-printed objects that are derived from recyclable resins with chemical and mechanical tunability. Dynamic covalent bonds have the potential to not only increase the sustainability of 3D-printed objects, but also serve as reactive sites for postprinting derivatization. In this study, we use boronate esters as a key building block for the development of catalyst-free, 3D-printing resins with the ability to undergo room-temperature exchange at the cross-linking sites. The orthogonality of boronate esters is exploited in fast-curing, oxygen-tolerant thiol-ene resins in which the dynamic character of 3D-printed objects can be modulated by the addition of a static, covalent cross-linker with no room-temperature bond exchange. This allows the mechanical properties of printed parts to be varied between those of a traditional thermoset and a vitrimer. Objects printed with a hybrid dynamic/static resin exhibit a balance of structural stability (residual stress = 18%) and rapid exchange (characteristic relaxation time = 7 s), allowing for interfacial welding and postprinting functionalization. Modulation of the cross-linking density postprinting is enabled by selective hydrolysis of the boronate esters to generate networks with swelling capacities tunable from 1.3 to 3.3.
Collapse
|