1
|
Zhao X, Wu G, Tao X, Dong D, Liu J. Targeted mitochondrial therapy for pancreatic cancer. Transl Oncol 2025; 54:102340. [PMID: 40048984 PMCID: PMC11928980 DOI: 10.1016/j.tranon.2025.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/05/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025] Open
Abstract
Pancreatic cancer (PC) is a highly invasive tumor characterized by delayed diagnosis, rapid progress, and resistance to chemotherapy. Mitochondria, as the "power chamber" of cells, not only play a central role in energy metabolism but also participate in the production of reactive oxygen species (ROS), calcium signaling, regulation, and differentiation of the cell cycle. The abnormal activity of mitochondria is closely related to the development of PC. In this paper, we discussed the key role of mitochondria in PC, including mitochondrial DNA, mitochondrial biogenesis, mitochondrial dynamics, metabolic regulation, ROS generation, and mitochondrial-dependent apoptosis. We elaborated on the importance of these mitochondrial mechanisms in the development of PC and emphasized the potential of targeted mitochondrial therapy strategies for these mechanisms in the treatment of PC. In addition, this article also reviews the latest developments in innovative drug carriers such as cell-penetrating peptides, nucleic acid aptamers, and nanomaterials, which can achieve precise localization of mitochondria and drug delivery. Therefore, this article comprehensively analyzed the important role of mitochondria in the treatment of PC and clarified the effectiveness and necessity of targeting mitochondria in the treatment of PC.
Collapse
Affiliation(s)
- Xinya Zhao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Guoyu Wu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
2
|
Yu H, Yu J, Yao G. Recent Advances in Aptamers-Based Nanosystems for Diagnosis and Therapy of Cardiovascular Diseases: An Updated Review. Int J Nanomedicine 2025; 20:2427-2443. [PMID: 40034222 PMCID: PMC11873322 DOI: 10.2147/ijn.s507715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
The increasing global prevalence of cardiovascular diseases highlights the urgent need for innovative diagnostic and therapeutic strategies. Aptamers, small single-stranded nucleic acid molecules with exceptional specificity and affinity for target biomolecules, have emerged as promising tools for precise diagnostics and targeted therapies. Their selective binding capabilities provide valuable insights into the molecular mechanisms underlying cardiovascular conditions. When integrated into nanosystems, aptamers enhance the delivery, bioavailability, and stability of diagnostic and therapeutic agents, addressing challenges of solubility and degradation. This integration enables more targeted drug delivery, advanced imaging techniques, and improved therapeutic interventions, ultimately improving the management of cardiovascular diseases. Recent advancements in aptamer selection methodologies, coupled with their unique three-dimensional structures, have significantly expanded their application potential in cardiovascular health. By combining aptamers with nanosystems, novel approaches to cardiovascular disease diagnosis and treatment are emerging, promising enhanced efficacy, safety, and precision. This review explores recent progress in the development and application of aptamer-based nanosystems in cardiovascular diagnostics and therapies.
Collapse
Affiliation(s)
- Hongqin Yu
- Department of Cardiovascular Medicine, Yantai Mountain Hospital, Yantai, 264000, People’s Republic of China
| | - Jie Yu
- Department of Cardiovascular Medicine, Yantai Mountain Hospital, Yantai, 264000, People’s Republic of China
| | - Gang Yao
- Department of Cardiovascular Medicine, Yantai Mountain Hospital, Yantai, 264000, People’s Republic of China
| |
Collapse
|
3
|
Jiang T, Yang Z, Su Q, Fang L, Xiang Q, Tian C, Gao Q, Mao C, Huang CZ, Zuo H. Bivalent OX40 Aptamer and CpG as Dual Agonists for Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7353-7362. [PMID: 39841045 DOI: 10.1021/acsami.4c18550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Cancer immunotherapy has revolutionized cancer treatment by harnessing the body's immune system to recognize and attack tumors. Over the past 25 years, the use of blocking antibodies has fundamentally transformed the landscape of cancer therapy. However, despite extensive research, agonist antibodies targeting costimulatory receptors such as ICOS, GITR, OX40, CD27, and 4-1BB have consistently underperformed in clinical trials over the past 15 years, failing to meet the anticipated success. One reason the agonist antibodies failed is that researchers escalated the dose to the highest tolerable level, which can lead to cell exhaustion, especially when used as a single agent. In this study, we introduced novel in situ therapeutic agents by combining a bivalent RNA aptamer of OX40, biROX40, which binds to two copies of the OX40 receptor as an agonist, with CpG, a toll-like receptor 9 (TLR9) immune stimulator. These agents were specifically designed for lymphoma treatment, with the dose reduced to the lowest bioactive amount to maximize efficacy while minimizing potential side effects. BiROX40 and CpG exhibited a dual immune activation effect and demonstrated a synergistic response even at extremely low dose of 0.32 mg/kg (5.75 μg per mouse) for biROX40 and moderate dose of 1.39 mg/kg (25 μg per mouse) for CpG, resulting in remarkable antitumor efficacy. This effect was achieved through the promotion of intratumoral CD8+ T cell proliferation and cytokine secretion, inhibition of regulatory T cell (Treg) proliferation, and enhanced generation and proliferation of memory T cells in immune organs. The agonistic effects of these reagents led to tumor regression not only at the treated sites but also at distant, nontreated locations in the animal models. This outcome highlighted the induction of a robust systemic antitumor immune response, which effectively suppressed tumor recurrence. This in situ combination therapy, utilizing low-dose biROX40 alongside CpG, offers a straightforward and widely applicable strategy to enhance immune responses in cancer immunotherapy. This approach overcomes the limitations of high-dose single-agent anti-OX40 therapies (whether antibodies or aptamers), including immune cell exhaustion and diminished efficacy.
Collapse
Affiliation(s)
- Tingting Jiang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Zailin Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Qiuyu Su
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Liang Fang
- Department of Oncology, The Ninth People's Hospital of Chongqing, Chongqing 400700, China
| | - Qing Xiang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qinlin Gao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette 47907, Indiana, United States
| | - Cheng Zhi Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Krylova LV, Otvagin VF, Gribova GP, Kuzmina NS, Fedotova EA, Zelepukin IV, Nyuchev AV, Kustov AV, Morshnev PK, Berezin DB, Koifman MO, Vatsadze SZ, Balalaeva IV, Fedorov AY. Developing Chlorin/Arylaminoquinazoline Conjugates with Nanomolar Activity for Targeted Photodynamic Therapy: Design, Synthesis, SAR, and Biological Evaluation. J Med Chem 2025; 68:1901-1923. [PMID: 39743785 DOI: 10.1021/acs.jmedchem.4c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In this report, we developed novel chlorin/arylaminoquinazoline conjugates for targeted photodynamic therapy of cancer. The synthesized photosensitizers consisted of chlorin-e6 metallocomplexes (Zn, In, or Pd) conjugated with arylaminoquinazoline ligands with high affinity for epidermal growth factor receptors (EGFR). Additionally, the selectivity and antitumor properties of the conjugates were investigated in the EGFR-expressing A431 human tumor cell line in vitro. Among the tested molecules, the In-containing conjugate effectively inhibited tumor cell proliferation at nanomolar concentrations, a rare property for conventional photosensitizers. In in vivo experiments, the conjugates rapidly accumulated at the tumor site in nude mice bearing A431 xenograft tumors. Subsequent distribution analysis among different tissues was carried out using fluorescence imaging and elemental analysis. Finally, we demonstrated that the most promising In-containing conjugate was capable of inhibiting xenograft tumor growth in mice through combinational therapy. This therapeutic approach, combined with the conjugate's confirmed safety profile, highlights its potential for effective and safe cancer treatment.
Collapse
Affiliation(s)
- Lubov V Krylova
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Vasilii F Otvagin
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Galina P Gribova
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Natalia S Kuzmina
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Ekaterina A Fedotova
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Ivan V Zelepukin
- Uppsala University, Dag Hammarskjölds väg, 20751 85 Uppsala, Sweden
| | - Alexander V Nyuchev
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Andrey V Kustov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russian Federation
| | - Philipp K Morshnev
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russian Federation
| | - Dmitry B Berezin
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo 153012, Russian Federation
| | - Mikhail O Koifman
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo 153012, Russian Federation
| | - Sergey Z Vatsadze
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Irina V Balalaeva
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Alexey Yu Fedorov
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| |
Collapse
|
5
|
Modi SK, Mohapatra P, Bhatt P, Singh A, Parmar AS, Roy A, Joshi V, Singh MS. Targeting tumor microenvironment with photodynamic nanomedicine. Med Res Rev 2025; 45:66-96. [PMID: 39152568 DOI: 10.1002/med.22072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/20/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Photodynamic therapy (PDT) is approved for the treatment of certain cancers and precancer lesions. While early Photosensitizers (PS) have found their way to the clinic, research in the last two decades has led to the development of third-generation PS, including photodynamic nanomedicine for improved tumor delivery and minimal systemic or phototoxicity. In terms of nanoparticle design for PDT, we are witnessing a shift from passive to active delivery for improved outcomes with reduced PS dosage. Tumor microenvironment (TME) comprises of a complex and dynamic landscape with myriad potential targets for photodynamic nanocarriers that are surface-modified with ligands. Herein, we review ways to improvise PDT by actively targeting nanoparticles (NPs) to intracellular organelles such as mitochondria or lysosomes and so forth, overcoming the limitations caused by PDT-induced hypoxia, disrupting the blood vascular networks in tumor tissues-vascular targeted PDT (VTP) and targeting immune cells for photoimmunotherapy. We propose that a synergistic outlook will help to address challenges such as deep-seated tumors, metastasis, or relapse and would lead to robust PDT response in patients.
Collapse
Affiliation(s)
- Suraj Kumar Modi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, London, UK
| | - Pragyan Mohapatra
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Priya Bhatt
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Aishleen Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani Campus, Pilani, Rajasthan, India
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Manu Smriti Singh
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Chen Y, Shen Z, Tao C, Kong D, Liu C, Shen W, Lee HK, Tang S. Enzyme-Assisted Solid-Phase Microextraction Coupled with a DNA Nanowalker for Dual-Amplified Detection of Chloramphenicol in Animal-Derived Food Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39568346 DOI: 10.1021/acs.jafc.4c07497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Chloramphenicol (CAP), an aminoalcohol antibiotic, exerts its action on bacterial ribosomes, thereby obstructing protein synthesis. However, the use of CAP in husbandry may lead to its excessive accumulation in animal-derived food products. This presents potential risks to consumer health. This study developed a novel dual-amplification fluorescence detection method by integrating enzyme-assisted solid-phase microextraction (SPME) with a Fe3O4@Au NP-based DNA nanowalker for the detection of CAP in food. The combination of a quartz rod-based SPME biosensor and DNA nanowalker effectively eliminated matrix interference, enabling the conversion of CAP and enhancement of detection signals through two cyclic amplification processes. The strategy demonstrated high sensitivity with a limit of detection of 28.1 aM as well as a wide linear range from 0.1 fM to 1 nM (with R2 > 0.99). This method also demonstrates robust stability and accuracy in detecting trace amounts of CAP in both authentic and prepared positive samples.
Collapse
Affiliation(s)
- Yitong Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, PR China
| | - Zhuoyue Shen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, PR China
| | - Chunxu Tao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, PR China
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, PR China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, PR China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, PR China
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, PR China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, PR China
| |
Collapse
|
7
|
Ziental D, Czarczynska-Goslinska B, Wysocki M, Ptaszek M, Sobotta Ł. Advances and perspectives in use of semisolid formulations for photodynamic methods. Eur J Pharm Biopharm 2024; 204:114485. [PMID: 39255919 DOI: 10.1016/j.ejpb.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Although nearly 30 years have passed since the introduction of the first clinically approved photosensitizer for photodynamic therapy, progress in developing new pharmaceutical formulations remains unsatisfactory. This review highlights that despite years of research, many recurring challenges and issues remain unresolved. The paper includes an analysis of selected essential studies involving aminolevulinic acid and its derivatives, as well as other photosensitizers with potential for development as medical products. Among various possible vehicles, special attention is given to gelatin, alginates, poly(ethylene oxide), polyacrylic acid, and chitosan. The focus is particularly on infectious and cancerous diseases. Key aspects of developing new semi-solid drug forms should prioritize the creation of easily manufacturable and biocompatible preparations for clinical use. At the same time, new formulations should preserve the primary function of photosensitizers, which is the generation of reactive oxygen species capable of destroying pathogenic cells or tumors. Additionally, the use of adjuvant properties of carriers, which can enhance the effectiveness of macrocycles, is emphasized, especially in chitosan-based antibacterial formulations. Current research indicates that many promising dyes and macrocyclic compounds with high potential as photosensitizers in photodynamic therapy remain unexplored in formulation and development work. This review outlines potential new and previously explored pathways for advancing photosensitizers as active pharmaceutical ingredients (APIs).
Collapse
Affiliation(s)
- Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Łukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
8
|
Sánchez DP, Morice K, Mutovska MG, Khrouz L, Josse P, Allain M, Gohier F, Blanchard P, Monnereau C, Le Bahers T, Sabouri N, Zagranyarski Y, Cabanetos C, Deiana M. Heavy-atom-free π-twisted photosensitizers for fluorescence bioimaging and photodynamic therapy. J Mater Chem B 2024; 12:8107-8121. [PMID: 39041337 DOI: 10.1039/d4tb01014k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
As the field of preclinical research on photosensitizers (PSs) for anticancer photodynamic therapy (PDT) continues to expand, a focused effort is underway to develop agents with innovative molecular structures that offer enhanced targeting, selectivity, activation, and imaging capabilities. In this context, we introduce two new heavy-atom-free PSs, DBXI and DBAI, characterized by a twisted π-conjugation framework. This innovative approach enhances the spin-orbit coupling (SOC) between the singlet excited state (S1) and the triplet state (T1), resulting in improved and efficient intersystem crossing (ISC). Both PSs are highly effective in producing reactive oxygen species (ROS), including singlet oxygen and/or superoxide species. Additionally, they also demonstrate remarkably strong fluorescence emission. Indeed, in addition to providing exceptional photocytotoxicity, this emissive feature, generally lacking in other reported structures, allows for the precise monitoring of the PSs' distribution within specific cellular organelles even at nanomolar concentrations. These findings underscore the dual functionality of these PSs, serving as both fluorescent imaging probes and light-activated therapeutic agents, emphasizing their potential as versatile and multifunctional tools in the field of PDT.
Collapse
Affiliation(s)
| | - Korentin Morice
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France.
| | - Monika G Mutovska
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier blvd., 1164 Sofia, Bulgaria.
| | - Lhoussain Khrouz
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Pierre Josse
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France.
| | - Magali Allain
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France.
| | - Frédéric Gohier
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France.
| | | | - Cyrille Monnereau
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Tangui Le Bahers
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
- Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Yulian Zagranyarski
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier blvd., 1164 Sofia, Bulgaria.
| | - Clement Cabanetos
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France.
| | - Marco Deiana
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
9
|
Yang Q, Hu S, Wang Y, Zhong L, Yu X, Zhang Y, Du X, Wang S, Tian Q. Engineering M1 macrophages with targeting aptamers for enhanced adoptive immunotherapy by modifying the cell surface. Biomed Pharmacother 2024; 177:117064. [PMID: 38964179 DOI: 10.1016/j.biopha.2024.117064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Macrophages play a critical role in the body's defense against cancer by phagocytosing tumor cells, presenting antigens, and activating adaptive T cells. However, macrophages are intrinsically incapable of delivering targeted cancer immunotherapies. Engineered adoptive cell therapy introduces new targeting and antitumor capabilities by modifying macrophages to enhance the innate immune response of cells and improve clinical efficacy. In this study, we developed engineered macrophage cholesterol-AS1411-M1 (CAM1) for cellular immunotherapy. To target macrophages, cholesterol-AS1411 aptamers were anchored to the surface of M1 macrophages to produce CAM1 without genetic modification or cell damage. CAM1 induced significantly higher apoptosis/mortality than unmodified M1 macrophages in murine breast cancer cells. Anchoring AS1411 on the surface of macrophages provided a novel approach to construct engineered macrophages for tumor immunotherapy.
Collapse
Affiliation(s)
- Qian Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shiyi Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yiqiu Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Luyi Zhong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaoli Yu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yifeng Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao Du
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qingchang Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
10
|
Yan B, Li Y, He S. Aptamer-mediated therapeutic strategies provide a potential approach for cancer. Int Immunopharmacol 2024; 136:112356. [PMID: 38820957 DOI: 10.1016/j.intimp.2024.112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
The treatment of tumors still faces considerable challenges. While conventional treatments such as surgery, chemotherapy, and radiation therapy provide some curative effects, their side effects and limitations highlight the importance of finding more precise treatment strategies. Aptamers have become an important target molecule in the field of drug delivery systems due to their good affinity and targeting, and they have gradually become an important link from basic research to clinical application. In this paper, we discussed the latest progress of aptamer-mediated nanodrugs, as well as aptamer-mediated photodynamic therapy, photothermal therapy, and immunotherapy strategies for tumor treatment, and explored the possibility of aptamer-mediated therapy for accurate tumor treatment. The purpose of this review is to provide novel insights for treating tumors with aptamer-mediated therapies by summarizing these innovative strategies, thereby ultimately enhancing the therapeutic efficacy for cancer patients.
Collapse
Affiliation(s)
- Bingshuo Yan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.
| |
Collapse
|
11
|
Zhu J, Zhang QH, Wang WW. Pattern Recognition of Alkaloids by Inhibiting the Catalytic Activity of Dopzymes for Dopamine. Anal Chem 2024. [PMID: 39014901 DOI: 10.1021/acs.analchem.4c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Exploiting the specific recognition probe for all of the biomolecules is difficult in "lock-and-key" biosensors. The cross-reaction or the semispecific probe in pattern recognition mode is an alternative strategy through extracting a multidimensional signal array from recognition elements. Here, we design a pattern recognition sensor array based on the alkaloid-inhibited catalytic activity of dopzymes for the discrimination and determination of six alkaloids. In this sensor array, three different G-rich sequences, i.e., G-triplex (G3), G-quadruplex (GQ1), and the G-quadruplex dimer (2GQ1) possessing various peroxidase activities, conjugated with a dopamine aptamer and the dopzymes (G3-d-apt, GQ1-d-apt, and 2GQ1-d-apt) were obtained with an enhanced catalytic performance for the substrate. Through the interactions between six target alkaloids and G3, GQ1, and 2GQ1 regions, the pattern signal (6 alkaloids × 3 dopzymes × 5 replicates) was obtained from the diverse inhibited effect for the dopzyme activity. In virtue of the statistical method principal component analysis (PCA), the data array was projected into a new dimensional space to acquire the three-dimensional (3D) canonical scores and grouped into their respective clusters. The sensor array exhibited an outstanding discrimination and classification capability for six alkaloids with different concentrations with 100% accuracy. In addition, the nonspecific recognition elements of the sensor array showed high selectivity even though other alkaloids with similar structures to targets existed in the samples. Importantly, the levels of the six targets can be analyzed by the most influential discrimination factor, which represented the vector with the highest variance, evidencing that the sensor array has potential in drug screening and clinical treatment.
Collapse
Affiliation(s)
- Jing Zhu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Qing Hong Zhang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Wen Wu Wang
- School of Statistics and Data Science, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| |
Collapse
|
12
|
Quadrado RFN, Silvestri S, de Souza JF, Iglesias BA, Fajardo AR. Advances in porphyrins and chlorins associated with polysaccharides and polysaccharides-based materials for biomedical and pharmaceutical applications. Carbohydr Polym 2024; 334:122017. [PMID: 38553216 DOI: 10.1016/j.carbpol.2024.122017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Over the last decade, the convergence of advanced materials and innovative applications has fostered notable scientific progress within the biomedical and pharmaceutical fields. Porphyrins and their derivatives, distinguished by an extended conjugated π-electron system, have a relevant role in propelling these advancements, especially in drug delivery systems, photodynamic therapy, wound healing, and (bio)sensing. However, despite their promise, the practical clinical application of these macrocycles is hindered by their inherent challenges of low solubility and instability under physiological conditions. To address this limitation, researchers have exploited the synergistic association of porphyrins and chlorins with polysaccharides by engineering conjugated systems and composite/hybrid materials. This review compiles the principal advances in this growing research field, elucidating fundamental principles and critically examining the applications of such materials within biomedical and pharmaceutical contexts. Additionally, the review addresses the eventual challenges and outlines future perspectives for this poignant research field. It is expected that this review will serve as a comprehensive guide for students and researchers dedicated to exploring state-of-the-art materials for contemporary medicine and pharmaceutical applications.
Collapse
Affiliation(s)
- Rafael F N Quadrado
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - Siara Silvestri
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil; Laboratório de Engenharia de Meio Ambiente (LEMA), Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Jaqueline F de Souza
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Bernardo A Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900, Santa Maria, RS, Brazil.
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
13
|
Wu W, Luo C, Zhu C, Cai Z, Liu J. A Novel Boron Dipyrromethene-Erlotinib Conjugate for Precise Photodynamic Therapy against Liver Cancer. Int J Mol Sci 2024; 25:6421. [PMID: 38928126 PMCID: PMC11203698 DOI: 10.3390/ijms25126421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Photodynamic Therapy (PDT) is recognized for its exceptional effectiveness as a promising cancer treatment method. However, it is noted that overexposure to the dosage and sunlight in traditional PDT can result in damage to healthy tissues, due to the low tumor selectivity of currently available photosensitizers (PSs). To address this challenge, we introduce herein a new strategy where the small molecule-targeted agent, erlotinib, is integrated into a boron dipyrromethene (BODIPY)-based PS to form conjugate 6 to enhance the precision of PDT. This conjugate demonstrates optical absorption, fluorescence emission, and singlet oxygen generation efficiency comparable to the reference compound 7, which lacks erlotinib. In vitro studies reveal that, after internalization, conjugate 6 predominantly accumulates in the lysosomes of HepG2 cells, exhibiting significant photocytotoxicity with an IC50 value of 3.01 µM. A distinct preference for HepG2 cells over HELF cells is observed with conjugate 6 but not with compound 7. In vivo experiments further confirm that conjugate 6 has a specific affinity for tumor tissues, and the combination treatment of conjugate 6 with laser illumination can effectively eradicate H22 tumors in mice with outstanding biosafety. This study presents a novel and potential PS for achieving precise PDT against cancer.
Collapse
Affiliation(s)
- Wenqiang Wu
- China State Institute of Pharmaceutical Industry, Pudong New Area, Shanghai 201203, China;
| | - Chengmiao Luo
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China; (C.L.); (C.Z.)
| | - Chunhui Zhu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China; (C.L.); (C.Z.)
| | - Zhengyan Cai
- China State Institute of Pharmaceutical Industry, Pudong New Area, Shanghai 201203, China;
| | - Jianyong Liu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China; (C.L.); (C.Z.)
- State Key Laboratory of Photocatalysis on Energy and Environment & National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
14
|
Mu R, Zhu D, Abdulmalik S, Wijekoon S, Wei G, Kumbar SG. Stimuli-responsive peptide assemblies: Design, self-assembly, modulation, and biomedical applications. Bioact Mater 2024; 35:181-207. [PMID: 38327824 PMCID: PMC10847779 DOI: 10.1016/j.bioactmat.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
Peptide molecules have design flexibility, self-assembly ability, high biocompatibility, good biodegradability, and easy functionalization, which promote their applications as versatile biomaterials for tissue engineering and biomedicine. In addition, the functionalization of self-assembled peptide nanomaterials with other additive components enhances their stimuli-responsive functions, promoting function-specific applications that induced by both internal and external stimulations. In this review, we demonstrate recent advance in the peptide molecular design, self-assembly, functional tailoring, and biomedical applications of peptide-based nanomaterials. The strategies on the design and synthesis of single, dual, and multiple stimuli-responsive peptide-based nanomaterials with various dimensions are analyzed, and the functional regulation of peptide nanomaterials with active components such as metal/metal oxide, DNA/RNA, polysaccharides, photosensitizers, 2D materials, and others are discussed. In addition, the designed peptide-based nanomaterials with temperature-, pH-, ion-, light-, enzyme-, and ROS-responsive abilities for drug delivery, bioimaging, cancer therapy, gene therapy, antibacterial, as well as wound healing and dressing applications are presented and discussed. This comprehensive review provides detailed methodologies and advanced techniques on the synthesis of peptide nanomaterials from molecular biology, materials science, and nanotechnology, which will guide and inspire the molecular level design of peptides with specific and multiple functions for function-specific applications.
Collapse
Affiliation(s)
- Rongqiu Mu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sama Abdulmalik
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Suranji Wijekoon
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering & Department of Materials Science and Engineering, University of Connecticut, Storrs, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| |
Collapse
|
15
|
Zhou H, Abudureheman T, Zheng W, Yang L, Zhu J, Liang A, Duan C, Chen K. CAR-Aptamers Enable Traceless Enrichment and Monitoring of CAR-Positive Cells and Overcome Tumor Immune Escape. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305566. [PMID: 38148412 PMCID: PMC10933668 DOI: 10.1002/advs.202305566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Chimeric antigen receptor (CAR)-positive cell therapy, specifically with anti-CD19 CAR-T (CAR19-T) cells, achieves a high complete response during tumor treatment for hematological malignancies. Large-scale production and application of CAR-T therapy can be achieved by developing efficient and low-cost enrichment methods for CAR-T cells, expansion monitoring in vivo, and overcoming tumor escape. Here, novel CAR-specific binding aptamers (CAR-ap) to traceless sort CAR-positive cells and obtain a high positive rate of CAR19-T cells is identified. Additionally, CAR-ap-enriched CAR19-T cells exhibit similar antitumor capacity as CAR-ab (anti-CAR antibody)-enriched CAR-T cells. Moreover, CAR-ap accurately monitors the expansion of CAR19-T cells in vivo and predicts the prognosis of CAR-T treatment. Essentially, a novel class of stable CAR-ap-based bispecific circular aptamers (CAR-bc-ap) is constructed by linking CAR-ap with a tumor surface antigen (TSA): protein tyrosine kinase 7 (PTK7) binding aptamer Sgc8. These CAR-bc-aps significantly enhance antitumor cytotoxicity with a loss of target antigens by retargeting CAR-T cells to the tumor in vitro and in vivo. Overall, novel CAR-aptamers are screened for traceless enrichment, monitoring of CAR-positive cells, and overcoming tumor cell immune escape. This provides a low-cost and high-throughput approach for CAR-positive cell-based immunotherapy.
Collapse
Affiliation(s)
- Hang Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Tuersunayi Abudureheman
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
| | - Wei‐Wei Zheng
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Li‐Ting Yang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Jian‐Min Zhu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Ai‐Bin Liang
- Department of Hematology, Tongji HospitalTongji University School of MedicineShanghai200065China
| | - Cai‐Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non‐human Primate, National Health CommissionFujian Maternity and Child Health HospitalFuzhouFujian350122China
| | - Kaiming Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
| |
Collapse
|
16
|
Yan S, Na J, Liu X, Wu P. Different Targeting Ligands-Mediated Drug Delivery Systems for Tumor Therapy. Pharmaceutics 2024; 16:248. [PMID: 38399302 PMCID: PMC10893104 DOI: 10.3390/pharmaceutics16020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Traditional tumor treatments have the drawback of harming both tumor cells and normal cells, leading to significant systemic toxic side effects. As a result, there is a pressing need for targeted drug delivery methods that can specifically target cells or tissues. Currently, researchers have made significant progress in developing targeted drug delivery systems for tumor therapy using various targeting ligands. This review aims to summarize recent advancements in targeted drug delivery systems for tumor therapy, focusing on different targeting ligands such as folic acid, carbohydrates, peptides, aptamers, and antibodies. The review also discusses the advantages, challenges, and future prospects of these targeted drug delivery systems.
Collapse
Affiliation(s)
- Shuxin Yan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (S.Y.); (J.N.)
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (S.Y.); (J.N.)
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (S.Y.); (J.N.)
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (S.Y.); (J.N.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
17
|
Li XT, Peng SY, Feng SM, Bao TY, Li SZ, Li SY. Recent Progress in Phage-Based Nanoplatforms for Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307111. [PMID: 37806755 DOI: 10.1002/smll.202307111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Nanodrug delivery systems have demonstrated a great potential for tumor therapy with the development of nanotechnology. Nonetheless, traditional drug delivery systems are faced with issues such as complex synthetic procedures, low reproducibility, nonspecific distribution, impenetrability of biological barrier, systemic toxicity, etc. In recent years, phage-based nanoplatforms have attracted increasing attention in tumor treatment for their regular structure, fantastic carrying property, high transduction efficiency and biosafety. Notably, therapeutic or targeting peptides can be expressed on the surface of the phages through phage display technology, enabling the phage vectors to possess multifunctions. As a result, the drug delivery efficiency on tumor will be vastly improved, thereby enhancing the therapeutic efficacy while reducing the side effects on normal tissues. Moreover, phages can overcome the hindrance of biofilm barrier to elicit antitumor effects, which exhibit great advantages compared with traditional synthetic drug delivery systems. Herein, this review not only summarizes the structure and biology of the phages, but also presents their potential as prominent nanoplatforms against tumor in different pathways to inspire the development of effective nanomedicine.
Collapse
Affiliation(s)
- Xiao-Tong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shu-Yi Peng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shao-Mei Feng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ting-Yu Bao
- Department of Clinical Medicine, the Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng-Zhang Li
- Department of Clinical Medicine, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Shi-Ying Li
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
18
|
Zhu J, Peng L, Jehan S, Wang H, Chen X, Zhao S, Zhou W. Activable Photodynamic DNA Probe with an "AND" Logic Gate for Precision Skin Cancer Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0295. [PMID: 38269029 PMCID: PMC10807844 DOI: 10.34133/research.0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
Photodynamic therapy (PDT) has emerged as a promising approach for squamous cell carcinoma treatment but hindered by tumor hypoxia, acquired resistance, phototoxicity, and so on. To address these issues, we developed a smart strategy utilizing activable photosensitizers delivered by an aptamer-functionalized DNA probe (ADP). The ADP incorporated an AS1411 aptamer for tumor targeting and a linear antisense oligonucleotide (ASO) for recognition of Survivin mRNA. In the absence of the target, PDT remained quenched, thereby avoiding phototoxicity during circulation and nonselective distribution. With the aid of the aptamer, ADP achieved selective targeting of tumors. Upon internalization, ADP targeted recognized Survivin mRNA, triggering PDT activation, and releasing ASO to down-regulate Survivin expression and reverse tumor resistance. Consequently, the activable photosensitizers exhibited an "AND" logic gate, combining tumor-targeting delivery and tumor-related gene activation, thus enhancing its specificity. Additionally, the incorporation of hemin into the ADP provided catalase activity, converting tumor-abundant H2O2 into O2, thereby ameliorating tumor hypoxia. The resulting functionalized G-quadruplex/hemin-DNA probe complex demonstrated targeted delivery and activation, minimized side effects, and enhanced PDT efficacy in both xenograft tumor-bearing mice and patient-derived xenograft models. This study offers a unique and promising platform for efficient and safe PDT, thus holding great potential for future clinical translation and improved cancer therapy.
Collapse
Affiliation(s)
- Jiaojiao Zhu
- Xiangya School of Pharmaceutical Sciences,
Central South University, Changsha, Hunan 410013, China
| | - Lanyuan Peng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan 410008, China
| | - Shah Jehan
- Xiangya School of Pharmaceutical Sciences,
Central South University, Changsha, Hunan 410013, China
- Department of Vascular Surgery,
The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Haiyang Wang
- Department of Vascular Surgery,
The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan 410008, China
| | - Shuang Zhao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences,
Central South University, Changsha, Hunan 410013, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha, Hunan 410008, China
| |
Collapse
|
19
|
Cui J, Luo Q, Wei C, Deng X, Liang H, Wei J, Gong Y, Tang Q, Zhang K, Liao X. Electrochemical biosensing for E.coli detection based on triple helix DNA inhibition of CRISPR/Cas12a cleavage activity. Anal Chim Acta 2024; 1285:342028. [PMID: 38057050 DOI: 10.1016/j.aca.2023.342028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Escherichia coli (E.coli) is both a commensal and a foodborne pathogenic bacterium in the human gastrointestinal tract, posing significant potential risks to human health and food safety. However, one of the major challenges in E.coli detection lies in the preparation and storage of antibodies. In traditional detection methods, antibodies are indispensable, but their instability often leads to experimental complexity and increased false positives. This underscores the need for new technologies and novel sensors. Therefore, the development of a simple and sensitive method for analyzing E.coli would make significant contributions to human health and food safety. RESULTS We constructed an electrochemical biosensor based on triple-helical DNA and entropy-driven amplification reaction (EDC) to inhibit the cleavage activity of Cas12a, enabling high-specificity detection of E.coli. Replacing antibodies with nucleic acid aptamers (Apt) as recognition elements, we utilized the triple-helical DNA generated by the binding of DNA2 and DNA5/DNA6 double-helical DNA through the entropy-driven amplification reaction to inhibit the collateral cleavage activity of clustered regularly interspaced short palindromic repeats gene editing system (CRISPR) and its associated proteins (Cas). By converting E.coli into electrical signals and recording signal changes in the form of square wave voltammetry (SWV), rapid detection of E.coli was achieved. Optimization of experimental conditions and data detection under the optimal conditions provided high sensitivity, low detection limits, and high specificity. SIGNIFICANCE With a minimal detection limit of 5.02 CFU/mL and a linear range of 1 × 102 - 1 × 107 CFU/mL, the suggested approach was successfully verified to analyze E.coli at various concentrations. Additionally, after examining E.coli samples from pure water and pure milk, the recoveries ranged between 95.76 and 101.20%, demonstrating the method's applicability. Additionally, it provides a feasible research direction for the detection of pathogenic bacteria causing other diseases using the CRISPR/Cas gene editing system.
Collapse
Affiliation(s)
- Jiuying Cui
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Qisheng Luo
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Cheng Wei
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Xiandong Deng
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Hongqu Liang
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Jihua Wei
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Yuanxun Gong
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Qianli Tang
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Kai Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology. Nanjing, 210044, P. R. China.
| | - Xianjiu Liao
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
20
|
Wang J, Fu Y, Gu Z, Pan H, Zhou P, Gan Q, Yuan Y, Liu C. Multifunctional Carbon Dots for Biomedical Applications: Diagnosis, Therapy, and Theranostic. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303773. [PMID: 37702145 DOI: 10.1002/smll.202303773] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/27/2023] [Indexed: 09/14/2023]
Abstract
Designing suitable nanomaterials is an ideal strategy to enable early diagnosis and effective treatment of diseases. Carbon dots (CDs) are luminescent carbonaceous nanoparticles that have attracted considerable attention. Through facile synthesis, they process properties including tunable light emission, low toxicity, and light energy transformation, leading to diverse applications as optically functional materials in biomedical fields. Recently, their potentials have been further explored, such as enzyme-like activity and ability to promote osteogenic differentiation. Through refined synthesizing strategies carbon dots, a rich treasure trove for new discoveries, stand a chance to guide significant development in biomedical applications. In this review, the authors start with a brief introduction to CDs. By presenting mechanisms and examples, the authors focus on how they can be used in diagnosing and treating diseases, including bioimaging failure of tissues and cells, biosensing various pathogenic factors and biomarkers, tissue defect repair, anti-inflammation, antibacterial and antiviral, and novel oncology treatment. The introduction of the application of integrated diagnosis and treatment follows closely behind. Furthermore, the challenges and future directions of CDs are discussed. The authors hope this review will provide critical perspectives to inspire new discoveries on CDs and prompt their advances in biomedical applications.
Collapse
Affiliation(s)
- Jiayi Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu Road 100, Shanghai, 200092, P. R. China
| | - Zhanghao Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hao Pan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Panyu Zhou
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, P. R. China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
21
|
Liu S, Xu M, Zhong L, Tong X, Qian S. Recent Advances in Nanobiotechnology for the Treatment of Non-Hodgkin's Lymphoma. Mini Rev Med Chem 2024; 24:895-907. [PMID: 37724679 DOI: 10.2174/1389557523666230915103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023]
Abstract
Lymphoma is the eighth most common type of cancer worldwide. Currently, lymphoma is mainly classified into two main groups: Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL), with NHL accounting for 80% to 90% of the cases. NHL is primarily divided into B, T, and natural killer (NK) cell lymphoma. Nanotechnology is developing rapidly and has made significant contributions to the field of medicine. This review summarizes the advancements of nanobiotechnology in recent years and its applications in the treatment of NHL, especially in diffuse large B cell lymphoma (DLBCL), primary central nervous system lymphoma (PCNSL), and follicular lymphoma (FL). The technologies discussed include clinical imaging, targeted drug delivery, photodynamic therapy (PDT), and thermodynamic therapy (TDT) for lymphoma. This review aims to provide a better understanding of the use of nanotechnology in the treatment of non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Shuxian Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Minghao Xu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Lei Zhong
- Tongxiang Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Xiangmin Tong
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Suying Qian
- Department of Hematology and Oncology, Ningbo No. 2 Hospital, China
| |
Collapse
|
22
|
Mao X, Zhang X, Chao Z, Qiu D, Wei S, Luo R, Chen D, Zhang Y, Chen Y, Yang Y, Monchaud D, Ju H, Mergny JL, Lei J, Zhou J. A Versatile G-Quadruplex (G4)-Coated Upconverted Metal-Organic Framework for Hypoxic Tumor Therapy. Adv Healthc Mater 2023; 12:e2300561. [PMID: 37402245 DOI: 10.1002/adhm.202300561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
Given the complexity of the tumor microenvironment, multiple strategies are being explored to tackle hypoxic tumors. The most efficient strategies combine several therapeutic modalities and typically requires the development of multifunctional nanocomposites through sophisticated synthetic procedures. Herein, the G-quadruplex (G4)-forming sequence AS1411-A (d[(G2 T)4 TG(TG2 )4 A]) is used for both its anti-tumor and biocatalytic properties when combined with hemin, increasing the production of O2 ca. two-fold as compared to the parent AS1411 sequence. The AS1411-A/hemin complex (GH) is grafted on the surface and pores of a core-shell upconverted metal-organic framework (UMOF) to generate a UMGH nanoplatform. Compared with UMOF, UMGH exhibits enhanced colloidal stability, increased tumor cell targeting and improved O2 production (8.5-fold) in situ. When irradiated by near-infrared (NIR) light, the UMGH antitumor properties are bolstered by photodynamic therapy (PDT), thanks to its ability to convert O2 into singlet oxygen (1 O2 ). Combined with the antiproliferative activity of AS1411-A, this novel approach lays the foundation for a new type of G4-based nanomedicine.
Collapse
Affiliation(s)
- Xuanxiang Mao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhicong Chao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Yun Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, uB, Dijon, 21078, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
23
|
Heyns IM, Ganugula R, Varma T, Allamreddy S, Kumar N, Garg P, Kumar MNVR, Arora M. Rationally Designed Naringenin-Conjugated Polyester Nanoparticles Enable Folate Receptor-Mediated Peroral Delivery of Insulin. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45651-45657. [PMID: 37728532 DOI: 10.1021/acsami.3c09866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Receptor-mediated transcytosis of nanoparticles is paramount for the effective delivery of various drugs. Here, we report the design and synthesis of highly functional nanoparticles with specific targeting toward the folate receptor (FR) for the peroral delivery of insulin. In doing so, we demonstrate naringenin (NAR), a citrous flavonoid, as a targeting ligand to FR, with a similar affinity as folic acid. The NAR-decorated nanoparticles indicated a 4-fold increase in FR colocalization compared to unfunctionalized nanoparticles. The NAR-conjugated precision polyester allows for high insulin loading and entrapment efficiencies. As a result, insulin-laden NAR-functional nanoparticles offered a 3-fold higher bioavailability in comparison to unfunctionalized nanoparticles. This work generated a promising contribution to folate-receptor-mediated peroral delivery of insulin, utilizing polymeric nanoparticles decorated with a natural ligand, NAR.
Collapse
Affiliation(s)
- Ingrid M Heyns
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Raghu Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
| | - Tanmaykumar Varma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar 160062, Punjab, India
| | - Swetha Allamreddy
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar 160062, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar 160062, Punjab, India
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
- Chemical and Biological Engineering, University of Alabama, SEC 3448, Box 870203, Tuscaloosa, Alabama 35487, United States
| | - Meenakshi Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
24
|
Wang N, Fan T, Chen Y, Chen H, Qin Y, Jiang Y. Whole-Bacterium SELEX Aptamer Selection of Fusobacterium nucleatum and Application to Colorectal Cancer Noninvasive Screening in Human Feces. Anal Chem 2023; 95:12216-12222. [PMID: 37578005 DOI: 10.1021/acs.analchem.3c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
In terms of cancer diagnoses and cancer-related deaths worldwide, colorectal cancer (CRC) is now the third most common malignancy. The drawbacks of current screening methods are their exorbitant costs, difficult procedures, and lengthy implementation timelines. The benefits of fecal screening for CRC are ease of operation, noninvasiveness, cost-effectiveness, and superior sensitivity. As a result of its enrichment in the malignant tissues and feces of CRC patients, Fusobacterium nucleatum (F. nucleatum) has emerged as a crucial biomarker for the incipient detection, identification, and prognostic prediction of CRC. Here, for the first time, the whole-bacterium SELEX method was used to screen the highly specific and affinity aptamers against F. nucleatum by 13 cycles of selection. The Apt-S-5 linear correlation equation is y = 0.7363x2.8315 (R2 = 0.9864) with a limit of detection (LOD) of 851 CFU/mL. The results of the experiment using fecal samples revealed a substantial disparity between the microorganisms in the CRC patients' feces and those in the feces of healthy individuals and were consistent with those of qPCR. The aptamers may therefore offer a crucial approach to identifying F. nucleatum and hold tremendous promise for CRC diagnosis and prognostic prediction.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Tingting Fan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| | - Yan Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen 518055, Guangdong, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
25
|
Yan S, Dong L, Hu Z, Zhang Y, Xu W, Xing J, Zhang J. A Photosensitizer-Loaded Polydopamine Nanomedicine Agent for Synergistic Photodynamic and Photothermal Therapy. Molecules 2023; 28:5874. [PMID: 37570844 PMCID: PMC10420639 DOI: 10.3390/molecules28155874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising non-invasive approaches to cancer treatment. However, the development of multifunctional nanomedicines is necessary to enhance these approaches' effectiveness and safety. In this study, we investigated a polydopamine-based nanoparticle (PDA-ZnPc+ Nps) loaded with the efficient photosensitizer ZnPc(4TAP)12+ (ZnPc+) through in vitro and in vivo experiments to achieve synergistic PDT and PTT. Our results demonstrated that PDA-ZnPc+ Nps exhibited remarkable efficacy due to its ability to generate reactive oxygen species (ROS), induce photothermal effects, and promote apoptosis in cancer cells. Moreover, in both MCF-7 cells and MCF-7 tumor-bearing mice, the combined PDT/PTT treatment with PDA-ZnPc+ Nps led to synergistic effects. Subcellular localization analysis revealed a high accumulation of ZnPc+ in the cytoplasm of cancer cells, resulting in cellular disruption and vacuolation following synergistic PDT/PTT. Furthermore, PDA-ZnPc+ Nps exhibited significant antitumor effects without causing evident systemic damage in vivo, enabling the use of lower doses of photosensitizer and ensuring safer treatment. Our study not only highlights the potential of PDA-ZnPc+ Nps as a dual-functional anticancer agent combining PDA and PTT but also offers a strategy for mitigating the side effects associated with clinical photosensitizers, particularly dark toxicity.
Collapse
Affiliation(s)
- Shufeng Yan
- Medical Plant Exploitation and Utilization Engineering Research Center of Fujian Province, Sanming University, Sanming 365004, China
- School of Resource and Chemical Engineering, Sanming University, Sanming 365004, China
| | - Luying Dong
- School of Resource and Chemical Engineering, Sanming University, Sanming 365004, China
| | - Ziyun Hu
- School of Resource and Chemical Engineering, Sanming University, Sanming 365004, China
| | - Yucheng Zhang
- School of Resource and Chemical Engineering, Sanming University, Sanming 365004, China
| | - Wei Xu
- School of Resource and Chemical Engineering, Sanming University, Sanming 365004, China
| | - Jianhong Xing
- Medical Plant Exploitation and Utilization Engineering Research Center of Fujian Province, Sanming University, Sanming 365004, China
- School of Resource and Chemical Engineering, Sanming University, Sanming 365004, China
| | - Juncheng Zhang
- Medical Plant Exploitation and Utilization Engineering Research Center of Fujian Province, Sanming University, Sanming 365004, China
| |
Collapse
|
26
|
Huang YY, Lee ZH, Chang KC, Wu ZY, Lee CC, Tsou MH, Lin HM. Mesoporous silica nanoparticles with dual-targeting agricultural sources for enhanced cancer treatment via tritherapy. RSC Adv 2023; 13:19079-19090. [PMID: 37362343 PMCID: PMC10288219 DOI: 10.1039/d3ra02068a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, we introduced dual-targeting folic acid (FA) and hyaluronic acid (HA) modified on the surface of rice husk mesoporous silica nanoparticles (rMSNs). The rMSNs were employed as a drug delivery system loaded with camptothecin (CPT) as a model drug, Eu3+ ions as a photosensitizer for photodynamic therapy (PDT), bismuth (Bi) for photothermal therapy (PTT), and Gd3+ ions for magnetic resonance imaging (MRI) to develop novel nanoparticles, rMSN-EuGd-Bi@CPT-HA-FA, with dual-targeted function and triple therapy for cancer treatment. The results of the cell cytotoxicity experiment showed that the A549 cancer cells had a survival rate of approximately 35% when treated with 200 μg mL-1 of rMSN-EuGd-Bi@CPT-HA-FA under 808 nm irradiation for 15 min. The dual-targeted function and synergistic treatment of CPT, PTT, and PDT were also responsible for the 20% survival rate of the A549 cancer cells treated with 200 μg mL-1 of rMSN-EuGd-Bi@CPT-HA-FA under 808 nm irradiation for 30 min. The results showed that rMSN-EuGd-Bi@CPT-HA-FA can effectively combine chemotherapy (through CPT), PDT, and PTT for cancer treatment.
Collapse
Affiliation(s)
- Yu-Ya Huang
- National Taiwan Ocean University, Department of Bioscience and Biotechnology No. 2, Beining Rd., Zhongzheng Dist. Keelung City 202 Taiwan Republic of China +886-2-2462-2192 +886-2-2462-2192
| | - Zui-Harng Lee
- National Taiwan Ocean University, Department of Bioscience and Biotechnology No. 2, Beining Rd., Zhongzheng Dist. Keelung City 202 Taiwan Republic of China +886-2-2462-2192 +886-2-2462-2192
| | - Kai-Chi Chang
- National Taiwan Ocean University, Bachelor Degree Program in Marine Biotechenology Taiwan
| | - Zhi-Yuan Wu
- National Taiwan Ocean University, Department of Bioscience and Biotechnology No. 2, Beining Rd., Zhongzheng Dist. Keelung City 202 Taiwan Republic of China +886-2-2462-2192 +886-2-2462-2192
| | - Cheng-Chang Lee
- National Taiwan Ocean University, Department of Bioscience and Biotechnology No. 2, Beining Rd., Zhongzheng Dist. Keelung City 202 Taiwan Republic of China +886-2-2462-2192 +886-2-2462-2192
| | - Min-Hsuan Tsou
- National Taiwan Ocean University, Department of Bioscience and Biotechnology No. 2, Beining Rd., Zhongzheng Dist. Keelung City 202 Taiwan Republic of China +886-2-2462-2192 +886-2-2462-2192
| | - Hsiu-Mei Lin
- National Taiwan Ocean University, Department of Bioscience and Biotechnology No. 2, Beining Rd., Zhongzheng Dist. Keelung City 202 Taiwan Republic of China +886-2-2462-2192 +886-2-2462-2192
- National Taiwan Ocean University, Center of Excellence for the Oceans Taiwan
- National Taiwan Ocean University, Center of Excellence for Ocean Engineering Taiwan
| |
Collapse
|
27
|
Yu H, Zhu J, Shen G, Deng Y, Geng X, Wang L. Improving aptamer performance: key factors and strategies. Mikrochim Acta 2023; 190:255. [PMID: 37300603 DOI: 10.1007/s00604-023-05836-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Aptamers are functional single-stranded oligonucleotide fragments isolated from randomized libraries by Systematic Evolution of Ligands by Exponential Enrichment (SELEX), exhibiting excellent affinity and specificity toward targets. Compared with traditional antibody reagents, aptamers display many desirable properties, such as low variation and high flexibility, and they are suitable for artificial and large-scale synthesis. These advantages make aptamers have a broad application potential ranging from biosensors, bioimaging to therapeutics and other areas of application. However, the overall performance of aptamer pre-selected by SELEX screening is far from being satisfactory. To improve aptamer performance and applicability, various post-SELEX optimization methods have been developed in the last decade. In this review, we first discuss the key factors that influence the performance or properties of aptamers, and then we summarize the key strategies of post-SELEX optimization which have been successfully used to improve aptamer performance, such as truncation, extension, mutagenesis and modification, splitting, and multivalent integration. This review shall provide a comprehensive summary and discussion of post-SELEX optimization methods developed in recent years. Moreover, by discussing the mechanism of each approach, we highlight the importance of choosing the proper method to perform post-SELEX optimization.
Collapse
Affiliation(s)
- Hong Yu
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Jiangxiong Zhu
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Guoqing Shen
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Yun Deng
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Xueqing Geng
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Lumei Wang
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China.
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China.
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China.
| |
Collapse
|
28
|
Fan D, Zhang C, Wang H, Wei Q, Cai H, Wei F, Bian Z, Liu W, Wang X, Liu Z. Fabrication of a composite 3D-printed titanium alloy combined with controlled in situ drug release to prevent osteosarcoma recurrence. Mater Today Bio 2023; 20:100683. [PMID: 37346395 PMCID: PMC10279918 DOI: 10.1016/j.mtbio.2023.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Osteosarcoma is a malignant bone tumor occurring in adolescents. Surgery combined with adjuvant or neoadjuvant chemotherapy is the standard treatment. However, systemic chemotherapy is associated with serious side effects and a high risk of postoperative tumor recurrence, leading to a high amputation rate and mortality in cancer patients. Implant materials that can simultaneously repair large bone defects and prevent osteosarcoma recurrence are in urgent need. Herein, an intelligent system comprising 3D-printed titanium scaffold (TS) and pH-responsive PEGylated paclitaxel prodrugs was fabricated for bone defect reconstruction and recurrence prevention following osteosarcoma surgery. The drug-loaded implants exhibited excellent stability and biocompatibility for supporting the activity of bone stem cells under normal body fluid conditions and the rapid release of drugs in response to faintly acidic environments. An in vitro study demonstrated that five human osteosarcoma cell lines could be efficiently eradicated by paclitaxel released in an acidic microenvironment. Using mice models, we demonstrated that the drug-loaded TS can enable a pH-responsive treatment of postoperative tumors and effectively prevent osteosarcoma recurrence. Therefore, local implantation of this composite scaffold may be a promising topical therapeutic method to prevent osteosarcoma recurrence.
Collapse
Affiliation(s)
- Daoyang Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, 100035, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hufei Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingguang Wei
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Hong Cai
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Feng Wei
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Zhilei Bian
- Department of Hematology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, 100035, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
29
|
Wang H, Zhang L, Sun H, Xu S, Li K, Su X. Screening and application of inhibitory aptamers for DNA repair protein apurinic/apyrimidinic endonuclease 1. Int J Biol Macromol 2023:124918. [PMID: 37244341 DOI: 10.1016/j.ijbiomac.2023.124918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/29/2023]
Abstract
The base excision repair (BER) pathway is crucial for DNA repair, and apurinic/apyrimidinic endonuclease 1 (APE1) is a critical enzyme in this pathway. Overexpression of APE1 has been linked to multidrug resistance in various cancers, including lung cancer, colorectal cancer, and other malignant tumors. Therefore, reducing APE1 activity is desirable to improve cancer treatment. Inhibitory aptamers, which are versatile oligonucleotides for protein recognition and function restriction, are a promising tool for this purpose. In this study, we developed an inhibitory aptamer for APE1 using systematic evolution of ligands by exponential (SELEX) technology. We used carboxyl magnetic beads as the carrier and APE1 with a His-Tag as the positive screening target, while the His-Tag itself served as the negative screening target. The aptamer APT-D1 was selected based on its high binding affinity for APE1, with a dissociation constant (Kd) of 1.306 ± 0.1418 nM. Gel electrophoresis analysis showed that APT-D1 at a concentration of 1.6 μM could entirely inhibit APE1 with 21 nM. Our results suggest that these aptamers can be utilized for early cancer diagnosis and the treatment, and as an essential tool for studying the function of APE1.
Collapse
Affiliation(s)
- Huanhuan Wang
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; Hebei Provincial Key Laboratory of NanoBiotechnology, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Material Preparation Technology and Science, Yanshan University, Qinhuangdao 066004, China
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huaqing Sun
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; Hebei Provincial Key Laboratory of NanoBiotechnology, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Material Preparation Technology and Science, Yanshan University, Qinhuangdao 066004, China
| | - Shufeng Xu
- First Hospital of Qinhuangdao, Hebei Province 066000, China
| | - Kun Li
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; Hebei Provincial Key Laboratory of NanoBiotechnology, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Material Preparation Technology and Science, Yanshan University, Qinhuangdao 066004, China.
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
30
|
He S, Du Y, Tao H, Duan H. Advances in aptamer-mediated targeted delivery system for cancer treatment. Int J Biol Macromol 2023; 238:124173. [PMID: 36965552 DOI: 10.1016/j.ijbiomac.2023.124173] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Aptamers with high affinity and specificity for certain targets have rapidly become a novel class of targeted ligands applicated in drug delivery. Based on the excellent characteristics of aptamers, different aptamer-mediated drug delivery systems have been developed, including aptamer-drug conjugate (ApDC), aptamer-siRNA, and aptamer-functionalized nanoparticle systems for the effective treatment of cancer, which can reduce potential toxicity and improve therapeutic efficacy. In this review, we summarize the recent progress of aptamer-mediated delivery systems in cancer therapy, and discuss the application prospects and existing problems of innovative approaches based on aptamer therapy. Overall, this review aims to better understand the current aptamer-based targeted delivery applications through in-depth analysis to improve efficacy and develop new therapeutic methods which can ultimately improve treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyu Tao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Huaiyu Duan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
31
|
Jiang W, Han L, Li G, Yang Y, Shen Q, Fan B, Wang Y, Yu X, Sun Y, He S, Du H, Miao J, Wang Y, Jia L. Baits-trap chip for accurate and ultrasensitive capture of living circulating tumor cells. Acta Biomater 2023; 162:226-239. [PMID: 36940769 DOI: 10.1016/j.actbio.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023]
Abstract
Accurate analysis of living circulating tumor cells (CTCs) plays a crucial role in cancer diagnosis and prognosis evaluation. However, it is still challenging to develop a facile method for accurate, sensitive, and broad-spectrum isolation of living CTCs. Herein, inspired by the filopodia-extending behavior and clustered surface-biomarker of living CTCs, we present a unique baits-trap chip to achieve accurate and ultrasensitive capture of living CTCs from peripheral blood. The baits-trap chip is designed with the integration of nanocage (NCage) structure and branched aptamers. The NCage structure could "trap" the extended filopodia of living CTCs and resist the adhesion of filopodia-inhibited apoptotic cells, thus realizing the accurate capture (∼95% accuracy) of living CTCs independent of complex instruments. Using an in-situ rolling circle amplification (RCA) method, branched aptamers were easily modified onto the NCage structure, and served as "baits" to enhance the multi-interactions between CTC biomarker and chips, leading to ultrasensitive (99%) and reversible cell capture performance. The baits-trap chip successfully detects living CTCs in broad-spectrum cancer patients and achieves high diagnostic sensitivity (100%) and specificity (86%) of early prostate cancer. Therefore, our baits-trap chip provides a facile, accurate, and ultrasensitive strategy for living CTC isolation in clinical. STATEMENT OF SIGNIFICANCE: A unique baits-trap chip integrated with precise nanocage structure and branched aptamers was developed for the accurate and ultrasensitive capture of living CTCs. Compared with the current CTC isolation methods that are unable to distinguish CTC viability, the nanocage structure could not only "trap" the extended-filopodia of living CTCs, but also resist the adhesion of filopodia-inhibited apoptotic cells, thus realizing the accurate capture of living CTCs. Additionally, benefiting from the "baits-trap" synergistic effects generated by aptamer modification and nanocage structure, our chip achieved ultrasensitive, reversible capture of living CTCs. Moreover, this work provided a facile strategy for living CTC isolation from the blood of patients with early-stage and advanced cancer, exhibiting high consistency with the pathological diagnosis.
Collapse
Affiliation(s)
- Wenning Jiang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China.
| | - Guorui Li
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Ying Yang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Qidong Shen
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Bo Fan
- Department of Urology, The Second Hospital Affiliated of Dalian Medical University, Dalian 116023, P. R. China
| | - Yuchao Wang
- Department of Urology, The Second Hospital Affiliated of Dalian Medical University, Dalian 116023, P. R. China
| | - Xiaomin Yu
- Department of Oncology, The Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, P.R. China
| | - Yan Sun
- Department of Oncology, The Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, P.R. China
| | - Shengxiu He
- Department of Oncology, The Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, P.R. China
| | - Huakun Du
- Department of Oncology, The Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, P.R. China
| | - Jian Miao
- Hepatobiliary Pancreatic Surgery II, The Second Hospital Affiliated of Dalian Medical University, Dalian 116023, P. R. China
| | - Yuefeng Wang
- Hepatobiliary Pancreatic Surgery II, The Second Hospital Affiliated of Dalian Medical University, Dalian 116023, P. R. China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China.
| |
Collapse
|
32
|
Yu M, Cao R, Ma Z, Zhu M. Development of "smart" drug delivery systems for chemo/PDT synergistic treatment. J Mater Chem B 2023; 11:1416-1433. [PMID: 36734612 DOI: 10.1039/d2tb02248f] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although chemotherapy and photodynamic therapy (PDT) have been developed for fighting cancer, the complex and heterogeneous nature of tumors makes it difficult for a single therapy to completely inhibit tumor growth. In order to reduce multidrug resistance of cancer cells to chemotherapeutic drugs and overcome low PDT efficiency in the hypoxic tumor microenvironment (TME), chemo/PDT synergistic treatment has received much attention in recent years. Depending on the characteristic signals of TME, various drug delivery systems can be constructed to target tumors and improve the therapeutic efficacy and the pharmacokinetic profile of anticancer drugs. This review highlights the synergistic strategies, treatment protocols, and design of chemo/PDT co-therapy in recent years to explore its scope and limitations. Taking advantage of stimuli-responsive materials and active cancer-targeting agents, cancer-targeting synergistic therapy is presented and discussed, providing ideas and suggestions for the construction of chemo/PDT co-therapy "smart" nanocarriers.
Collapse
Affiliation(s)
- Miaomiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Ran Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
33
|
Xu D, Li C, Li W, Lin B, Lv R. Recent advances in lanthanide-doped up-conversion probes for theranostics. Front Chem 2023; 11:1036715. [PMID: 36846851 PMCID: PMC9949555 DOI: 10.3389/fchem.2023.1036715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Up-conversion (or anti-Stokes) luminescence refers to the phenomenon whereby materials emit high energy, short-wavelength light upon excitation at longer wavelengths. Lanthanide-doped up-conversion nanoparticles (Ln-UCNPs) are widely used in biomedicine due to their excellent physical and chemical properties such as high penetration depth, low damage threshold and light conversion ability. Here, the latest developments in the synthesis and application of Ln-UCNPs are reviewed. First, methods used to synthesize Ln-UCNPs are introduced, and four strategies for enhancing up-conversion luminescence are analyzed, followed by an overview of the applications in phototherapy, bioimaging and biosensing. Finally, the challenges and future prospects of Ln-UCNPs are summarized.
Collapse
Affiliation(s)
| | | | | | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | | |
Collapse
|
34
|
Zhang Z, Zhuang J, Sun D, Ding Q, Zheng H, Li H, Zhang X, Du Y, Ma T, Meng Q. Netrin-1 Monoclonal Antibody-Functionalized Nanoparticle Loaded with Metformin Prevents the Progression of Abdominal Aortic Aneurysms. Int J Nanomedicine 2023; 18:627-639. [PMID: 36777816 PMCID: PMC9912973 DOI: 10.2147/ijn.s400993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Background Abdominal aortic aneurysms (AAAs) are a global health and economic burden. Therapeutic strategies to inhibit the progression of AAAs are currently lacking. Recently, the therapeutic effect of metformin on aneurysms has attracted considerable interest. However, the unfavorable pharmacokinetic properties of metformin limit its feasibility for AAA treatment. Methods and Results We constructed a metformin-loaded netrin-1-responsive AAA-targeted nanoparticle (Tgt-NP-Met) for AAA management. Evaluation of the therapeutic effect of Tgt-NP-Met was performed by in vitro and in vivo experiments. Our results showed that the binding of netrin-1 monoclonal antibodies enhanced the AAA-targeting capability of nanoparticles (NPs). Moreover, Tgt-NP-Met administration prevented AAA development and reduced the aneurysm diameter in apolipoprotein E (ApoE)-deficient (ApoE-/-) mice that received continuous infusion of angiotensin II. Furthermore, metformin prevented AAA progression by inhibiting the transformation of vascular smooth muscle cells (VSMCs) from a contractile phenotype to a synthetic phenotype, which is mediated by macrophage infiltration and activation. Conclusion Our findings identify metformin as a functional suppressor for macrophage-mediated phenotypic transformation of VSMCs and Tgt-NP-Met as an efficient therapeutic strategy for AAA management.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jiawei Zhuang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Daohan Sun
- Department of Vascular Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Qingwei Ding
- Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hui Zheng
- Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Haixiang Li
- Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiaoyu Zhang
- Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yaming Du
- Department of Vascular Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Teng Ma
- Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Qingyou Meng
- Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China,Correspondence: Qingyou Meng; Teng Ma, Email ;
| |
Collapse
|
35
|
Xiong J, Xue EY, Ng DKP. Synthesis, Cellular Uptake, and Photodynamic Activity of Oligogalactosyl Zinc(II) Phthalocyanines. Chempluschem 2023; 88:e202200285. [PMID: 36229229 DOI: 10.1002/cplu.202200285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Indexed: 02/04/2023]
Abstract
A series of di-α-substituted zinc(II) phthalocyanines with different number of galactose moieties, ranging from 1 to 8, namely Pc-galn (n=1, 2, 4, and 8) were designed and synthesized. The synthesis involved the copper-catalyzed azide-alkyne cycloaddition reaction of a mono- or dialkynyl zinc(II) phthalocyanine with an acetyl-protected galactosyl azide or its dendritic derivative with four acetyl-protected galactosyl groups, followed by removal of the acetyl protecting groups via alkaline hydrolysis. In N,N-dimethylformamide, these oligogalactosyl phthalocyanines were non-aggregated as shown by the strong Q-band absorption and fluorescence emission. Owing to the di-α-substitution, they also behaved as efficient singlet oxygen generators upon light irradiation with a singlet oxygen quantum yield of 0.84. The spectroscopic and photophysical properties were not affected by the number of galactosyl units. In contrast, the compounds became significantly aggregated and quenched in phosphate-buffered saline. Their cellular uptake was then studied using a range of cell lines, which generally followed the order Pc-gal1 >Pc-gal2 ≈Pc-gal4 >Pc-gal8 . Interestingly, the di-galactosyl analogue exhibited selective uptake against HeLa human cervical carcinoma cells through an energy-dependent pathway instead of the expected asialoglycoprotein receptor. Upon light irradiation, it could effectively kill the cells with a half-maximal inhibitory concentration of 0.58 μM.
Collapse
Affiliation(s)
- Junlong Xiong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, P. R. China
| | - Evelyn Y Xue
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, P. R. China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, P. R. China
| |
Collapse
|
36
|
Ruan L, Han L, Li X, Chen X, Sun G, Wang X, Luo Y, Gu C, Shi X. Computable structured aptamer for targeted treatment of ovarian cancer. Front Genet 2023; 14:1170260. [PMID: 37206583 PMCID: PMC10189780 DOI: 10.3389/fgene.2023.1170260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Nucleolin protein expression is higher on the ovarian cancer cell surface. AS1411, a DNA aptamer, can bind with nucleolin protein specifically. In this study, we developed HA and ST DNA tiles to assemble six AS1411 aptamers to deliver doxorubicin. In addition, to superior serum stability and drug loading, HA-6AS and ST-6AS outperformed TDN-AS in cellular uptake. HA-6AS and ST-6AS exhibited satisfactory targeted cytotoxicity and achieved resounding lysosomal escape. Moreover, when injected into nude mice subcutaneous xenograft models, HA-6AS reached the peak in tumor more quickly than ST-6AS, and better expressed the active targeting ability of AS1411. Our study suggests that designing appropriate DNA tiles to assemble different aptamers to deliver different chemotherapeutic drugs is a promising treatment for ovarian cancer.
Collapse
Affiliation(s)
- Luoshan Ruan
- Department 2 of Gynecology, Remin Hospital of Wuhan University, Wuhan, China
| | - Liting Han
- Department 2 of Gynecology, Remin Hospital of Wuhan University, Wuhan, China
| | - Xin Li
- Department 2 of Gynecology, Remin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Xin Li,
| | - Xin Chen
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China
| | - Gege Sun
- Department 2 of Gynecology, Remin Hospital of Wuhan University, Wuhan, China
| | - Xinyu Wang
- Department 2 of Gynecology, Remin Hospital of Wuhan University, Wuhan, China
| | - Yan Luo
- Department 2 of Gynecology, Remin Hospital of Wuhan University, Wuhan, China
| | - Chuanqi Gu
- Department 2 of Gynecology, Remin Hospital of Wuhan University, Wuhan, China
| | - Xiaolong Shi
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China
| |
Collapse
|
37
|
Alavi N, Maghami P, Pakdel AF, Rezaei M, Avan A. Antibody-modified Gold Nanobiostructures: Advancing Targeted Photodynamic Therapy for Improved Cancer Treatment. Curr Pharm Des 2023; 29:3103-3122. [PMID: 37990429 DOI: 10.2174/0113816128265544231102065515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/03/2023] [Indexed: 11/23/2023]
Abstract
Photodynamic therapy (PDT) is an innovative, non-invasive method of treating cancer that uses light-activated photosensitizers to create reactive oxygen species (ROS). However, challenges associated with the limited penetration depth of light and the need for precise control over photosensitizer activation have hindered its clinical translation. Nanomedicine, particularly gold nanobiostructures, offers promising solutions to overcome these limitations. This paper reviews the advancements in PDT and nanomedicine, focusing on applying antibody-modified gold nanobiostructures as multifunctional platforms for enhanced PDT efficacy and improved cancer treatment outcomes. The size, shape, and composition of gold nanobiostructures can significantly influence their PDT efficacy, making synthetic procedures crucial. Functionalizing the surface of gold nanobiostructures with various molecules, such as antibodies or targeting agents, bonding agents, PDT agents, photothermal therapy (PTT) agents, chemo-agents, immunotherapy agents, and imaging agents, allows composition modification. Integrating gold nanobiostructures with PDT holds immense potential for targeted cancer therapy. Antibody-modified gold nanobiostructures, in particular, have gained significant attention due to their tunable plasmonic characteristics, biocompatibility, and surface functionalization capabilities. These multifunctional nanosystems possess unique properties that enhance the efficacy of PDT, including improved light absorption, targeted delivery, and enhanced ROS generation. Passive and active targeting of gold nanobiostructures can enhance their localization near cancer cells, leading to efficient eradication of tumor tissues upon light irradiation. Future research and clinical studies will continue to explore the potential of gold nanobiostructures in PDT for personalized and effective cancer therapy. The synthesis, functionalization, and characterization of gold nanobiostructures, their interaction with light, and their impact on photosensitizers' photophysical and photochemical properties, are important areas of investigation. Strategies to enhance targeting efficiency and the evaluation of gold nanobiostructures in vitro and in vivo studies will further advance their application in PDT. The integrating antibody-modified gold nanobiostructures in PDT represents a promising strategy for targeted cancer therapy. These multifunctional nanosystems possess unique properties that enhance PDT efficacy, including improved light absorption, targeted delivery, and enhanced ROS generation. Continued research and development in this field will contribute to the advancement of personalized and effective cancer treatment approaches.
Collapse
Affiliation(s)
- Negin Alavi
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Parvaneh Maghami
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Azar Fani Pakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezaei
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia
| |
Collapse
|
38
|
Li Y, Zhao J, Xue Z, Tsang C, Qiao X, Dong L, Li H, Yang Y, Yu B, Gao Y. Aptamer nucleotide analog drug conjugates in the targeting therapy of cancers. Front Cell Dev Biol 2022; 10:1053984. [PMID: 36544906 PMCID: PMC9760908 DOI: 10.3389/fcell.2022.1053984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Aptamers are short single-strand oligonucleotides that can form secondary and tertiary structures, fitting targets with high affinity and specificity. They are so-called "chemical antibodies" and can target specific biomarkers in both diagnostic and therapeutic applications. Systematic evolution of ligands by exponential enrichment (SELEX) is usually used for the enrichment and selection of aptamers, and the targets could be metal ions, small molecules, nucleotides, proteins, cells, or even tissues or organs. Due to the high specificity and distinctive binding affinity of aptamers, aptamer-drug conjugates (ApDCs) have demonstrated their potential role in drug delivery for cancer-targeting therapies. Compared with antibodies which are produced by a cell-based bioreactor, aptamers are chemically synthesized molecules that can be easily conjugated to drugs and modified; however, the conventional ApDCs conjugate the aptamer with an active drug using a linker which may add more concerns to the stability of the ApDC, the drug-releasing efficiency, and the drug-loading capacity. The function of aptamer in conventional ApDC is just as a targeting moiety which could not fully perform the advantages of aptamers. To address these drawbacks, scientists have started using active nucleotide analogs as the cargoes of ApDCs, such as clofarabine, ara-guanosine, gemcitabine, and floxuridine, to replace all or part of the natural nucleotides in aptamer sequences. In turn, these new types of ApDCs, aptamer nucleotide analog drug conjugates, show the strength for targeting efficacy but avoid the complex drug linker designation and improve the synthetic efficiency. More importantly, these classic nucleotide analog drugs have been used for many years, and aptamer nucleotide analog drug conjugates would not increase any unknown druggability risk but improve the target tumor accumulation. In this review, we mainly summarized aptamer-conjugated nucleotide analog drugs in cancer-targeting therapies.
Collapse
Affiliation(s)
- Yongshu Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China,Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China,Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China,*Correspondence: Yongshu Li, ; Yunhua Gao,
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Zhichao Xue
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Chiman Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Qiao
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Lianhua Dong
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China,Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Huijie Li
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Yi Yang
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Bin Yu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yunhua Gao
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China,Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China,*Correspondence: Yongshu Li, ; Yunhua Gao,
| |
Collapse
|
39
|
Yang CH, Tsai CH. Aptamer against Aflatoxin B1 Obtained by SELEX and Applied in Detection. BIOSENSORS 2022; 12:848. [PMID: 36290985 PMCID: PMC9599246 DOI: 10.3390/bios12100848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Aflatoxins, especially aflatoxin B1 (AFB1), are the most prevalent mycotoxins in nature. They contaminate various crops and cause global food and feed safety concerns. Therefore, a simple, rapid, sensitive, and specific AFB1 detection tool is urgently needed. Aptamers generated by SELEX technology can specifically bind the desired targets with high affinity. The broad range of targets expands the scope of applications for aptamers. We used an AFB1-immobilized magnetic nanoparticle for SELEX to select AFB1-specific aptamers. One aptamer, fl-2CS1, revealed a dissociation constant (Kd = 2.5 μM) with AFB1 determined by isothermal titration calorimetry. Furthermore, no interaction was shown with other toxins (AFB2, AFG1, AFG2, OTA, and FB1). According to structural prediction and analysis, we identified a short version of the AFB1-specific aptamer, fl-2CS1/core, with a minimum length of 39-mer used in the AFB1-aptasensor system by real-time qPCR. The aptasensor showed a broad range of detection from 50 ppt to 50 ppb with an accuracy of 90% in the spiked peanut extract samples. With the application of the AFB1-aptasensor we have constructed, a wide range detection tool with high accuracy might be developed as a point-of-care testing tool in agriculture.
Collapse
Affiliation(s)
- Chung-Hsuan Yang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
40
|
Song Y, Tan X, Gao Y. Platelet-biomimetic nanoparticles for in vivo targeted photodynamic therapy of breast cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1383-1397. [PMID: 35321618 DOI: 10.1080/09205063.2022.2056942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nanocarrier-based photodynamic therapy (PDT) has emerged as a promising treatment in cancer therapy. However, the PDT therapeutic efficacy is limited by the lack of specificity, limited intracellular cytotoxic reactive oxygen species (ROS) generation, and the immunosuppressive tumor microenvironment. Herein, a platelet membrane (Pm) decorated and chlorin e6 loaded liposome (Pm/Lps/Ce6) is developed to improve specific tumor-targeting capability and antitumor responses. Pm/Lps/Ce6 could efficiently improve the cellular internalization of Ce6. Under 660-nm laser irradiation, enough ROS was produced to suppress the growth of tumor cells in vitro. In vivo, the Pm decoration increased cellular uptake of the Ce6 loaded liposome in cancer cells by the tumor-targeting and immune escape capacity and produced a satisfactory inhibitory effect on breast cancer. Our study provides a biomimetic strategy via the biological properties of Pm to improve the antitumor performance of photodynamic therapy for treating breast cancer.
Collapse
Affiliation(s)
- Yangyang Song
- Department of Nursing Platform for Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xue Tan
- Department of Operation Room, The First Hospital of Jilin University, Changchun, China
| | - Yanan Gao
- Department of Nursing Platform for Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Xie Y, Wang M, Sun Q, Wang D, Luo S, Li C. PtBi-β-CD-Ce6 Nanozyme for Combined Trimodal Imaging-Guided Photodynamic Therapy and NIR-II Responsive Photothermal Therapy. Inorg Chem 2022; 61:6852-6860. [PMID: 35477242 DOI: 10.1021/acs.inorgchem.2c00168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Combined photothermal/photodynamic therapy is a promising strategy to achieve an enhanced anticancer effect. However, hypoxia is one of the representative characteristics of the microenvironment of solid tumors, which not only attenuates the therapeutic effects but also promotes tumor invasion and metastasis. Herein, a PtBi-β-CD-Ce6 nanoplatform for the generation of sustained O2 was constructed for more effective tumor therapy. In detail, the catalase (CAT)-like nanozyme, PtBi, which could decompose H2O2 to produce O2, was modified with β-cyclodextrin (β-CD). O2 would be converted into 1O2 by PtBi-β-CD-Ce6 for enhanced photodynamic therapy (PDT) under 650 nm laser irradiation. In addition, by reason of excellent absorption in the near-infrared-II (NIR-II) region, PtBi-β-CD-Ce6 was used for photoacoustic imaging (PA) and photothermal imaging (PT)-guided photothermal therapy (PTT) in the NIR-II biowindow. Furthermore, PtBi-β-CD-Ce6 could be elected to serve as a contrast agent for X-ray computed tomography (CT) imaging due to the apparent X-ray attenuation capability of the Pt and Bi elements themselves. Therefore, by integrating the advantages of overcoming the hypoxia function and photothermal effect into a single nanoplatform, PtBi-β-CD-Ce6 showed an immense possibility in multimodal imaging-guided combined PDT/PTT.
Collapse
Affiliation(s)
- Yulin Xie
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Shuiping Luo
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
42
|
Zhang WY, Li GC, Li YY, Fan Y, Sun XQ, Zhang QB, Hou BJ, Xu WB, Jin NZ, Feng XX, Liu JC. Water-soluble porphyrin photosensitizers containing electron-withdrawing and electron-donating groups for photodynamic therapy. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy is used to treat a variety of cancers. In this paper, water-soluble porphyrin photosensitizers (H2P1[Formula: see text]H2P3) for photodynamic therapy were synthesized, containing three groups -CH3, -CN, and -CF3. Density functional theory is used to optimize the structure of H2P1-H2P3 and calculate the [Formula: see text]E value. The smaller the value of [Formula: see text]E, the more favorable the electron transfer and thus the higher activity of the porphyrin photosensitizers. Due to the electron-withdrawing groups of -CN and -CF3, H2P2 and H2P3 have lower [Formula: see text]E values, higher reactive oxygen species yields compared with H2P1. The H2P2 porphyrin photosensitizers showed positive photodynamic therapeutic activity against hepatocellular carcinoma cells (HepG2) and good compatibility with human umbilical vein endothelial cells (HUVECs) by cellular anticancer activity assay. The anti-cancer mechanism of PSs was explained by living and dead cell staining experiment and intracellular reactive oxygen species experiment. PSs produced reactive oxygen species (ROS) in cancer cells under light irradiation, which induced cancer cell apoptosis.
Collapse
Affiliation(s)
- Wen-Yuan Zhang
- The College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Gui-Chen Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730000, P. R. China
| | - Yan-Yan Li
- The College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Yan Fan
- The College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Xue-Qin Sun
- The College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Qi-Bin Zhang
- Key Laboratory of Cloud Computing of Gansu Province, Gansu Computing Center, Lanzhou, 730030, P. R. China
| | - Bing-Jie Hou
- The College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Wei-Bing Xu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730000, P. R. China
| | - Neng-Zhi Jin
- Key Laboratory of Cloud Computing of Gansu Province, Gansu Computing Center, Lanzhou, 730030, P. R. China
| | - Xiao-Xia Feng
- The College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Jia-Cheng Liu
- The College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
43
|
Wang P, Zhang L, Zhang Z, Wang S, Yao C. Influence of Parameters on Photodynamic Therapy of Au@TiO 2-HMME Core-Shell Nanostructures. NANOMATERIALS 2022; 12:nano12081358. [PMID: 35458066 PMCID: PMC9032932 DOI: 10.3390/nano12081358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT) is a promising tumor therapy and has been proven to be an effective, safe and minimally invasive technique. Hematoporphyrin monomethyl ether (HMME) mediated PDT has been used in clinical treatment of port wine stain (PWS) due to its single component, high yield of singlet oxygen and short light-sensitive period. However, as an amphiphilic photosensitizer, HMME is easy to aggregate due to the presence of a hydrophobic group, which undesirably reduced its generation of singlet oxygen and bioavailability. In this study, we synthesized the stable conjugate of Au@TiO2 core-shell nanostructure with HMME, and the influence of different factors on PTD efficiency were studied. The results showed that the nanostructure had higher PTD efficiency for KB cells than that of HMME. The irradiation wavelength, gold nanoparticle shape and the shell thickness are all important factors for KB cell PDT.
Collapse
|
44
|
Ibarra LE, Camorani S, Agnello L, Pedone E, Pirone L, Chesta CA, Palacios RE, Fedele M, Cerchia L. Selective Photo-Assisted Eradication of Triple-Negative Breast Cancer Cells through Aptamer Decoration of Doped Conjugated Polymer Nanoparticles. Pharmaceutics 2022; 14:626. [PMID: 35336001 PMCID: PMC8955042 DOI: 10.3390/pharmaceutics14030626] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Photodynamic therapy (PDT) may be an excellent alternative in the treatment of breast cancer, mainly for the most aggressive type with limited targeted therapies such as triple-negative breast cancer (TNBC). We recently generated conjugated polymer nanoparticles (CPNs) as efficient photosensitizers for the photo-eradication of different cancer cells. With the aim of improving the selectivity of PDT with CPNs, the nanoparticle surface conjugation with unique 2'-Fluoropyrimidines-RNA-aptamers that act as effective recognition elements for functional surface signatures of TNBC cells was proposed and designed. A coupling reaction with carbodiimide was used to covalently bind NH2-modified aptamers with CPNs synthetized with two polystyrene-based polymer donors of COOH groups for the amide reaction. The selectivity of recognition for TNBC membrane receptors and PDT efficacy were assayed in TNBC cells and compared with non-TNBC cells by flow cytometry and cell viability assays. Furthermore, in vitro PDT efficacy was assayed in different TNBC cells with significant improvement results using CL4, sTN29 and sTN58 aptamers compared to unconjugated CPNs and SCR non-specific aptamer. In a chemoresistance TNBC cell model, sTN58 was the candidate for improving labelling and PDT efficacy with CPNs. We proposed sTN58, sTN29 and CL4 aptamers as valuable tools for selective TNBC targeting, cell internalization and therapeutic improvements for CPNs in PDT protocols.
Collapse
Affiliation(s)
- Luis Exequiel Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto y CONICET, Río Cuarto X5800BIA, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5800BIA, Argentina
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), 80145 Naples, Italy; (E.P.); (L.P.)
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), 80145 Naples, Italy; (E.P.); (L.P.)
| | - Carlos Alberto Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rio Cuarto y CONICET, Río Cuarto X5800BIA, Argentina; (C.A.C.); (R.E.P.)
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5800BIA, Argentina
| | - Rodrigo Emiliano Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rio Cuarto y CONICET, Río Cuarto X5800BIA, Argentina; (C.A.C.); (R.E.P.)
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5800BIA, Argentina
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| |
Collapse
|
45
|
Zuo P, Gong F, Yang Y, Ji X, He Z. In situ fluorescence imaging of fungi via (1,3)-β-D-glucan aptamer and tyramide signal amplification technology. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Ulfo L, Costantini PE, Di Giosia M, Danielli A, Calvaresi M. EGFR-Targeted Photodynamic Therapy. Pharmaceutics 2022; 14:241. [PMID: 35213974 PMCID: PMC8879084 DOI: 10.3390/pharmaceutics14020241] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a pivotal role in the proliferation and metastatization of cancer cells. Aberrancies in the expression and activation of EGFR are hallmarks of many human malignancies. As such, EGFR-targeted therapies hold significant potential for the cure of cancers. In recent years, photodynamic therapy (PDT) has gained increased interest as a non-invasive cancer treatment. In PDT, a photosensitizer is excited by light to produce reactive oxygen species, resulting in local cytotoxicity. One of the critical aspects of PDT is to selectively transport enough photosensitizers to the tumors environment. Accordingly, an increasing number of strategies have been devised to foster EGFR-targeted PDT. Herein, we review the recent nanobiotechnological advancements that combine the promise of PDT with EGFR-targeted molecular cancer therapy. We recapitulate the chemistry of the sensitizers and their modes of action in PDT, and summarize the advantages and pitfalls of different targeting moieties, highlighting future perspectives for EGFR-targeted photodynamic treatment of cancer.
Collapse
Affiliation(s)
- Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
47
|
McKenzie LK, Flamme M, Felder PS, Karges J, Bonhomme F, Gandioso A, Malosse C, Gasser G, Hollenstein M. A ruthenium-oligonucleotide bioconjugated photosensitizing aptamer for cancer cell specific photodynamic therapy. RSC Chem Biol 2022; 3:85-95. [PMID: 35128412 PMCID: PMC8729177 DOI: 10.1039/d1cb00146a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/31/2021] [Indexed: 12/15/2022] Open
Abstract
Ruthenium complexes have emerged as a promising class of compounds for use as photosensitizers (PSs) in photodynamic therapy (PDT) due to their attractive photophysical properties and relative ease of chemical alteration. While promising, they generally are not inherently targeting to disease sites and may therefore be prone to side effects and require higher doses. Aptamers are short oligonucleotides that bind specific targets with high affinity. One such aptamer is AS1411, a nucleolin targeting, G-quadruplex forming, DNA aptamer. Here we present the first example of direct conjugation of a Ru(ii) polypyridyl complex-based PS to an aptamer and an assessment of its in vitro cancer cell specific photosensitization including discussion of the challenges faced.
Collapse
Affiliation(s)
- Luke K McKenzie
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523 28 rue du Docteur Roux 75724 Paris Cedex 15 France https://research.pasteur.fr/en/team/bioorganic-chemistry-of-nucleic-acids/ +33 1 44 38 94 66
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
| | - Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523 28 rue du Docteur Roux 75724 Paris Cedex 15 France https://research.pasteur.fr/en/team/bioorganic-chemistry-of-nucleic-acids/ +33 1 44 38 94 66
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
- Université de Paris 12 rue de l'École de Médecine 75006 Paris France
| | - Patrick S Felder
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
| | - Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
| | - Frederic Bonhomme
- Institut Pasteur, Department of Structural Biology and Chemistry, Unité de Chimie Biologique Epigénétique, UMR CNRS 3523 28 rue du Docteur Roux 75724 Paris Cedex 15 France
| | - Albert Gandioso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
| | - Christian Malosse
- Institut Pasteur, Mass Spectrometry for Biology Unit 28 rue du Docteur Roux 75724 Paris Cedex 15 France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523 28 rue du Docteur Roux 75724 Paris Cedex 15 France https://research.pasteur.fr/en/team/bioorganic-chemistry-of-nucleic-acids/ +33 1 44 38 94 66
| |
Collapse
|
48
|
Wang W, Wang J, Hong G, Mao L, Zhu N, Liu T. Methoxypolyethylene Glycol-Substituted Zinc Phthalocyanines for Multiple Tumor-Selective Fluorescence Imaging and Photodynamic Therapy. Biomacromolecules 2021; 22:4284-4294. [PMID: 34569232 DOI: 10.1021/acs.biomac.1c00855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Highly tumor-tissue-selective drugs are a prerequisite for accurate diagnosis and efficient photodynamic therapy (PDT) of tumors, but the currently used fluorescent dyes and photosensitizers generally lack the ability for high accumulation and precise localization in tumor tissues. Here we report that monomethoxy polyethylene glycol (MPEG)-modified zinc phthalocyanine (ZnPc) can be selectively accumulated in multiple tumor tissues, and that the selectivity is controlled by the chain length of MPEG. MPEG-monosubstituted ZnPcs with different chain lengths were synthesized, among which the shorter chain (mw < 2k)-modified ZnPc did not show tumor tissue selectivity, while MPEG2k-5k-substituted ZnPc could be rapidly and selectively accumulated in H22 tumor tissues in mice after intravenous injection. Especially, MPEG4k-Pc showed the best tumor tissue selectivity with a tumor/liver (T/L) ratio of 1.7-2.2 in HepG2, MDA-MB231, AGS, and HT-29 tumor-bearing mice. It also exhibited potent photodynamic therapy effects after one PDT treatment, and tumor growth was significantly inhibited in H22-bearing mice with an inhibition rate over 98% and no obvious toxicity. Consequently, MPEG-modified ZnPc could serve as a potential platform for selective fluorescence imaging and photodynamic therapy of multiple tumors.
Collapse
Affiliation(s)
- Wenzhi Wang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jiawen Wang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Lina Mao
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Na Zhu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
49
|
Xu Y, Jiang X, Zhou Y, Ma M, Wang M, Ying B. Systematic Evolution of Ligands by Exponential Enrichment Technologies and Aptamer-Based Applications: Recent Progress and Challenges in Precision Medicine of Infectious Diseases. Front Bioeng Biotechnol 2021; 9:704077. [PMID: 34447741 PMCID: PMC8383106 DOI: 10.3389/fbioe.2021.704077] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/26/2021] [Indexed: 02/05/2023] Open
Abstract
Infectious diseases are considered as a pressing challenge to global public health. Accurate and rapid diagnostics tools for early recognition of the pathogen, as well as individualized precision therapy are essential for controlling the spread of infectious diseases. Aptamers, which were screened by systematic evolution of ligands by exponential enrichment (SELEX), can bind to targets with high affinity and specificity so that have exciting potential in both diagnosis and treatment of infectious diseases. In this review, we provide a comprehensive overview of the latest development of SELEX technology and focus on the applications of aptamer-based technologies in infectious diseases, such as targeted drug-delivery, treatments and biosensors for diagnosing. The challenges and the future development in this field of clinical application will also be discussed.
Collapse
Affiliation(s)
- Yixin Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhong Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Ma
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,The First People's Hospital of Shuangliu District, Chengdu/West China (Airport)Hospital Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|