1
|
Yang L, Wang Y, Wang X, Shafique S, Zheng F, Huang L, Liu X, Zhang J, Zhu Y, Xiao C, Hu Z. Identification the Role of Grain Boundaries in Polycrystalline Photovoltaics via Advanced Atomic Force Microscope. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304362. [PMID: 37752782 DOI: 10.1002/smll.202304362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Atomicforce microscopy (AFM)-based scanning probing techniques, including Kelvinprobe force microscopy (KPFM) and conductive atomic force microscopy (C-AFM), have been widely applied to investigate thelocal electromagnetic, physical, or molecular characteristics of functional materials on a microscopic scale. The microscopic inhomogeneities of the electronic properties of polycrystalline photovoltaic materials can be examined by these advanced AFM techniques, which bridge the local properties of materials to overall device performance and guide the optimization of the photovoltaic devices. In this review, the critical roles of local optoelectronic heterogeneities, especially at grain interiors (GIs) and grain boundaries (GBs) of polycrystalline photovoltaic materials, including versatile polycrystalline silicon, inorganic compound materials, and emerging halide perovskites, studied by KPFM and C-AFM, are systematically identified. How the band alignment and electrical properties of GIs and GBs affect the carrier transport behavior are discussed from the respective of photovoltaic research. Further exploiting the potential of such AFM-based techniques upon a summary of their up-to-date applications in polycrystalline photovoltaic materials is beneficial to acomprehensive understanding of the design and manipulation principles of thenovel solar cells and facilitating the development of the next-generation photovoltaics and optoelectronics.
Collapse
Affiliation(s)
- Liu Yang
- Department of Microelectronic Science and Engineering, Laboratory of Clean Energy Storage and Conversion, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo, 315211, China
| | - Yanyan Wang
- Department of Microelectronic Science and Engineering, Laboratory of Clean Energy Storage and Conversion, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo, 315211, China
- Center for Micro-Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai, 200433, China
| | - Xu Wang
- Department of Microelectronic Science and Engineering, Laboratory of Clean Energy Storage and Conversion, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo, 315211, China
| | - Shareen Shafique
- Department of Microelectronic Science and Engineering, Laboratory of Clean Energy Storage and Conversion, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo, 315211, China
| | - Fei Zheng
- Department of Microelectronic Science and Engineering, Laboratory of Clean Energy Storage and Conversion, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo, 315211, China
| | - Like Huang
- Department of Microelectronic Science and Engineering, Laboratory of Clean Energy Storage and Conversion, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo, 315211, China
| | - Xiaohui Liu
- Department of Microelectronic Science and Engineering, Laboratory of Clean Energy Storage and Conversion, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo, 315211, China
| | - Jing Zhang
- Department of Microelectronic Science and Engineering, Laboratory of Clean Energy Storage and Conversion, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo, 315211, China
| | - Yuejin Zhu
- School of Science and Engineering, College of Science and Technology, Ningbo University, Ningbo, 315300, China
| | - Chuanxiao Xiao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201, China
| | - Ziyang Hu
- Department of Microelectronic Science and Engineering, Laboratory of Clean Energy Storage and Conversion, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
2
|
Han B, Wang Y, Liu C, Sun K, Yang M, Xie L, Yang S, Meng Y, Lin S, Xu P, Li J, Qiu Q, Ge Z. Rational Design of Ferroelectric 2D Perovskite for Improving the Efficiency of Flexible Perovskite Solar Cells Over 23 . Angew Chem Int Ed Engl 2023; 62:e202217526. [PMID: 36581737 DOI: 10.1002/anie.202217526] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Despite the great progress of flexible perovskite solar cells (f-PSCs), it still faces several challenges during the homogeneous fabrication of high-quality perovskite thin films, and overcoming the insufficient exciton dissociation. To the ends, we rationally design the ferroelectric two-dimensional (2D) perovskite based on pyridine heterocyclic ring as the organic interlayer. We uncover that incorporation of the ferroelectric 2D material into 3D perovskite induces an increased built-in electric field (BEF), which enhances the exciton dissociation efficiency in the device. Moreover, the 2D seeds could assist the 3D crystallization by forming more homogeneous and highly-oriented perovskite crystals. As a result, an impressive power conversion efficiency (PCE) over 23 % has been achieved by the f-PSCs with outstanding ambient stability. Moreover, the piezo/ferroelectric 2D perovskite intrigues a decreased hole transport barriers at the ITO/perovskite interface under tensile stress, which opens new possibilities for developing highly-efficient f-PSCs.
Collapse
Affiliation(s)
- Bin Han
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, P. R. China
| | - Yaohua Wang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Chang Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Kexuan Sun
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Mengjin Yang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Lisha Xie
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Shuncheng Yang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yuanyuan Meng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Shuyuan Lin
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Peng Xu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jun Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Qingqing Qiu
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
3
|
Bao Z, Guo X, Sun K, Ou J, Lv Y, Zou D, Li Y, Song L, Liu X. Morphology and Luminescence Regulation for CsPbBr 3 Perovskite Light-Emitting Diodes by Controlling Growth of Low-Dimensional Phases. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56374-56383. [PMID: 36480696 DOI: 10.1021/acsami.2c17370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
At present, the high defect density and strong nonradiative recombination rate of all-inorganic cesium lead bromide (CsPbBr3) perovskite light-emitting diodes (PeLEDs) seriously inhibit the improvement of their quantum efficiency. In this paper, the addition of a short-chain additive, diethylammonium bromide (DEABr), aims to control the generation of a quasi-2D large n-phase to optimize the surface morphology and construct two-dimensional/three-dimensional (2D/3D) heterojunction perovskite structures to enhance the EL efficiency of PeLEDs. Through Kelvin probe force microscopy (KPFM) characterization, we confirmed that the 2D phase grains with a low potential are locally formed on the surface of the perovskite film under the action of DEABr. The existence of the 2D phase effectively improved the surface morphology and suppressed surface defects. In addition, the in situ constructed 2D/3D heterojunction perovskite structure further increases the exciton radiative recombination rate and significantly improves the electroluminescent performance. By optimizing its doping concentration, the optimal all-inorganic PeLED displays a current efficiency (CE) of 30.3 cd A-1, an external quantum efficiency (EQE) of 9.6%, and a maximum brightness of 32,500 cd m-2. According to our results, the formation of 2D structures on the surface of the CsPbBr3 film can improve surface morphology issues and optoelectronic properties of the film.
Collapse
Affiliation(s)
- Zhiqiang Bao
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiaoyang Guo
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
| | - Kai Sun
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jianfeng Ou
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ying Lv
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
| | - Deyue Zou
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yantao Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
| | - Li Song
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin300401, P. R. China
| | - Xingyuan Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
| |
Collapse
|
4
|
Liu Y, Tao C, Cao Y, Chen L, Wang S, Li P, Wang C, Liu C, Ye F, Hu S, Xiao M, Gao Z, Gui P, Yao F, Dong K, Li J, Hu X, Cong H, Jia S, Wang T, Wang J, Li G, Huang W, Ke W, Wang J, Fang G. Synergistic passivation and stepped-dimensional perovskite analogs enable high-efficiency near-infrared light-emitting diodes. Nat Commun 2022; 13:7425. [PMID: 36460647 PMCID: PMC9718757 DOI: 10.1038/s41467-022-35218-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Formamidinium lead iodide (FAPbI3) perovskites are promising emitters for near-infrared light-emitting diodes. However, their performance is still limited by defect-assisted nonradiative recombination and band offset-induced carrier aggregation at the interface. Herein, we introduce a couple of cadmium salts with acetate or halide anion into the FAPbI3 perovskite precursors to synergistically passivate the material defects and optimize the device band structure. Particularly, the perovskite analogs, containing zero-dimensional formamidinium cadmium iodide, one-dimensional δ-FAPbI3, two-dimensional FA2FAn-1PbnI3n+1, and three-dimensional α-FAPbI3, can be obtained in one pot and play a pivotal and positive role in energy transfer in the formamidinium iodide-rich lead-based perovskite films. As a result, the near-infrared FAPbI3-based devices deliver a maximum external quantum efficiency of 24.1% together with substantially improved operational stability. Combining our findings on defect passivation and energy transfer, we also achieve near-infrared light communication with device twins of light emitting and unprecedented self-driven detection.
Collapse
Affiliation(s)
- Yongjie Liu
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Chen Tao
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Yu Cao
- grid.412022.70000 0000 9389 5210Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, China ,grid.440588.50000 0001 0307 1240Institute of Flexible Electronics, Northwestern Polytechnical University (NPU), Xi’an, China
| | - Liangyan Chen
- grid.412969.10000 0004 1798 1968School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Shuxin Wang
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Pei Li
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Cheng Wang
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Chenwei Liu
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Feihong Ye
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Shengyong Hu
- grid.41156.370000 0001 2314 964XNational Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, China
| | - Meng Xiao
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zheng Gao
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Pengbing Gui
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Fang Yao
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Kailian Dong
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Jiashuai Li
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xuzhi Hu
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Hengjiang Cong
- grid.49470.3e0000 0001 2331 6153College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, China
| | - Shuangfeng Jia
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ti Wang
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Jianbo Wang
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Gang Li
- grid.16890.360000 0004 1764 6123Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei Huang
- grid.412022.70000 0000 9389 5210Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, China ,grid.440588.50000 0001 0307 1240Institute of Flexible Electronics, Northwestern Polytechnical University (NPU), Xi’an, China
| | - Weijun Ke
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Jianpu Wang
- grid.412022.70000 0000 9389 5210Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, China
| | - Guojia Fang
- grid.49470.3e0000 0001 2331 6153Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Xiao M, Xiang T, Kim D, Wang M, Zhang W, Ahmadi M, Li T, Wu X, Xu L, Chen P. Superior External Quantum Efficiency of LEDs via Quasi-2D Perovskite Crystals Implanted with Phenethylammonium Acetate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45352-45363. [PMID: 36178873 DOI: 10.1021/acsami.2c12048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The multiple quantum well structure of a quasi-two-dimensional (quasi-2D) perovskite leads to nonradiative Auger recombination (AR). This is due to high local carrier density in recombination centers, although the radiative recombination is improved by efficient energy transfer. In this study, we suppress the AR by introducing phenethylammonium acetate (PEAAc) into the quasi-2D PEA2Csn-1PbnBr3n+1 perovskite. The recombination centers of n ≥ 4 phases can be promoted because the COO- preferentially coordinates with Pb2+, inhibiting the fast formation of n = 1, 2, 3 phases with phenethylammonium anion (PEA+). Thus, the AR is suppressed due to the lower density of local charge carriers. To balance the AR suppression and decreasing binding energy in promoting the n ≥ 4 phases, the PEAAc:PEABr molar ratios are adjusted. At the optimal molar ratio, perovskite light-emitting diodes (PeLEDs) with a maximum luminescence of ∼29942 cd m-2 and a maximum external quantum efficiency of ∼20.2% are achieved. These results confirm the most efficient PeLEDs based on PEA2Csn-1PbnBr3n+1 without passivation. Moreover, the efficiency roll off is significantly mitigated with a high threshold of over 3.51 mA/cm2. This study develops high-efficiency PeLEDs with a low efficiency rolloff.
Collapse
Affiliation(s)
- Meiqin Xiao
- Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing400715, People's Republic of China
| | - Ting Xiang
- Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing400715, People's Republic of China
| | - Dohyung Kim
- Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Miaosheng Wang
- Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, People's Republic of China
| | - Mahshid Ahmadi
- Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Ting Li
- Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing400715, People's Republic of China
| | - Xiaoyan Wu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang621900, People's Republic of China
| | - Long Xu
- Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing400715, People's Republic of China
| | - Ping Chen
- Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing400715, People's Republic of China
| |
Collapse
|