1
|
Zhang L, Xing S, He T, Wu W, Zhang A, Guo Z, Das P, Zheng S, Ge J, Feng X, Sun Z, Wu Z. Vacancies Engineering in Molybdenum Boride MBene Nanosheets to Activate Room-Temperature Ferromagnetism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411765. [PMID: 39487657 PMCID: PMC11707573 DOI: 10.1002/adma.202411765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/15/2024] [Indexed: 11/04/2024]
Abstract
The rapid development of low energy dissipation spintronic devices has stimulated the search for air-stable 2D nanomaterials possessing room-temperature ferromagnetism. Here the experimental realization of 2D Mo4/3B2 nanosheets is reported with intrinsic room-temperature ferromagnetic characteristics by vacancy engineering. These nanosheets are synthesized by etching the bulk MAB phase (Mo2/3Y1/3)2AlB2 into Mo4/3B2 nanosheets in ZnCl2 molten salt. The Mo4/3B2 nanosheets show robust intrinsic ferromagnetic properties, with a saturation magnetic moment of 0.044 emu g-1 at 300 K, while vacancy-free MoB MBene exhibits paramagnetism. It is elucidated that the Mo-vacancy defect generates large density of states near the Fermi surface and spontaneously spin-split bands through first-principles calculations, which contributes to the non-zero magnetic moment in Mo4/3B2 nanosheets. This work lays the groundwork for activating the magnetic properties of MBene nanosheets by vacancy engineering, offering the possibilities for development of practical spintronic devices.
Collapse
Affiliation(s)
- Liangzhu Zhang
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- School of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Shucheng Xing
- Center for Integrated Computational Materials EngineeringInternational Research Institute for Multidisciplinary ScienceSchool of Materials Science and EngineeringBeihang UniversityBeijing100191China
| | - Tian He
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Wei‐Bin Wu
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - An‐lei Zhang
- College of ScienceNanjing University of Posts and TelecommunicationsNanjing210023China
| | - Zhoubin Guo
- University of Chinese Academy of Sciences19 A Yuquan Road, Shijingshan DistrictBeijing100049China
| | - Pratteek Das
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Shuanghao Zheng
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Jun‐Yi Ge
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Max Planck Institute of Microstructure Physics06120Halle (Saale)Germany
| | - Zhimei Sun
- Center for Integrated Computational Materials EngineeringInternational Research Institute for Multidisciplinary ScienceSchool of Materials Science and EngineeringBeihang UniversityBeijing100191China
| | - Zhong‐Shuai Wu
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| |
Collapse
|
2
|
Akyildiz A, Ilgaz Aysan I, Abdullahi YZ, Akgenc Hanedar B, Demir Vatansever Z, Ersan F. Investigation of the electronic and magnetic properties of bare and oxygen-terminated ordered double transition-metal MXenes for spintronic applications. Phys Chem Chem Phys 2024; 26:26566-26575. [PMID: 39400247 DOI: 10.1039/d4cp03396e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
MXenes are a large and new family of intrinsically magnetic two-dimensional (2D) transition-metal carbides and nitrides. This family has been adding new members since their first discovery in 2011, and has expanded with the exploring of ordered double transition-metal (DTM) MXenes. In this study, we have investigated the electronic and magnetic properties of thirteen bare and fourteen oxygen-terminated DTM MXene structures (M3C2, M3C2O2, MM'C2 and MM'C2O2, M = Ti, Zr, Cr, and Mo; M' = Ti, V, Nb, and Ta). The Hubbard-U parameter strongly depends on the atom environment and the coordination number in the cell. Therefore, for the first time in the literature, we have calculated the Hubbard-U parameters for each considered MXene structure systematically instead of taking them randomly. The investigated MXene structures have striking properties with respect to their magnetic ground states, and show ferromagnetic to antiferromagnetic or non-magnetic properties, accompanied by semiconductor to metallic or semi-metallic properties, depending on the transition metal(s) or termination by oxygen. We have performed Monte Carlo simulations to obtain the magnetic phase transition temperature of each structure. Additionally, coercivity and remanence values have been calculated for ferromagnetic cases, and we have investigated the hysteresis features of the MXenes of interest by applying a cyclic magnetic field at several temperatures.
Collapse
Affiliation(s)
- Aymila Akyildiz
- Department of Physics, Dokuz Eylul University, Izmir 35160, Turkey.
| | - Isil Ilgaz Aysan
- Department of Physics, Aydin Adnan Menderes University, Aydin 09010, Turkey.
| | - Yusuf Zuntu Abdullahi
- Department of Physics, Aydin Adnan Menderes University, Aydin 09010, Turkey.
- Department of Physics, Faculty of Science, Kaduna State University, P.M.B. 2339 Kaduna State, Nigeria
| | | | | | - Fatih Ersan
- Department of Physics, Aydin Adnan Menderes University, Aydin 09010, Turkey.
| |
Collapse
|
3
|
Kalmár J, Karlický F. Mn 2C MXene functionalized by oxygen is a semiconducting antiferromagnet and an efficient visible light absorber. Phys Chem Chem Phys 2024; 26:19733-19741. [PMID: 38984393 DOI: 10.1039/d4cp02264e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Manganese-based MXenes are promising two-dimensional materials due to the broad palette of their magnetic phases and the possibility of experimental preparation because the corresponding MAX phase was already prepared. Here, we systematically investigated geometrical conformers and spin solutions of oxygen-terminated Mn2C MXene and performed subsequent many-body calculations to obtain reliable electronic and optical properties. Allowing energy-lowering using the correct spin ordering via supercell magnetic motifs is essential for the Mn2CO2 system. The stable ground-state Mn2CO2 conformation is antiferromagnetic (AFM) with zigzag lines of up and down spins on Mn atoms. The AFM nature is consistent with the parent MAX phase and even the clean depleted Mn2C sheet. Other magnetic states and geometrical conformations are energetically very close, providing state-switching possibilities in the material. Subsequent many-body GW and Bethe-Salpeter equation (BSE) calculations provide indirect semiconductor characteristics of AFM Mn2CO2 with a fundamental gap of 2.1 eV (and a direct gap of 2.4 eV), the first bright optical transition at 1.3 eV and extremely strongly bound (1.1 eV) first bright exciton. Mn2CO2 absorbs efficiently the whole visible light range and near ultraviolet range (between 10 and 20%).
Collapse
Affiliation(s)
- Jiří Kalmár
- Department of Physics, Faculty of Science, University of Ostrava, 30. dubna 22, 7013 Ostrava, Czech Republic.
| | - František Karlický
- Department of Physics, Faculty of Science, University of Ostrava, 30. dubna 22, 7013 Ostrava, Czech Republic.
| |
Collapse
|
4
|
Muñoz J. Rational Design of Stimuli-Responsive Inorganic 2D Materials via Molecular Engineering: Toward Molecule-Programmable Nanoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305546. [PMID: 37906953 DOI: 10.1002/adma.202305546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/10/2023] [Indexed: 11/02/2023]
Abstract
The ability of electronic devices to act as switches makes digital information processing possible. Succeeding graphene, emerging inorganic 2D materials (i2DMs) have been identified as alternative 2D materials to harbor a variety of active molecular components to move the current silicon-based semiconductor technology forward to a post-Moore era focused on molecule-based information processing components. In this regard, i2DMs benefits are not only for their prominent physiochemical properties (e.g., the existence of bandgap), but also for their high surface-to-volume ratio rich in reactive sites. Nonetheless, since this field is still in an early stage, having knowledge of both i) the different strategies for molecularly functionalizing the current library of i2DMs, and ii) the different types of active molecular components is a sine qua non condition for a rational design of stimuli-responsive i2DMs capable of performing logical operations at the molecular level. Consequently, this Review provides a comprehensive tutorial for covalently anchoring ad hoc molecular components-as active units triggered by different external inputs-onto pivotal i2DMs to assess their role in the expanding field of molecule-programmable nanoelectronics for electrically monitoring bistable molecular switches. Limitations, challenges, and future perspectives of this emerging field which crosses materials chemistry with computation are critically discussed.
Collapse
Affiliation(s)
- Jose Muñoz
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| |
Collapse
|
5
|
Purbayanto MAK, Chandel M, Birowska M, Rosenkranz A, Jastrzębska AM. Optically Active MXenes in Van der Waals Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301850. [PMID: 37715336 DOI: 10.1002/adma.202301850] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/26/2023] [Indexed: 09/17/2023]
Abstract
The vertical integration of distinct 2D materials in van der Waals (vdW) heterostructures provides the opportunity for interface engineering and modulation of electronic as well as optical properties. However, scarce experimental studies reveal many challenges for vdW heterostructures, hampering the fine-tuning of their electronic and optical functionalities. Optically active MXenes, the most recent member of the 2D family, with excellent hydrophilicity, rich surface chemistry, and intriguing optical properties, are a novel 2D platform for optoelectronics applications. Coupling MXenes with various 2D materials into vdW heterostructures can open new avenues for the exploration of physical phenomena of novel quantum-confined nanostructures and devices. Therefore, the fundamental basis and recent findings in vertical vdW heterostructures composed of MXenes as a primary component and other 2D materials as secondary components are examined. Their robust designs and synthesis approaches that can push the boundaries of light-harvesting, transition, and utilization are discussed, since MXenes provide a unique playground for pursuing an extraordinary optical response or unusual light conversion features/functionalities. The recent findings are finally summarized, and a perspective for the future development of next-generation vdW multifunctional materials enriched by MXenes is provided.
Collapse
Affiliation(s)
- Muhammad A K Purbayanto
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw, 02-507, Poland
| | - Madhurya Chandel
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw, 02-507, Poland
| | - Magdalena Birowska
- Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw, 02-093, Poland
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Avenida Beauchef 851, Santiago, 8370456, Chile
| | - Agnieszka M Jastrzębska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw, 02-507, Poland
| |
Collapse
|
6
|
Han Z, Wang F, Sun J, Wang X, Tang Z. Recent Advances in Ultrathin Chiral Metasurfaces by Twisted Stacking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206141. [PMID: 36284479 DOI: 10.1002/adma.202206141] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Artificial chiral nanostructures have been subjected to extensive research for their unique chiroptical activities. Planarized chiral films of ultrathin thicknesses are in particular demand for easy on-chip integration and improved energy efficiency as polarization-sensitive metadevices. Recently, controlled twisted stacking of two or more layers of nanomaterials, such as 2D van der Waals materials, ultrathin films, or traditional metasurfaces, at an angle has emerged as a general strategy to introduce optical chirality into achiral solid-state systems. This method endows new degrees of freedom, e.g., the interlayer twist angle, to flexibly engineer and tune the chiroptical responses without having to change the material or the design, thus greatly facilitating the development of multifunctional metamaterials. In this review, recent exciting progress in planar chiral metasurfaces are summarized and discussed from the viewpoints of building blocks, fabrication methods, as well as circular dichroism and modulation thereof in twisted stacked nanostructures. The review further highlights the ever-growing portfolio of applications of these chiral metasurfaces, including polarization conversion, information encryption, chiral sensing, and as an engineering platform for hybrid metadevices. Finally, forward-looking prospects are provided.
Collapse
Affiliation(s)
- Zexiang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Fei Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Juehan Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiaoli Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Liu C, Pan H, Hu H, Wei W, Lu Q, Zhao C, Wang H, Du F. Vanadium carbide MXene: as a reductant for the synthesis of gold nanoparticles and its biosensing application. Amino Acids 2022; 54:1173-1181. [PMID: 35732978 DOI: 10.1007/s00726-022-03173-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/09/2022] [Indexed: 01/20/2023]
Abstract
Vanadium carbide MXene (V2C) acts as a new type of two-dimensional (2D) graphene-like transition metal material that has attracted research interest. V2C has been widely used in various fields due to its excellent physical and chemical properties. Herein, the self-assembled V2C@gold nanoparticles (V2C@AuNPs) are prepared by water bath process at 80 °C. With the addition of glutathione (GSH), the absorbance (Abs.) at 550 nm of V2C@AuNPs was decreased. Therefore, an optical sensor is developed to detect GSH based on the properties of V2C@AuNPs. Under the optimal conditions, the detection range is 1-32 µM and the detection limit is 0.099 µM. Furthermore, the proposed GSH sensor exhibits high sensitivity, high selectivity, strong stability, and excellent recovery. The work will expand the application of V2C in biosensing.
Collapse
Affiliation(s)
- Cheng Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
- College of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Hong Pan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Haoyun Hu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Wei Wei
- College of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Qiujun Lu
- College of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Chenxi Zhao
- College of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Haiyan Wang
- College of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China.
| | - Fuyou Du
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
- College of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China.
| |
Collapse
|
8
|
Han F, Jin Q, Xiao J, Wu L, Zhang X. V 2CT X catalyzes polysulfide conversion to enhance the redox kinetics of Li-S batteries. Dalton Trans 2022; 51:2560-2566. [PMID: 35076054 DOI: 10.1039/d1dt04158d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lithium-sulfur (Li-S) batteries have the potential to become the future energy storage system, yet they are plagued by sluggish redox kinetics. Therefore, enhancing the redox kinetics of polysulfides is key for the development of high-energy density and long-life Li-S batteries. Herein, a Ketjen Black (KB)/V2CTX modified separator (KB/V2CTX-PP) based on the catalytic effect in continuous solid-to-liquid-to-solid reactions is proposed to accelerate the conversion of sulfur species during the charge/discharge process in which the V2CTX can enhance the redox kinetics and inhibit polysulfide shuttling. The cells assembled with KB/V2CTX-PP achieve a gratifying first discharge capacity of 1236.1 mA h g-1 at 0.2C and the average capacity decay per cycle reaches 0.049% within 1000 cycles at 1C. The work provides an efficient idea to accelerate redox conversion and suppress shuttle effects by designing a multifunctional catalytic separator.
Collapse
Affiliation(s)
- Fengfeng Han
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P.R. China.
| | - Qi Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P.R. China.
| | - Junpeng Xiao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P.R. China.
| | - Lili Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P.R. China.
| | - Xitian Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P.R. China.
| |
Collapse
|
9
|
Li D, Li S, Zhong C, He J. Tuning magnetism at the two-dimensional limit: a theoretical perspective. NANOSCALE 2021; 13:19812-19827. [PMID: 34825688 DOI: 10.1039/d1nr06835k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The discovery of two-dimensional (2D) magnetic materials provides an ideal testbed for manipulating the magnetic properties at the atomically thin and 2D limit. This review gives recent progress in the emergent 2D magnets and heterostructures, focusing on the theory side. We summarize different theoretical models, ranging from the atomic to micrometer-scale, used to describe magnetic orders. Then, the current strategies for tuning magnetism in 2D materials are further discussed, such as electric field, magnetic field, strain, optics, chemical functionalization, and spin-orbit engineering. Finally, we conclude with the future challenges and opportunities for 2D magnetism.
Collapse
Affiliation(s)
- Dongzhe Li
- Institute for Advanced Study, Chengdu University, Chengdu 610100, P. R. China.
| | - Shuo Li
- Institute for Advanced Study, Chengdu University, Chengdu 610100, P. R. China.
| | - Chengyong Zhong
- Institute for Advanced Study, Chengdu University, Chengdu 610100, P. R. China.
| | - Junjie He
- Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 2835, Bremen, Germany
- Department of Physical and Macromolecular Chemistry & Charles University Centre of Advanced Materials, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2, 128 43, Czech Republic.
| |
Collapse
|